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Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-
oxygen-level-dependent (BOLD) signal has been widely used in healthy individuals
and patients to investigate brain functions when the subjects are in a resting or task-
negative state. Head motion considerably confounds the interpretation of rs-fMRI data.
Nuisance regression is commonly used to reduce motion-related artifacts with six
motion parameters estimated from rigid-body realignment as regressors. To further
compensate for the effect of head movement, the first-order temporal derivatives
of motion parameters and squared motion parameters were proposed previously as
possible motion regressors. However, these additional regressors may not be sufficient
to model the impact of head motion because of the complexity of motion artifacts.
In addition, while using more motion-related regressors could explain more variance in
the data, the neural signal may also be removed with increasing number of motion
regressors. To better model how in-scanner motion affects rs-fMRI data, a robust
and automated convolutional neural network (CNN) model is developed in this study
to obtain optimal motion regressors. The CNN network consists of two temporal
convolutional layers and the output from the network are the derived motion regressors
used in the following nuisance regression. The temporal convolutional layer in the
network can non-parametrically model the prolonged effect of head motion. The set
of regressors derived from the neural network is compared with the same number of
regressors used in a traditional nuisance regression approach. It is demonstrated that
the CNN-derived regressors can more effectively reduce motion-related artifacts.

Keywords: fMRI, denoising, convolutional neural network, motion artifact, nuisance regression

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) based on the blood-oxygen-level-
dependent (BOLD) signal has been widely used to investigate brain functions when the subject
is in a resting or task-negative state. The BOLD signal, however, is contaminated by multiple
noise sources, including head motion, cardiac and respiratory motion, thermal motion inherent
to electrical circuits, instrumental drift, and changes in blood pressure and cerebral autoregulation
mechanisms, which may severely corrupt BOLD fMRI time series (Murphy et al., 2013). A few
recent studies have demonstrated that head motion can significantly confound the analysis of rs-
fMRI data (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk et al., 2012). These studies came to
a consensus that motion overall tends to increase short-range correlations to nearby voxels, causing
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functional connectivity (FC) to vary with distance between
regions. Even small amounts of motion can have considerable
influence on connectivity measurement (Yan et al., 2013).

The origin of motion-related signal changes can be explained
in terms of three interrelated aspects (Caballero-Gaudes and
Reynolds, 2017). First, any alteration in tissue composition due
to head motion can cause a change in net magnetization and
thus proportionally change the amplitude of the signal in a voxel.
Second, the number of excited spins depends on the position of
a voxel at the current time point and previous time points. Head
movement alters the timing between successive spin excitations
in the voxel, potentially generating spin history artifacts and
thus impacting the signal even beyond the instantaneous time
points. Third, the inhomogeneous magnetic field induced by
head movement changes the spatial distribution of the local
magnetic susceptibility gradients and exacerbates distortions
and signal dropouts in regions sensitive to these effects
(Jiang et al., 1995).

In the last decade, nuisance regression has been a popular
preprocessing strategy to remove motion artifact in rs-fMRI data.
A set of motion regressors, referred as nuisance regressors, is
first specified to characterize motion-related fluctuations in the
data. The denoised data is then obtained by regressing out the
contributions from the motion regressors from the original data.

The selection of nuisance regressors is a critical factor
influencing the performance of nuisance regression. Inappropri-
ate regressors may have negligible effect or even be detrimental
to the analysis. For example, inclusion of the global signal (i.e.,
the average fMRI signal across the whole brain) as a nuisance
regressor has been heavily debated in the past. Multiple studies
have shown that global signal regression (GSR) may introduce
a negative bias in the estimated BOLD response (Macey et al.,
2004; Saad et al., 2012), artificially generate anti-correlation
between brain regions (Murphy et al., 2009), and strengthen
the relationship between motion-connectivity correlation and
regional Euclidian distance (Satterthwaite et al., 2013). The most
common motion regressors are simply the six head motion
parameters (R = [X Y Z pitch yaw roll]) estimated from the fMRI
rigid-body realignment pre-processing step. To further reduce
motion-induced spin history artifacts, 12, 24, or even 36 motion-
related regressors are used in recent studies, which incorporate
original motion parameters, their first-order derivatives, their
squared functions, motion parameters with one or two temporal
shifts or average tissue-based [gray matter (GM), white matter
(WM), cerebrospinal fluid (CSF)] regressors (Friston et al., 1996;
Power et al., 2012; Van Dijk et al., 2012; Satterthwaite et al.,
2013; Yan et al., 2013). An alternative strategy for carrying out
motion correction is to scrub contaminated volumes from fMRI
data prior to data analysis (Lemieux et al., 2007; Power et al.,
2011, 2012). Typically, time points are first identified as motion-
induced artifacts by thresholding certain motion measurements,
e.g., framewise displacement, then spike regressors are created
with a single non-zero value at each identified time point as
well as its neighboring time points, and finally these spikes
are regressed out to generate spike-free data. This scrubbing
strategy can be treated as excluding contaminated time points
from subsequent analysis. The combination of scrubbing and

motion regression was shown to have the greatest reduction in
motion-related artifacts (Satterthwaite et al., 2013). However,
there is a tradeoff between the data quality and remaining time
points. Similar to general nuisance regression, including more
motion regressors can be detrimental to the following analysis
since it is unclear whether significant amount of the neuronal-
related BOLD signal is also removed. In addition, scrubbing has
the potential limitation of removing a large proportion of time
series from a single subject, leading to significant variation in the
number of remaining time points from one subject to another
(Yan et al., 2013).

While there are other approaches to reduce motion-related
artifacts such as slice-wise motion correction (Beall and Lowe,
2014), acquiring data with multi-echo EPI sequences (Kundu
et al., 2012) and ICA-based motion correction approaches
(Griffanti et al., 2014; Pruim et al., 2015), this study focuses
on using the head motion parameters estimated from rigid-
body realignment to derive optimal motion-related fluctuations
in rs-fMRI data. The relationship between head motion and
the resulting change in the MR signal remains unclear, the
realignment parameters and their temporal derivatives or
squared functions may not be sufficient to model the non-
linear MR signal change in the data. We have developed a
robust and automated convolutional neural network (CNN)
model to derive improved motion regressors. In the recent
past, CNN networks achieved classification accuracy record
with ImageNet data (Krizhevsky et al., 2012) and have been
successfully applied in different fields such as object recognition
and sentence classification (Kim, 2014; Liang and Hu, 2015).
In our proposed CNN model, the motion parameters estimated
from rigid-body realignment are the input to the network.
Considering that voxels within white matter and CSF share
similar motion-related artifacts as the voxels within GM but do
not have neural contributions, time series from WM and CSF
but not GM are used for optimizing model parameters to avoid
reducing neural activations.

The CNN network consists of two temporal convolutional
layers and the output data from the network are the optimized
motion regressors used in a subsequent motion regression.
The temporal convolutional layer in the network is particularly
useful for non-parametrically modeling the prolonged effect
of head motion (Power et al., 2014). The regressors derived
from the neural network are compared with the same
number of regressors used in a traditional motion regression
approach. A comprehensive comparison of these two methods
of motion regression is presented using fMRI data from a
publicly available database.

