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The disruption of iron metabolism and iron transport proteins have been implicated in the
pathogenesis of Alzheimer’s disease (AD). Serum melanotransferrin (MTf), a transferrin
homolog capable of reversibly binding iron, has been proposed as a biochemical marker
of AD. MTf has also been shown to be elevated in iron-rich reactive microglia near
amyloid plaques in AD. We examined the association of CSF MTf to hippocampal
volumes and cognitive tests in 86 cognitively normal, 135 mild cognitive impairment
(MCI) and 66 AD subjects. CSF was collected at baseline for MTf, Aβ, total-tau and
phosphorylated-tau measurements. Serial cognitive testing with ADAS-Cog13, Rey’s
auditory visual learning test (RAVLT), mini-mental state examination (MMSE) were
performed alongside hippocampal MRI volumetric analysis for up to 10 years after
baseline measurements. High levels of baseline CSF MTf were positively associated
with baseline hippocampal volume (R2 = 22%, β = 0.202, and p = 0.017) and RAVLT
scores (R2 = 7.30%, β = −0.178, and p = 0.043) and negatively correlated to ADAS-
Cog13 (R2 = 17.3%, β = 0.247, and p = 0.003) scores in MCI subjects. Interestingly,
MCI subjects that converted to AD demonstrated significantly lower levels of CSF MTf
(p = 0.020) compared to MCI non-converters at baseline. We suggest the diminished
CSF MTf observed in MCI-converters to AD may arise from impaired transport of MTf
from blood into the brain tissue/CSF and/or increased MTf export from the CSF into
the blood arising from attenuated competition with reduced levels of CSF Aβ. Further
investigations are required to determine the source of CSF MTf and how brain MTf is
regulated by cellular barriers, Aβ and activated microglia that surround plaques in AD
pathophysiology. In conclusion, low CSF MTf may identify those MCI individuals at risk
of converting to AD.
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INTRODUCTION

A growing body of evidence implicates iron metabolism as a
contributing factor to oxidative stress and neurodegeneration in
Alzheimer’s disease (AD) (Meadowcroft et al., 2015; Ashraf et al.,
2018). The transition metal, iron, is crucial in essential processes
including DNA synthesis, myelin synthesis, neurotransmitter
synthesis and metabolism in the central nervous system (Ward
et al., 2014). Iron has been shown to associate with insoluble
amyloid plaques (Telling et al., 2017) and neurofibrillary tangles
(Yamamoto et al., 2002), characteristic hallmarks of AD. Iron
produces reactive oxygen species (ROS) via the Fenton reaction,
damaging macromolecules such as lipids, proteins and nucleic
acids (Smith et al., 1997; Ward et al., 2014; Ashraf et al.,
2018). Deferoxamine, an iron chelator, demonstrated substantial
improvement in cognitive performance in AD subjects (Crapper
McLachlan et al., 1991).

Melanotransferrin (MTf) or p97 belongs to the transferrin
superfamily and binds to a single ferric iron with high affinity
(Baker et al., 1992). It has been demonstrated to exist as a
plasma membrane glycosyl phosphatidylinositol (GPI) anchored
protein (Alemany et al., 1993; Kennard et al., 1995) or a soluble
and actively secreted protein (Food et al., 1994; Desrosiers
et al., 2003). The physiological function of both forms of MTf
remain to be established. MTf is expressed by brain capillary
endothelium in cognitively normal (CN) individuals, but also
shown to be specifically localized in the reactive microglia
associated with senile plaques in AD brains (Jefferies et al.,
1996; Rothenberger et al., 1996; Yamada et al., 1999). MTf
levels have been demonstrated to be increased in the serum
of AD subjects compared to healthy controls, and significantly
increased in cerebrospinal fluid (CSF) of AD subjects compared
to individuals suffering from other CNS diseases (Kennard et al.,
1996; Feldman et al., 2001; Kim et al., 2001), highlighting the
potential of MTf as a possible AD biomarker. Desrosiers et al.
(2003) demonstrated no differences in levels of serum MTf
between AD and control subjects. However, the study was not
only statistically underpowered with a small sample size, the
ages and sex of subjects were not reported, and also suffered
from methodological concerns. The latter include non-optimal
preparation and storage of samples; lack of a calibration curve
for absolute quantification and a positive control for western
blot analysis (as described in Kennard et al., 1996). In contrast,
other groups independently validated the use of serum MTf as a
potential biomarker of AD in statistically well-powered double-
blind studies (Feldman et al., 2001; Kim et al., 2001). The aim
of the present study was to determine the association of baseline
CSF MTf with AD biomarkers, cognitive and neuroimaging
measures using the AD Neuroimaging Initiative (ADNI) cohort.
We hypothesized that increased CSF MTf levels will be associated
with cognitive impairment in the ADNI cohort.