MATERIALS AND METHODS

Subjects
The structural MRI and rs-fMRI data used in this study were
downloaded from the publicly available ADNI database1. The
ADNI was launched in 2003 as a public-private partnership,

1http://adni.loni.usc.edu/
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led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
positron emission tomography, other biological markers, and
clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment and
early Alzheimer’s disease.

Only the subjects identified as normal controls by site
investigators were used in this study. All subjects were scanned
on a 3.0-Tesla Philips MRI scanner. All data were downloaded
from the ADNI database before September 2016, and 76 subjects
(age 74.1 ± 6.6 years, MMSE 28.9 ± 1.3, handedness 67
right/9 left, gender 33 male/43 female) were found satisfying the
conditions described above. The subject ID, scanning parameters
and demographical information can be found in Supplementary
Table S1. The magnetization prepared rapid acquisition gradient
echo (MP-RAGE) sequence was used to acquire T1-weighted
structural images by the investigators of the ADNI consortium.
The structural MRI scans were collected with a 24 cm field of
view and a resolution of 256 × 256 × 170 to yield a voxel size of
1 mm× 1 mm× 1.2 mm. The rs-fMRI data were acquired using
an echo-planar imaging sequence with parameters: 140 time
points; TR/TE = 3000/30 ms; flip angle = 80 degrees; 48 slices;
spatial resolution = 3.3 mm × 3.3 mm × 3.3 mm and imaging
matrix = 64× 64. Details of the ADNI MRI protocol can be found
on the ADNI website2. If a subject had multiple MRI/fMRI scans
satisfying the requirements specified above, the first available
MRI/fMRI data set was used for analysis.

General fMRI Preprocessing
Functional and structural MRI imaging data are processed using
the SPM3 and ANTs4 toolbox. The first five volumes of rs-fMRI
data are discarded to avoid data with unsaturated T1 signal.
Before motion regression, the following fMRI preprocessing
steps are applied: (i) slice timing correction; (ii) rigid-body
head motion correction to the mean EPI image using 7th
order B-Spline interpolation to estimate realignment parameters;
(iii) co-registration to the skull-stripped structural image;
(iv) standard space normalization to the MNI152 2 mm template;
(v) spatial smoothing with 6 mm full width at half maximum;
(vi) linear detrending. Motion regression is applied after these
general fMRI preprocessing steps are completed. Temporal
filtering is a preprocessing step commonly used after motion
regression (Satterthwaite et al., 2013; Power et al., 2014). Since
we aimed to develop an automated method modeling motion
fluctuation and compare it with traditional motion regressors,
temporal filtering is not used to give a direct comparison of
motion-corrected fMRI data.

Deep Neural Network for Denoising
The CNN denoising network is implemented using Keras5 with
Theano6 as backend. The schematic diagram of the CNN network

2http://adni.loni.usc.edu/
3https://www.fil.ion.ucl.ac.uk/spm/
4http://stnava.github.io/ANTs/
5https://keras.io/
6http://deeplearning.net/software/theano/

is shown in Figure 1A. The two sequential layers used in the
CNN network are a 1-dimensional convolutional layer along the
temporal direction. Previous studies showed that motion can
have a prolonged and varying effect in the data (Patel et al.,
2014; Power et al., 2014) and small amounts of movement could
have substantial impact on the BOLD signal in fMRI data (Yan
et al., 2013). The CNN network is proposed to learn the influence
from the data without manual interference. Both layers have filter
size f = 5, stride length s = 1 and same padding so that the
output has the same length as the original input. The filter size
is defined as the number of neighboring time points included
when performing the convolution, and the stride length s = 1
means that the filter convolves the input volume by shifting
one unit at a time. Figure 1B shows how the filters in the first
convolutional layer are applied on the input with filter size and
stride length defined and more detailed explanation about these
hyperparameters (i.e., filter size, stride, and same padding) can be
found on the Keras website. In these two convolutional layers,
32 temporal filters (filter dimension 5 × 6 × 32 as shown in
Figure 1C with bias vector 32 × 1) are specified for the first
one, and 12 temporal filters (filter dimension 5 × 32 × 12 with
bias vector 12 × 1) are specified for the second one to match
the number of traditional motion regressors used in this study,
leading to 2,924 parameters in total in the neural network. We
have also applied the network with different hyperparameters,
including filter size and the number of temporal filters for the first
layer. The setting described above achieved the least validation
error and is selected in this study.

The realignment parameters R ∈ RT×6 are the only input
data to our constructed CNN network, where T is the number
of time points. The realignment parameters R are replicated to
match the number of voxels within WM and CSF masks. Each
replicate is linked with different time series within WM and CSF
masks to make each pair unique. Naturally, thousands of WM
and CSF time series paired with the duplicates of realignment
parameters are the large number of samples required to optimize
designed network, and each pair can be treated as a sample. With
the assumption that WM and CSF voxels share similar motion-
related artifacts as GM voxels but are not likely to have neural
signals, voxels limited to non-GM (i.e., WM and CSF) are used to
derive optimal motion regressors without erroneously modeling
neural signals. Many (if not all) standard denoising techniques
(Behzadi et al., 2007; Griffanti et al., 2014; Pruim et al., 2015) have
used this assumption to reduce motion artifacts or physiological
noise. While a few studies showed activation also in white matter
(Gawryluk et al., 2014; Courtemanche et al., 2018), the question
whether there is BOLD signal in white matter is debatable because
of the lack of neurons in white matter.

These non-GM voxels are randomly assigned to a set of
batches with batch size n = 500. In each batch, the input motion
parameters R are replicated n times to match the number of
voxels in the batch. These duplicate samples become unique
and meaningful when they are linked to different voxel time
series. In detail, the replicated motion parameters are forward-
propagated through the convolutional layers and the output
with dimension n× T × 12 is obtained for this batch. Naturally,
each “sample” has the same output regressor with dimension
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FIGURE 1 | (A) Schematic diagram of the CNN network. The network has two temporal convolutional layers with 32 and 12 filters. The filters are specified with filter
size f = 5, stride length s = 1 and the same padding so that the output length is the same as the original input. The motion parameters are replicated n times to
match the number of voxels in the batch. The correlations between voxel time series and output regressors are used to calculate the loss function for model
optimization. (B) Graphical explanation of filter size and stride. (C) Dimension of the 32 filters in the first convolutional layer.

R̃ ∈ RT×12. The correlation ri between voxel time series and the
12 output regressors is calculated and the sum of correlation
across all voxels in the batch with a minus sign is defined as the
loss function to be minimized, namely L = −

∑n
i=1 ri.

There are two choices to calculate the correlation between time
series and the regressors R̃. The first one is by applying the general
linear model (GLM) to fit the time series yi from voxel i to the
regressors R̃ and then calculating the correlation between yi with
the estimated time series ŷi = GLM(R̃, yi), namely,

choice 1 : ri = corr(yi, ŷi) and ŷi = GLM(R̃, yi) = R̃ R̃+yi. (1)

The second choice is by calculating the maximal
correlation between yi and each single regressor in R̃ with
sign ignored, namely,

choice 2 : ri = maxj|corr(yi, R̃j)|, j = 1, . . . , 12. (2)

Considering that the pseudoinverse of output regressor matrix
R̃, namely R̃+, is required for choice 1 and needs to be updated
for each batch, choice 2 is more computational efficient and is

used to compute the loss function in this study. Once the loss
function is obtained, its gradients are computed for updating the
model parameters by back-propagation and the current batch of
time series is replaced with another batch for the next iteration.
Running through all batches once is called one epoch. The CNN
network converges in less than 40 epochs for the fMRI data
with 135 time points. The computational time for each subject
is less than 2 min on a Tesla K40c GPU with 2,880 cores and
approximately 10 min per subject with GPU disabled.

While all subjects share the same network architecture,
the CNN network is optimized for each subject separately
to achieve subject-specific model (the same architecture but
different parameters). During the optimization, 90% of voxels
are assigned to update model parameters and the remaining
10% of voxels are assigned to monitor whether the network
suffers from over-fitting or under-fitting leading to high bias
or variance, respectively. The initial parameters are randomly
sampled from the Xavier uniform initializer (Glorot and Bengio,
2010). The parameters are updated with the Adam stochastic
gradient-based optimization algorithm (Kingma and Ba, 2015),
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which adapts the parameter learning rates by taking advantage
of both the average first moment (mean) and the average of
the second moments of the gradients (uncentered variance). The
Adam optimizer is parameterized with learning rate η = 0.01,
learning rate decay γ = 0.05, exponential decay rate for the
first moment estimates β1 = 0.9 and exponential decay rate
for the second moments estimates β2 = 0.999. The neural
network is tested with different activation functions including
linear, sigmoid and rectified linear units (ReLU) (Nair and
Hinton, 2010) to derive motion regressors. Linear and sigmoid
activation functions have comparable performance, but ReLU
sometimes leads to invalid loss function due to numerical
instabilities. The result obtained with linear activation function
is shown in the current study. The subject-specific optimal
output regressors are applied on the same subject for reducing
motion-related fluctuation.

White Matter and Cerebrospinal
Fluid Mask
The segmentation of the T1 image is carried out in the native
space of each individual subject and the resultant tissue masks
are normalized to the standard MNI152 space. The WM and
CSF masks are eroded to reduce partial volume effects from
neighboring GM voxels. Eroding the masks is crucial in our study
because of the following two aspects. First, because non-GM time
series are used in the CNN network to train the parameters in the
model, the output regressors can account for some of the variance
of BOLD signal if masks are not eroded. Second, the average
time series of WM and CSF are used as nuisance regressors in
our analysis and these two tissue-based regressors within un-
eroded masks can also contain some BOLD signal. Inclusion of
BOLD signal in nuisance regression has the potential of reduce
the statistical power of fMRI data in the subsequent analysis. WM
and CSF masks are eroded by the SPM spm_erode.m function.
The CSF mask is eroded once as suggested in Power et al. (2014).
To have enough WM voxels to train the CNN network and also
minimize partial volume effects, the WM mask is eroded multiple
times but contains at least 10,000 voxels. Both the non-GM time
series used in the neural network and the average tissue-based
regressors are extracted based on eroded masks.

Motion Regressors
The CNN network designed above has 12 output regressors,
referred as cnn12 in the following. Unless explicitly specified, the
input data to cnn12 are the motion parameters R. The cnn12
regressors for all subjects can be found in the Supplementary
Material. The motion parameters R and their temporal backward
derivative R’, referred to as mot12, are used in traditional motion
modeling. The [R R’] motion regressors in mot12 are equivalent
to another set of 12 motion regressors [R Rt−1] used in other
studies (Friston et al., 1996; Yan et al., 2013), where t-1 refers
to the immediately preceding time point and the first row
for regressors Rt−1 for t = 1 is traditionally filled with zeros.
While previous studies employed varying number of regressors,
including 6 regressors (R), 12 regressors ([R, R’]), 24 regressors
([R R2 Rt−1 Rt−1

2]) and 36 regressors ([R R2 Rt−1 Rt−1
2

Rt−2 Rt−2
2]) (Friston et al., 1996; Power et al., 2012, 2014;

Satterthwaite et al., 2013; Wilke, 2012; Yan et al., 2013), only
mot12 is compared in detail with cnn12 in this study. Tissue-
based signals are also used as nuisance regressors in part of our
analysis and computed as the average signal across the voxels
within either eroded WM or eroded CSF masks as described
in the previous section. The inclusion of GSR has been heavily
debated in the recent past (Murphy et al., 2009; Weissenbacher
et al., 2009; Satterthwaite et al., 2013; Power et al., 2014, 2018),
hence GSR is not used in this study. Unless explicitly specified,
the functional atlas with 264 regions of interest (ROIs) (Power
et al., 2011) is used to compute FC.

Motion Measurements
Framewise displacement (FD) (Power et al., 2012), root-mean-
square framewise displacement (rmsFD) (Satterthwaite et al.,
2013), and DVARS, where D is referring to temporal derivative
of time courses and VARS referring to root-mean-square of the
variance over voxels (Smyser et al., 2010), are the measurements
defined to provide a single estimated head motion parameter
for each time point. We also use mean whole-brain standard
deviation and modularity quality (Q) to provide a single
measurement for each subject.

The motion measurements FD and rmsFD are derived from
rigid-body realignment parameters, including three translational
and 3 rotational parameters specified by R = [X Y Z yaw pitch
roll]. The value of FD is defined as the sum of absolute derivatives
of these six parameters with the three rotational parameters
converted to distance by multiplying with a radius of 50 mm.
The value of rmsFD is defined as the root mean square of relative
displacement of two neighboring volumes. The subjects having
mean FD ≥ 0.25 mm are assigned to the high-motion group
(41 subjects, age 74.9 ± 7.2 years, MMSE 28.7 ± 1.6, handedness
36 right/5 left, gender 20 male/19 female) and the subjects
having mean FD < 0.25 mm are assigned to the low-motion
group (35 subjects, age 73.2 ± 5.8 years, MMSE 29.1 ± 0.9,
handedness 31 right/4 left, gender 13 male/22 female). Unlike FD
and rmsFD that are derived from estimated motion parameters,
DVARS (Smyser et al., 2010) and mean whole-brain variance are
computed based on fMRI data itself. DVARS is defined as the
root mean square of the temporal change of the fMRI voxel-
wise signal at each time point. Mean whole-brain variance for
one subject is computed by first converting fMRI time series
to percent signal change and then calculating the mean of the
variance of all voxels across the entire brain. In this study we
used modularity quality Q to evaluate whether BOLD signal is
removed in addition to motion-related fluctuation. The Q-value
is determined by applying community detection on each subject’s
functional network using the Louvain heuristic (Blondel et al.,
2008), which maximizes the Q-value as the criterion to partition
the functional connectome into sub-networks. Subject motion
has been shown to be negatively correlated to the Q-value in
Satterthwaite et al. (2012), and the Q-value is expected to decline
if the signal is removed (Ciric et al., 2017). An increased Q-value
would indicate that the denoising method effectively reduces
noise in the data without changing the signal.
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FIGURE 2 | Time-dependent whole brain motion measurements and different preprocessed time series within the GM mask for 4 low-motion and 4 high-motion
subjects. White arrows are used to point effects of motion on fMRI signal. Blue arrows are used to point out the performance difference between cnn12 and mot12.
The motion measurements include FD (red), sum of absolute translational parameters (blue) and sum of absolute rotational parameters (black).