MATERIALS AND METHODS

A total of 287 Alzheimer’s Disease Neuroimaging Initiative
(ADNI) subjects comprising of 86 CN, 135 mild cognitive

impaired (MCI) and 66 AD subjects were included in the
present study1. Of the MCI subjects, 85 converted to AD (MCI-
c), while the remaining 50 MCI-nc did not in a period of
10 years, with most continuing to satisfy the criteria for MCI
with the exception of four, who became CN. CN subjects had
MMSE scores of ≥25 and no history of significant cognitive
or physical impairments. MCI subjects had a MMSE score of
≥24, a memory complaint but preservation of cognitive and
functional performance. AD cases included had an MMSE score
of ≥20 and met the NINCDS/ADRDA criteria for probable
AD. Detailed inclusion/exclusion criteria are available on the
ADNI website2. Subjects included in the study underwent lumbar
puncture and blood collection at baseline; and serial cognitive
testing – AD Assessment Scale-Cognitive Subscale (ADAS-
Cog13) and Rey’s auditory visual learning test (RAVLT) alongside
magnetic resonance imaging (MRI)-assessment of hippocampal
volume. Although not all subjects had [18F]FDG-PET (18F-
fluorodeoxy-glucose positron emission tomography), the data
was still included to provide information about synaptic glucose
metabolism. ADNI uses serial clinical and neuropsychological
assessments (MRI), PET, and baseline CSF biomarkers, in
combination to monitor progression of MCI subjects to AD.
ADNI was approved by the institutional review board and ethics
committees of participating institutions, and written informed
consent was obtained from all participants or their next of kin.

CSF Analysis
Participants underwent CSF sampling as described fully on the
ADNI website2. Briefly, a small sample of CSF was collected from
the lower spine by lumbar puncture in the morning following an
overnight fasting. Samples were frozen on dry ice within an hour
of collection, and consequently shipped on dry ice to the ADNI
Biomarker Core laboratory (University of Pennsylvania Medical
Center). Aliquots of 500 µl were prepared after an hour of
thawing at ambient temperature and gently mixed. The aliquots
were kept at−80◦C prior to analysis.

Cerebrospinal fluid Aβ1−42, total-tau (ttau) and
phosphorylated-tau (181p, ptau) were measured using the
multiplex xMAP Luminex platform (Shaw et al., 2011).
A multiplexed mass spectrometry (MS)-based assay using
multiple reaction monoring (MRM) was used to detect
CSF levels of MTf and developed by Caprion Proteomics in
collaboration with the ADNI Biomarker Consortium Project
team. The technology, quality control and validation of the
MRM platform is fully described in the “Use of Targeted Mass
Spectrometry Proteomic Strategies to Identify CSF-Based
Biomarkers in Alzheimer’s Disease Data Primer”3. Briefly, but
fully described in the primer and elsewhere (Spellman et al.,
2015), CSF (100 µl) was depleted of plasma proteins using
a Multiple Affinity Removal System (MARS-14) column and
digested with trypsin (1:25 protease:protein ratio). Following
lyophilization, samples were desalted and reconstituted with five
internal standard peptides and analyzed by LC/MRM-MS on a

1http://adni.loni.usc.edu/
2http://www.adni-info.org/
3ida.loni.usc.edu
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5500 QTRAP LC-MS/MS system: Q1 isolates the characteristic
MTf (trypsin-digested) peptide ion (TRFM_ADTDGGLIFR)
which then undergoes collision-induced-dissociation in Q2
to produce a characteristic fragment ion measured in Q3.
The signal of the fragment ion was monitored over the
chromatographic elution time and used for quantification.
The peptide, TRFM_ADTDGGLIFR, had been previously
synthesized and used for method development prior to analysis.
Also, note that absolute quantification by an external standard
in a different matrix (and fully described in the data primer
mentioned above) is only an approximation. While absolute
quantification is possible with spiking of known amounts of
stable isotope-labeled peptides into samples, this was not done,
however, data comparisons between subjects remain valid.

Structural MRI Volumes
Subjects underwent structural T1-weighted MRI at 1.5T using
a sagittal 3D-volumetric magnetization prepared rapid gradient
echo (MP-RAGE) sequence (Jack et al., 2008). Briefly, the
acquisition parameters were: repetition time (for the inversion
pulses), 2400–3000 ms; echo time, 4 ms; inversion time, 1000 ms
and 8◦ flip angle. The field of view was 240 mm × 240 mm,
matrix size 192 mm × 192, and 1.2 mm thick 160–208
slices collected covering the whole brain to give a nominal
resolution of 0.94 mm × 0.94 mm × 1.2 mm. Hippocampal
volumes were obtained using FreeSurfer (version 4.1.0) and
fully detailed elsewhere (Fischl et al., 2002, 2004). In brief,
motion correction, affline transformation to Talairach image
space, intensity inhomogeneity, and removal of non-brain
tissues were performed. Following intensity normalization and
non-linear warping of the atlas brain image to the subject
image, the resultant warped atlas brain image underwent
atlas-based tissue segmentation to label various brain regions
including the hippocampus. Hippocampal volume was calculated
by multiplying the number of voxels by the voxel volume.
MRI was performed at baseline, 6 months, 1 year, then
yearly for 10 years.

[18F] Fluorodeoxyglucose ([18F]FDG-PET)
[18F]FDG-PET scans were acquired on multiple scanners
with various resolutions, e.g., voxel dimensions of
2.0 mm × 2.0 mm × 2.0 mm with image size, 128 × 128 × 63,
at 6 months, 1, 1.5, and 2 years (Jagust et al., 2010). The
scans were acquired as 6 × 5-min images, from 30 min
after injection of 185 MBq (5 mCi) of [18F]-FDG (for full
details4). Each image was registered to the first image to
produce a dynamic image set which was then averaged to
yield a single 30-min PET image. For comparison between
subjects, each baseline average PET image was reoriented
along the anterior-posterior commissure line and resliced
to a 1.5 mm isotropic voxel space and smoothed using a
standard 14 mm full-width half-maximum kernel to produce
images of a uniform resolution. Each PET image was spatially
normalized to Montreal Neurological Institute brain space

4http://www.adni-info.org/Scientists/doc/PET-Tech_Procedures_Manual_v9.5.
pdf

and the mean hippocampal FDG uptake (normalized to pons
uptake) measured5.

Neuropsychological Assessments
All subjects underwent detailed neuropsychological testing
including ADAS-Cog13 and RAVLT. ADAS-Cog13 is a 13-
item scale used for assessing learning, memory, language
production and comprehension, constructional and ideational
praxis, orientation, has number cancelation and delayed
free recall tasks. The word recall test was administered
first, and the word recognition task given at the end
with other cognitive tasks given in between. The two-
word memory tasks were separated so that the risk of
individuals confusing words from the two tasks was minimized.
Objective testing was followed by subjective clinical ratings of
language ability and aptitude of the participant to remember
test instructions. The test is scored in terms of errors
and range from 0 to 70, with higher scores indicative
of poor performance6.

The RAVLT tests episodic verbal memory by assessing an
individual’s ability to acquire a list of 15 unrelated words (all
nouns) over five trials. The words are presented orally to the
subject at a rate of one word per second and immediate free
recall of words is elicited. The number of correctly recalled
words are recorded on each trial. Following a 30-min delay
filled with unrelated testing (distractor list), the subject is
required to repeat the original list of 15 words. Finally, a
yes/no recognition trial is administered which consists of the
original 15-words and 15 randomly interspersed distractor
words. The number of target “hits” as well as false positive
responses are recorded. The sum of scores from the first five
trials was used to compute the RAVLT score. Cognitively intact
individuals attain a higher score than individuals exhibiting
cognitive impairment6.