RESULTS

To visualize the influence of motion regression, motion
measurements and fMRI time series for 8 subjects are shown
in Figure 2. The figures for all subjects can be found in
the Supplementary Material. The FD (red), sum of absolute
translational parameters (blue) and sum of absolute rotational
parameters (black) are presented in the top panel for each
subject. The normalized time series within GM mask processed
with only general preprocessing steps (raw), traditional motion
regression mot12 and CNN-derived motion regression cnn12 are
plotted on the second, third, and fourth panel, respectively. Head
movements are observed to have highly variable influences on
fMRI signal in terms of three aspects: (1) motion can corrupt
fMRI signal with varying duration (the width of dark band in the
plot, e.g., arrows A1), (2) the direction of signal change could be
mostly in the same direction (e.g., arrow A2) or be opposite at
different voxels (e.g., arrow A3), (3) a large head movement may
not have visually obvious effect (e.g., arrow A4) but a small head
movement can produce marked effect (e.g., arrow A5). By visually
inspecting these time series, cnn12 has a better performance than
mot12 in reducing marked effects, particularly at the time points
marked by blue arrows. A quantitative comparison is presented
in the following.

Similar to Power et al. (2012) we have calculated FC difference
before and after motion correction to evaluate the performance.
Functional connectivity is computed as Pearson correlation
between regional time series. For both high-motion and low-
motion subjects, the scatter plot of between-region connectivity
using raw fMRI data versus inter-node distance is shown in
Figure 3A. The high-motion (black) and low-motion (red) group

have shown negative linear relationship with Euclidean distance
between ROIs with slope of -3.4 × 10−3 and -2.2 × 10−3,
respectively. The dependency for the high-motion group is
significantly stronger than the dependency for the low-motion
group (p < 10−4). The plots of correlation difference 1r versus
Euclidean distance between ROIs are shown in Figure 3B,
where 1r < 0 indicates reduced correlation and 1r > 0
indicates increased correlation after motion regression. The
cnn12-processed data (blue) shows significantly (p < 10−3)
stronger trend and lower intercept (larger magnitude) than
mot12-processed data (black) for both high- and low-motion
groups. Furthermore, the trend between 1r and distance is
significantly (p < 10−4) stronger and the intercept is also
significantly (p< 10−4) lower in the high-motion group for both
cnn12 and mot12 processed data.

With the 264-ROI FC matrices, the modularity quality Q was
computed for each subject. Figure 4 shows the scatter plot of
Q-values for denoised data versus the Q-values for raw data.
The proposed cnn12 method (blue dots in Figure 4) significantly
(paired t-test, p < 0.01) improves the Q-value compared to raw
fMRI data. In contrast, the Q-value for mot12-processed data
(gray dots in Figure 4) is not significantly (paired t-test, p> 0.05)
different from the value for raw data.

Figure 5A shows the remaining variance (in %) of regional
time series after motion regressing using cnn12 or mot12.
This plot is generated with all data from 76 subjects. The
histograms for cnn12 and mot12 are shown in blue and gray
color, respectively. The remaining variance of cnn12-processed
time series is significantly lower than the remaining variance
of mot12-processed time series with p < 10−4. 98.5% of
cnn12-processed time series have remaining variance lower
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FIGURE 3 | (A) Plots of functional connectivity versus Euclidean distance between ROIs using raw data. (B) Plots of functional connectivity versus Euclidean
distance for low- and high-motion groups. Pearson correlation coefficient r is used to calculate functional connectivity and 1r is defined as 1r = r(after motion
regression) - r(before motion regression).

FIGURE 4 | Modularity quantity Q measurement for different processed data.
The Q-value is computed by applying community detection on each subject’s
functional network using the Louvain heuristic, which maximizes the Q-value
as the criterion to partition the network into sub-networks.

than the corresponding time series regressed by mot12. The
median percentages of variance retained for cnn12 and mot12
were 52.7 and 76.0%, respectively. In addition, we have also
computed the remaining variance by including average time
series within WM or CSF masks as additional regressors
(Figure 5B). Consistent with the finding described above, the
time series regressed with [cnn12 WM CSF] have remaining
variance significantly (p < 10−4) less than the corresponding
time series regressed with [mot12 WM CSF]. The median
percentage of remaining variance for cnn12 and mot12 with
average WM and CSF time series as regressors are 43.7 and
58.4%, respectively.

As shown in Figures 6A,B, the mean whole-brain variance
for raw fMRI data is observed to have a significant (p < 0.05)
positive linear relationship with FD (see Figure 6A blue dots,
slope ± 95% confidence interval (CI): 4.3 ± 2.4) and rmsFD
(see Figure 6B blue dots, slope ± CI: 16.4 ± 10.4). Thus,
a reduction of the mean whole-brain variance after motion
regression can be treated as a measurement derived from fMRI
data itself to evaluate the improvement of applying different
motion regressors. The linear relationship between mean whole-
brain variance and quality control measurements including FD
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FIGURE 5 | (A) Remaining variance of regional time series after motion regression. 98.5% ROI time series after mot12 motion regression have a larger variance than
using cnn12 motion regression. The median percentage of remaining variance for cnn12 and mot12 regression are 52.7 and 76.0%, respectively. (B) Remaining
variance of regional time series after nuisance regression with average WM and CSF time series as additional regressors. 95.0% ROI time series using [mot12 WM
CSF] regression have a larger variance than using [cnn12 WM CSF] regression. The median percentage of remaining variance for cnn12 and mot12 regression are
43.7 and 58.4%, respectively.

and rmsFD suggests that greater reduction of motion artifacts
is expected to have weaker linear dependency between the
variance and motion measurements, and lower mean whole-
brain variance value. Using mot12 regressors, the trend of mean
whole-brain variance with mean FD and rmsFD is reduced to
2.8± 1.6 and 10.8± 6.7, respectively. Using cnn12 regressors, the
trend of mean whole-brain variance with mean FD and rmsFD
is reduced to 1.9 ± 1.0 and 7.2 ± 4.4, respectively. The slope of

cnn12 is significantly (p < 0.01) flatter than the slope of mot12
in the linear relationship between mean whole-brain variance
and FD or rmsFD. Boxplot of mean whole-brain variance ratio
for different motion regressors are shown in Figure 6C. Mean
whole-brain variance ratio for a single subject is defined as the
ratio of the variance after motion regression over the variance
before motion regression. Naturally, the ratio of raw fMRI data
(only processed with general preprocessing steps) is equal to
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FIGURE 6 | Comparison of different motion regressors using mean whole-brain variance and DVARS of intensity-normalized BOLD signal. (A,B,D,E) Scatter plots of
fMRI data derived measurements (mean whole-brain variance and DVARS) versus quality control measurements (mean FD and rmsFD). The mean whole-brain
variance is computed by first converting fMRI time series to percent signal change and then calculating the mean of the variance of all voxels time series across the
entire brain. (C,F) Boxplots of the ratio of mean whole-brain variance and DVARS. The ratios of mean whole-brain variance and DVARS are defined as the ratio of the
measurements after motion regression over the value before motion regression. Data from all 76 subjects are used for the analysis. The slopes of the trend with 95%
confidence interval between mean whole-brain standard deviation and mean FD or rmsFD are listed in the figure.

one for all subjects. A ratio less than one indicates that the
mean whole-brain variance is reduced in comparison to raw
fMRI data. Both mot12 (median ratio 0.65) and cnn12 (median
ratio 0.47) have a ratio lower than the value for raw data, and
the ratio for cnn12 is significantly (p < 10−4) lower than the
ratio for mot12.