Statistical Analysis
ANCOVA models assessed differences in CSF levels of MTf,
Aβ, tau, neuropsychological tests and neuroimaging measures
across diagnostic groups, with age, sex and APOEε4 status
as covariates. Since age, sex and genetic status have been
known to affect the dependent variables under study, ANCOVA
was chosen to adjust for the variance attributed to these
factors (covariates), to understand the effect of disease on
the dependent variables in question. The CSF Aβ and MTf
were normally distributed, while ttau and ptau were natural
log-transformed to ensure normality. For regression models,
we tested the conditions necessary to satisfy assumptions by
checking for collinearity, normal distribution of residuals,
maintenance of homoscedasticity and normality of error
terms. All models satisfied these conditions. Associations
between baseline cognitive scores and neuroimaging measures
as well as percentage longitudinal change, i.e., (follow time
measure–baseline measure)/baseline measure × 100%,
with baseline MTf were performed using linear regression.

5http://adni.loni.usc.edu/methods/pet-analysis/pre-processing/
6http://www.adni-info.org
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TABLE 1 | Demographics of subjects stratified by diagnosis: cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD).

CN MCI AD p-value

n 86 135 66 NA

Age (years) 75.70 (5.54) 74.69 (7.35) 74.98 (7.57) 0.448

Female, n (%) 42 (48.83) 44 (32.59) 29 (43.94) 0.043

Ethnicity: NA

White Hispanic 1 3 0

White non-Hispanic 77 128 66

Black non-Hispanic 8 2 0

Asian non-Hispanic 0 3 0

Education (years) 15.56 (2.97) 16 (2.97) 15.11 (2.96) 0.133

APOEε4 +ve, n (%) 21 (24.42) 71 (52.59) 47 (71.21) 1.26 × 10−8

CSF MTf (a.u.) 8.69 (0.46) 8.71 (0.45) 8.68 (0.42) 0.733

CSF Aβ (pg/ml) 257.42 (20.39) 162.06 (51.32) 145.72 (44.96) 8.61 × 10−8

CSF ttau (pg/ml) 62.58 (25.35) 99.30 (50.38) 134.64(68.46) 1.06 × 10−7

CSF ptau (pg/ml) 21.42 (9.62) 34.42 (14.50) 44.91 (24.04) 4.60 × 10−7

MMSE score 29.06 (1.03) 26.92 (1.74) 23.52 (1.85) 1.76 × 10−48

ADAS-Cog13 score 10.19 (4.38) 18.85 (6.65) 30.87 (9.53) 1.44 × 10−38

RAVLT score 42.16 (7.88) 30.12 (8.44) 21.76 (6.82) 1.32 × 10−34

Hippocampal Volume (mm3) 7153.11 (772.89) 6346.59 (1142.55) 5749.67 (1093.18) 7.82 × 10−16

Hippocampal FDG (a.u.) 1.31 (0.15) 1.20 (0.13) 1.07 (0.13) 1.28 × 10−7

Data is presented as mean ± standard deviation. P-values are presented for ANCOVA models of CSF proteins, hippocampal volume and FDG, cognitive measures and
AD biomarkers, with adjustment for age, sex and APOEε4 status, with significant p-values denoted by bold italics (a.u., arbitrary units).

Since follow-up times were different between subjects,
follow-up time was included as a covariate. We then used
two-tailed T-test to determine differences in baseline MTf
levels between MCI converters (MCI-c, n = 85) and non-
converters (MCI-nc, n = 50) to AD. A p-value of ≤0.05
was considered significant. All analysis was performed
using SPSS IBM version 22.0 and GraphPad Prism 7.0
(GraphPad Inc., San Diego, CA, United States) was used to
produce figures.

RESULTS

The demographics of individuals based on diagnosis are shown
in Table 1, and for MCI-nc and MCI-c in Table 2, while
Supplementary Table 1 document the follow-up time for
CN, MCI, and AD subjects. Levels of CSF MTf were not
significantly different between CN, MCI, and AD subjects
(Table 1). However, multiple regression modeling of established
AD biomarkers and MTf in the total cohort showed higher
levels of CSF MTf were positively associated with hippocampal
volume (R2 = 38.0, β = 0.169, p = 0.001; Table 3 and
Supplementary