Similar to the mean whole-brain variance, the DVARS for
fMRI data without any additional preprocessing steps also has
a significant (p < 0.01) positive linear relation with motion
measurements including FD (see Figure 6D blue dots, slope±CI:
1.9 ± 0.6) and rmsFD (see Figure 6E blue dots, slope ± CI:
7.8± 4.4). Both mot12 (slope± CI with FD: 1.6± 0.4; slope± CI
with rmsFD: 6.0± 3.5) and cnn12 (slope± CI with FD: 1.4± 0.3;
slope ± CI with rmsFD: 5.2 ± 3.1) decrease the dependency on
quality control measurements. The cnn12 method achieves the
weakest linear relationship but the change of slope does not pass
a significance level of p < 0.05. Boxplots of DVARS ratio for
different motion regressors are shown in Figure 6F. DVARS ratio
for a single subject is defined as the ratio of the mean DVARS
across time points after motion regression over the mean value
before motion regression. Both mot12 (median ratio 0.93) and
cnn12 (median ratio 0.89) overall have reduced DVARS values.
Furthermore, cnn12 has a DVARS ratio significantly (p < 10−4)
less than mot12.

We have also applied the CNN network with R as
input but determined 6, 12, 24, and 36 output regressors.
The remaining variance after motion regression is compared
with corresponding traditional motion regressors. The detail
of these traditional regressors can be seen in section Motion
regressors. Figure 7 shows the median percentage of remaining
variance after regression. Using more regressors naturally
explains additional variance and thus leads to less variance
remaining. The CNN-derived regressors have a relatively flatter
curve and less variance than traditional regressors. Traditional
method requires more regressors than the neural network to
achieve comparable variance reduction. The traditional method
requires 36 regressors (51.1% remaining variance) to have
comparable remaining variance with the network with 12 output
regressors, namely cnn12 (52.7% remaining variance). Adding
average WM and CSF time series as additional regressors
further lowers the remaining variance for both methods, but
consistently shows similar difference between CNN-derived and
traditional regressors.

One interesting question for cnn12 is whether more input
motion regressors are beneficial for the output regressors. We
have computed the percentage of variance in regressor set 2
explained by regressor set 1 using the notation {regressor set 1,
regressor set 2}. For the pair {regressor set 1, regressor set 2},
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FIGURE 7 | Median percentage of remaining variance with 6, 12, 24, and 36
motion regressors. The 25th and 75th percentiles are used to generate the
shaded area for both CNN-derived regressors (green) and traditional
regressors (red).

FIGURE 8 | Violin plots of the variance explained (in %) between different sets
of regressors. The notation {regressor set 1, regressor set 2} denotes the
variance explained for each of the regressors in set 2 by the matrix of
regressors in set 1 by linear regression and averaged for all regressors in set 2.

the variance explained for each of the regressors in set 2 by the
matrix of regressors in set 1 is computed by linear regression
and averaged for all regressors in set 2. The explained variance
(in %) is used for the violin plot in Figure 8. In all analyses
above, the input data to the neural network are the 6 motion
parameters R, namely cnn12(R), and the input is omitted for
simplicity. In this part, we have also applied the neural network
with the derivative of motion parameters R as additional input,
namely cnn12([R R’]), and all the other settings are exactly
the same as in cnn12(R). As shown in Figure 8, cnn12([R R’])
explained the variance of cnn12(R) (blue) with a median and
mean percentage more than 90%, and vice versa (red). In
contrast, [R R’] could only explain about 56% of variance in
cnn12(R). Furthermore, cnn12-derived regressors have a mean
correlation of 0.65 with raw motion time series across all subjects
and a mean correlation of 0.47 with mask-averaged WM and
CSF time series.

DISCUSSION

Motion-related artifacts are a major problem in the analysis of
rs-fMRI data. Modeling and reducing these artifacts are critical
for improving fMRI analysis. In this study, we have designed
a CNN framework for modeling rigid-body motion artifacts in
rs-fMRI data. To the best of our knowledge, this is the first
study where a deep neural network is designed for denoising
resting-state functional MRI data. The proposed subject-level
CNN model is constructed with two sequential 1-dim temporal
convolutional layers. With the assumption that the voxels within
WM or CSF masks share similar motion-related fluctuation as
the voxels in GM mask but do not contain any BOLD signal
of neural origin, the time series used in the CNN network are
limited to voxel locations within the non-GM mask to avoid
BOLD signal modeled erroneously in the output regressors. The
estimated motion parameters during rigid-body realignment are
replicated to match the number of non-GM voxels and then
each repetition is treated as a sample to optimize the CNN
model. The correlation between non-GM time series and output
regressors is used to compute the loss function for optimizing the
parameters in the model. The 12-regressor CNN network, cnn12,
is compared with traditional motion regression, namely mot12,
for data from 76 subjects downloaded from the ADNI database.
While cnn12 and mot12 have the same number of regressors,
cnn12 takes advantage of the flexibility in the network to model
signal disruption of rigid-body head movements without prior
assumptions. The proposed cnn12 was shown to be superior to
mot12 in terms of multiple quantitative measurements.

High-Motion and Low-Motion Groups
Two prominent effects of motion are the increase of pairwise
correlations for nearby voxels and the increase of whole-brain
correlations if the signal disruption is widespread and similar
over the entire brain (Power et al., 2015). Consistent with
these two effects, the high-motion group has more significant
linear relationship with Euclidean distance between ROIs, and
higher FC than the low-motion group (see Figure 3A). With the
assumption that signal disruption is more severe in the high-
motion group, the difference between the high-motion and the
low-motion groups can be explained by these two effects. These
findings suggest that motion artifacts considerably influence
the analysis and interpretation of fMRI data. Considering the
distance dependent FC, a larger slope of 1r as a function
of the inter-ROI distance indicates that motion regression is
more effective in reducing motion-related fluctuations. The
negative intercept is a sign of decreased correlations. Since
the high-motion group is more severely affected by motion-
related artifacts, the two techniques including mot12 and
cnn12, as expected, have a steeper slope and smaller intercept
(in magnitude) for the plot of1r versus distance. However, cnn12
has significantly reduced motion-related artifacts compared to
mot12, in terms of slope and intercept, for both high- and
low-motion groups.

We would like to point out that both cnn12 and mot12
can only reduce but not completely remove motion-related
artifacts. After motion regression, the FC in denoised data is
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still strongly associated with Euclidean distance between ROIs.
A fixed set of motion regressors for the entire brain can
only partially explain motion artifacts because of the potential
variability of motion artifacts across voxels. Multiple studies
have demonstrated that motion regression should be applied
together with other processing steps to further reduce signal
contamination. For example, Patel et al. (2014) applied wavelet-
or time-domain de-spiking before nuisance regression and Power
et al. (2012) proposed a “scrubbing” technique to remove
motion-related spikes as a complementary strategy to motion
regression. The CNN-derived regressors can also be combined
with these denoising strategies by simply replacing traditional
motion regressors with the derived regressors to further reduce
the influence of head motion. Voxel-specific motion parameters
(Wilke, 2012; Yan et al., 2013) potentially can also be combined
with cnn12 regressors to further reduce artifacts.

Further Comparison of mot12 and cnn12
Multiple studies indicate that neurobiological signals in human
fMRI data only occupy 5–20% of signal variance (Bianciardi
et al., 2009; Marcus et al., 2013). We observe that the remaining
variance by mot12 is significantly higher than cnn12. More than
90% of mot12-regressed time series have variance higher than
cnn12-regressed time series regardless whether additional tissue-
based regressors are used. The median percentage of remaining
variance for cnn12 is 23.3% less than mot12, and the variance
difference is reduced to 14.7% less than mot12 if average WM and
CSF time series are also included for regression. The decreased
variance difference may be because tissue-based regressors share
more common information with cnn12 but less with mot12
regressors. We have applied motion regression with 6, 12, 24, and
36 regressors. The CNN-derived regressors always explain more
variance than traditional regressors, leading to less remaining
variance. Even though cnn12 removes more variance than mot12,
cnn12 remains a higher network modularity. Considering that
the modularity quality is expected to decline if BOLD signal
is removed along with noise in motion regression, this finding
suggests that the extra variance removed by cnn12 is more likely
to be motion-related noise instead of the BOLD signal.

Both mean whole-brain variance and DVARS are measure-
ments computed from fMRI data itself to evaluate the influence
of motion regression. The positive linear relationship in Figure 6
shows that the magnitude of these two measurements are heavily
driven by head movement. The weaker linear relationship with
FD or rmsFD, and smaller value of these two measurements
indicate improved data quality. Compared to mot12, cnn12 had
significantly flatter slope between mean whole-brain variance and
FD or rmsFD. While the slope difference between cnn12 and
mot12 is not significant, cnn12 still achieved the flattest slope
between DVARS and FD or rmsFD. For both mean whole-brain
variance and DVARS, cnn12 achieves a ratio value less than
mot12. The weaker linear relationship and smaller ratio value
consistently suggest that cnn12 outperforms mot12.

Potential Modification of the Network
As mentioned in section Architecture of CNN network, the
realignment parameters are replicated and paired with different

time series within non-GM mask to form a large number
of samples for optimizing the designed CNN network, as
demonstrated in Figure 1. One potential way to modify the
network is to switch the time series and parameters R in the CNN
network and thus output voxel-wise motion regressors instead of
volume-wise motion regressors. In other words, non-GM time
series are used as input data and along with R to compute the
loss function and thus voxel-specific motion regressors could
be obtained with such a revised network. The CNN network is
highly flexible because of the large amount of model parameters
in the network, however, the flexibility can be beneficial or
detrimental to the following analysis depending on the input.
The flexibility in the alternative neural network can easily make
the output of arbitrary input time series highly correlated with
parametersR to achieve optimal loss function but does not extract
any useful information. In contrast, the current framework
requires the output regressors to optimize the summation of
correlations over all non-GM voxels. Output regressors that
are highly correlated with a single time series are not optimal
because they have a minor effect in the loss function due to
the summation over all voxels. While voxel-specific regressors
may be more useful than a fixed set of regressors for the entire
brain, the current framework with switched time series and
realignment parameters has difficulty to extract voxel-specific
regressors properly.

The cnn12 network can also be applied with more motion
parameters as input. We have compared the cnn12 with only
R and with [R R’] as input. Interestingly, the space spanned
by the cnn12(R) regressors is similar to the space spanned by
the cnn12([R R’]) since the variance explained of cnn12(R) by
cnn12([R R’]) is larger than 90% for all subjects (see Figure 8).
This finding suggests that adding the derivative as input does not
have noticeable impact to the output regressors. The unexplained
variance maybe due to the intrinsic randomness in the network.
However, the cnn12(R) regressors can explain a large proportion
of variance that cannot be explained by traditional motion
regressors [R R’], which may be because motion-related artifacts
in fMRI data cannot be sufficiently described by only adding the
preceding time point into consideration (Power et al., 2014).

Novelties of the cnn12 Network
Compared to standard CNN algorithms, the input and loss
function in cnn12 are specified in a novel way. A standard CNN
algorithm requires thousands of samples to train the neural
network. Though the cnn12 network seems to have only the six
motion parameters as input samples (which is not the case),
we associate each set of motion parameters with different voxel
time series in the cnn12 network. Thus, each motion parameter
paired with voxel time series is treated as a different sample and,
consequently, a sufficient number of samples can be generated to
train the neural network.

Many cost functions have been developed for the purpose of
classification or regression in machine learning or deep learning
applications, such as the mean squared error, mean absolute
percentage error, cross entropy, Poisson, and cosine proximity
cost functions. These cost functions are calculated with the
known true values or classes. However, because the ground truth
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is unknown, constructing a cost function for cnn12 denoising
faces a significant challenge. To overcome this challenge, we have
proposed a customized cost function which does not require
knowledge of the true BOLD signal.

Limitations and Future Study
There are a few limitations in this study. First, similar to
most motion regression studies, the same regressors are used
for all voxels in the brain. While the revised neural network
mentioned in the section above potentially can achieve voxel-
specific regressors, unfortunately such a network cannot extract
useful information. We would like to explore other neural
network architectures for modeling voxel-specific motion in a
future study. Second, while this study is only focused on modeling
the influence of head motion, other artifact sources such as
cardiac and respiratory noise also considerably confound fMRI
data analysis. Multiple methods (Glover et al., 2000; Beall, 2010)
have been proposed to model cardiac and respiratory fluctuation
of fMRI data with the assistance of external recordings, which is
not available in the ADNI data. It would be interesting to model
these physiologic noise sources by using our neural network with
input from external recordings. Third, the hyper-parameters, e.g.,
filter size, number of nodes, and learning rate, in a network are
impacted by the data. The hyper-parameters used in this study
are tuned for a single standard EPI sequence. Following studies
with a large sample size are required to gain more knowledge
about the influence of TR, the number of volumes and EPI
sequences, such as multi-echo EPI (Kundu et al., 2012) and
multi-band EPI sequences (Moeller et al., 2010). In addition to
the motion-related artifacts induced in fMRI data, motion may
have a neurobiological basis (Zeng et al., 2014) and could reflect
individual differences. Genetic differences and impulsivity were
found to be factors related to head motion (Kong et al., 2014;
Hodgson et al., 2016). The positive motion-BOLD relationship
(Yan et al., 2013) may reflect neural origins of motion. Therefore,
any approaches for removing motion-related artifacts, including
cnn12, may remove some useful subject-related information.

While the CNN network is developed based on resting-state
data, this technique potentially can also be useful for reducing
motion-related artifacts in task-based fMRI data, whereas an
additional study with large number of subjects is required for
further validation.

CONCLUSION

We have proposed a CNN network modeling motion-related
signal disruption in rs-fMRI data using estimated realignment
parameters and compared the CNN-derived regressors with
traditional motion regressors using publicly available data.
Visually, cnn12 is more effective in reducing head-motion effects.
Quantitatively, cnn12 reduces more variance in regional time
series, reduces more the trend between motion parameters and
other measurements derived from fMRI data itself, makes the
data more homogeneous based on between-subject similarity of
brain connectivity and leads to a larger modularity Q, when
compared to mot12.

DATA AVAILABILITY

Publicly available datasets were analyzed in this study. This data
can be found here: http://adni.loni.usc.edu/.

AUTHOR CONTRIBUTIONS

ZY and DC conceived and designed the study and acquired,
analyzed, and interpreted the data. ZY, XZ, KS, VM, and DC
drafted the manuscript, revised the manuscript critically for
important intellectual content, and approved the final version of
the manuscript to be submitted.

FUNDING

This research project was supported by the NIH (Grant
No. 1R01EB014284 and COBRE; 5P20GM109025) and
a private grant from Peter and Angela Dal Pezzo. Data
collection and sharing for this project was funded by the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National
Institutes of Health Grant U01 AG024904) and DOD ADNI
(Department of Defense Award No. W81XWH-12-2-0012).
ADNI was funded by the National Institute on Aging, the
National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following:
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery
Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-
Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.;
Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun;
F. Hoffmann-La Roche Ltd and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
Immunotherapy Research & Development, LLC.; Johnson
& Johnson Pharmaceutical Research & Development LLC.;
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics,
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging;
Servier; Takeda Pharmaceutical Company; and Transition
Therapeutics. The Canadian Institutes of Health Research was
providing funds to support ADNI clinical sites in Canada.
Private sector contributions are facilitated by the Foundation
for the National Institutes of Health (www.fnih.org). The
grantee organization is the Northern California Institute
for Research and Education, and the study is coordinated
by the Alzheimer’s Therapeutic Research Institute at the
University of Southern California. ADNI data are disseminated
by the Laboratory for Neuro Imaging at the University
of Southern California.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fnins.2019.
00169/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 12 February 2019 | Volume 13 | Article 169

http://adni.loni.usc.edu/
https://www.frontiersin.org/articles/10.3389/fnins.2019.00169/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00169/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00169 February 26, 2019 Time: 16:41 # 13

Yang et al. DNNdenoise: Resting-State fMRI Denoising

REFERENCES
Beall, E. B. (2010). Adaptive cyclic physiologic noise modeling and correction in

functional MRI. J. Neurosci. Methods 187, 216–228. doi: 10.1016/j.jneumeth.
2010.01.013

Beall, E. B., and Lowe, M. J. (2014). SimPACE: generating simulated motion
corrupted BOLD data with synthetic-navigated acquisition for the development
and evaluation of SLOMOCO: a new, highly effective slicewise motion
correction. Neuroimage 101, 21–34. doi: 10.1016/j.neuroimage.2014.06.038

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based
noise correction method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042

Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S. G., de Zwart, J. A.,
Shmueli, K., et al. (2009). Sources of functional magnetic resonance imaging
signal fluctuations in the human brain at rest: a 7 T study. Magn. Reson. Imaging
27, 1019–1029. doi: 10.1016/j.mri.2009.02.004

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks. J. Stat. Mech. 2008:10008.

Caballero-Gaudes, C., and Reynolds, R. C. (2017). Methods for cleaning the BOLD
fMRI signal. Neuroimage 154, 128–149. doi: 10.1016/j.neuroimage.2016.12.018

Ciric, R., Wolf, D. H., Power, J. D., Roalf, D. R., Baum, G. L., Ruparel, K., et al.
(2017). Benchmarking of participant-level confound regression strategies for
the control of motion artifact in studies of functional connectivity. Neuroimage
154, 174–187. doi: 10.1016/j.neuroimage.2017.03.020

Courtemanche, M. J., Sparrey, C. J., Song, X., MacKay, A., and D’arcy, R. C. (2018).
Detecting white matter activity using conventional 3 Tesla fMRI: an evaluation
of standard field strength and hemodynamic response function. Neuroimage
169, 145–150. doi: 10.1016/j.neuroimage.2017.12.008

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355.
doi: 10.1002/mrm.1910350312

Gawryluk, J. R., Mazerolle, E. L., Beyea, S. D., and D’Arcy, R. C. (2014). Functional
MRI activation in white matter during the symbol digit modalities test. Front.
Hum. Neurosci. 8:589. doi: 10.3389/fnhum.2014.00589

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, Vol. 9, eds Y. W. Teh and
M. Titterington (Sardinia: Chia Laguna Resort), 249–256.

Glover, G. H., Li, T. Q., and Ress, D. (2000). Image-based method for retrospective
correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson.
Med. 44, 162–167. doi: 10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.
0.CO;2-E

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G.,
Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated
fMRI acquisition for improved resting state network imaging. Neuroimage 95,
232–247. doi: 10.1016/j.neuroimage.2014.03.034

Hodgson, K., Poldrack, R. A., Curran, J. E., Knowles, E. E., Mathias, S., Göring,
H. H., et al. (2016). Shared genetic factors influence head motion during MRI
and body mass index. Cereb. Cortex 27, 5539–5546. doi: 10.1093/cercor/bhw321

Jiang, A., Kennedy, D. N., Baker, J. R., Weisskoff, R. M., Tootell, R. B.,
Woods, R. P., et al. (1995). Motion detection and correction in
functional MR imaging. Hum. Brain Mapp. 3, 224–235. doi: 10.1002/hbm.
460030306

Kim, Y. (2014). “Convolutional neural networks for sentence classification,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Doha, Qatar: Association for Computational Linguistics),
1746–1751.

Kingma, D., and Ba, L. (2015). Adam: a method for stochastic optimization. arXiv
[Preprint]. arXiv:1412.6980

Kong, X.-Z., Zhen, Z., Li, X., Lu, H.-H., Wang, R., Liu, L., et al. (2014). Individual
differences in impulsivity predict head motion during magnetic resonance
imaging. PLoS One 9:e104989. doi: 10.1371/journal.pone.0104989

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25,
1097–1105.

Kundu, P., Inati, S. J., Evans, J. W., Luh, W.-M., and Bandettini, P. A. (2012).
Differentiating BOLD and non-BOLD signals in fMRI time series using multi-
echo EPI. Neuroimage 60, 1759–1770. doi: 10.1016/j.neuroimage.2011.12.028

Lemieux, L., Salek-Haddadi, A., Lund, T. E., Laufs, H., and Carmichael, D. (2007).
Modelling large motion events in fMRI studies of patients with epilepsy. Magn.
Reson. Imaging 25, 894–901. doi: 10.1016/j.mri.2007.03.009

Liang, M., and Hu, X. (2015). “Recurrent convolutional neural network for object
recognition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, (Piscataway, NJ: IEEE), 3367–3375. doi: 10.1109/CVPR.
2015.7298958

Macey, P. M., Macey, K. E., Kumar, R., and Harper, R. M. (2004). A method
for removal of global effects from fMRI time series. Neuroimage 22, 360–366.
doi: 10.1016/j.neuroimage.2003.12.042

Marcus, D. S., Harms, M. P., Snyder, A. Z., Jenkinson, M., Wilson, J. A., Glasser,
M. F., et al. (2013). Human Connectome Project informatics: quality control,
database services, and data visualization. Neuroimage 80, 202–219. doi: 10.1016/
j.neuroimage.2013.05.077

Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., et al.
(2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration
using partial parallel imaging with application to high spatial and temporal
whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153. doi: 10.1002/mrm.
22361

Murphy, K., Birn, R. M., and Bandettini, P. A. (2013). Resting-state fMRI
confounds and cleanup. Neuroimage 80, 349–359. doi: 10.1016/j.neuroimage.
2013.04.001

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini, P. A.
(2009). The impact of global signal regression on resting state correlations: are
anti-correlated networks introduced? Neuroimage 44, 893–905. doi: 10.1016/j.
neuroimage.2008.09.036

Nair, V., and Hinton, G. E. (2010). “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International conference on
machine learning (ICML-10), eds J. Fürnkranz and T. Joachims (New York, NY:
ACM), 807–814.

Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vértes, P. E., Ersche, K. D.,
et al. (2014). A wavelet method for modeling and despiking motion artifacts
from resting-state fMRI time series. Neuroimage 95, 287–304. doi: 10.1016/j.
neuroimage.2014.03.012

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S. E.
(2012). Spurious but systematic correlations in functional connectivity MRI
networks arise from subject motion. Neuroimage 59, 2142–2154. doi: 10.1016/j.
neuroimage.2011.10.018

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A.,
et al. (2011). Functional network organization of the human brain. Neuron 72,
665–678. doi: 10.1016/j.neuron.2011.09.006

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., and Petersen,
S. E. (2014). Methods to detect, characterize, and remove motion artifact in
resting state fMRI. Neuroimage 84, 320–341. doi: 10.1016/j.neuroimage.2013.
08.048

Power, J. D., Plitt, M., Gotts, S. J., Kundu, P., Voon, V., Bandettini, P. A., et al.
(2018). Ridding fMRI data of motion-related influences: removal of signals with
distinct spatial and physical bases in multiecho data. Proc. Natl. Acad. Sci. U.S.A.
115, E2105–E2114. doi: 10.1073/pnas.1720985115

Power, J. D., Schlaggar, B. L., and Petersen, S. E. (2015). Recent progress and
outstanding issues in motion correction in resting state fMRI. Neuroimage 105,
536–551. doi: 10.1016/j.neuroimage.2014.10.044

Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., and Beckmann,
C. F. (2015). ICA-AROMA: a robust ICA-based strategy for removing motion
artifacts from fMRI data. Neuroimage 112, 267–277. doi: 10.1016/j.neuroimage.
2015.02.064

Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., et al.
(2012). Trouble at rest: how correlation patterns and group differences become
distorted after global signal regression. Brain Connect. 2, 25–32. doi: 10.1089/
brain.2012.0080

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J.,
Calkins, M. E., et al. (2013). An improved framework for confound regression
and filtering for control of motion artifact in the preprocessing of resting-
state functional connectivity data. Neuroimage 64, 240–256. doi: 10.1016/j.
neuroimage.2012.08.052

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A.,
Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple
measures of functional connectivity: relevance for studies of neurodevelopment

Frontiers in Neuroscience | www.frontiersin.org 13 February 2019 | Volume 13 | Article 169

https://doi.org/10.1016/j.jneumeth.2010.01.013
https://doi.org/10.1016/j.jneumeth.2010.01.013
https://doi.org/10.1016/j.neuroimage.2014.06.038
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.mri.2009.02.004
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1016/j.neuroimage.2017.03.020
https://doi.org/10.1016/j.neuroimage.2017.12.008
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.3389/fnhum.2014.00589
https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E
https://doi.org/10.1016/j.neuroimage.2014.03.034
https://doi.org/10.1093/cercor/bhw321
https://doi.org/10.1002/hbm.460030306
https://doi.org/10.1002/hbm.460030306
https://arxiv.org/abs/1412.6980
https://doi.org/10.1371/journal.pone.0104989
https://doi.org/10.1016/j.neuroimage.2011.12.028
https://doi.org/10.1016/j.mri.2007.03.009
https://doi.org/10.1109/CVPR.2015.7298958
https://doi.org/10.1109/CVPR.2015.7298958
https://doi.org/10.1016/j.neuroimage.2003.12.042
https://doi.org/10.1016/j.neuroimage.2013.05.077
https://doi.org/10.1016/j.neuroimage.2013.05.077
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1016/j.neuroimage.2014.03.012
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuroimage.2011.10.018
https://doi.org/10.1016/j.neuron.2011.09.006
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1073/pnas.1720985115
https://doi.org/10.1016/j.neuroimage.2014.10.044
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1089/brain.2012.0080
https://doi.org/10.1089/brain.2012.0080
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00169 February 26, 2019 Time: 16:41 # 14

Yang et al. DNNdenoise: Resting-State fMRI Denoising

in youth. Neuroimage 60, 623–632. doi: 10.1016/j.neuroimage.2011.
12.063

Smyser, C. D., Inder, T. E., Shimony, J. S., Hill, J. E., Degnan, A. J., Snyder, A. Z.,
et al. (2010). Longitudinal analysis of neural network development in preterm
infants. Cereb. Cortex 20, 2852–2862. doi: 10.1093/cercor/bhq035

Van Dijk, K. R., Sabuncu, M. R., and Buckner, R. L. (2012). The influence of head
motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438.
doi: 10.1016/j.neuroimage.2011.07.044

Weissenbacher, A., Kasess, C., Gerstl, F., Lanzenberger, R., Moser, E., and
Windischberger, C. (2009). Correlations and anticorrelations in resting-state
functional connectivity MRI: a quantitative comparison of preprocessing
strategies. Neuroimage 47, 1408–1416. doi: 10.1016/j.neuroimage.2009.
05.005

Wilke, M. (2012). An alternative approach towards assessing and accounting for
individual motion in fMRI timeseries. Neuroimage 59, 2062–2072. doi: 10.1016/
j.neuroimage.2011.10.043

Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A.,
et al. (2013). A comprehensive assessment of regional variation in the impact of

head micromovements on functional connectomics. Neuroimage 76, 183–201.
doi: 10.1016/j.neuroimage.2013.03.004

Zeng, L.-L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., et al.
(2014). Neurobiological basis of head motion in brain imaging.
Proc. Natl. Acad. Sci. U.S.A. 111, 6058–6062. doi: 10.1073/pnas.1317
424111

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yang, Zhuang, Sreenivasan, Mishra, Cordes and the Alzheimer’s
Disease Neuroimaging Initiative. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 February 2019 | Volume 13 | Article 169

https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1093/cercor/bhq035
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1016/j.neuroimage.2009.05.005
https://doi.org/10.1016/j.neuroimage.2009.05.005
https://doi.org/10.1016/j.neuroimage.2011.10.043
https://doi.org/10.1016/j.neuroimage.2011.10.043
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.1073/pnas.1317424111
https://doi.org/10.1073/pnas.1317424111
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model
	Introduction
	Materials and Methods
	Subjects
	General fMRI Preprocessing
	Deep Neural Network for Denoising
	White Matter and Cerebrospinal Fluid Mask
	Motion Regressors
	Motion Measurements

	Results
	Discussion
	High-Motion and Low-Motion Groups
	Further Comparison of mot12 and cnn12
	Potential Modification of the Network
	Novelties of the cnn12 Network
	Limitations and Future Study

	Conclusion
	Data Availability
	Author Contributions
	Funding
	Supplementary Material
	References


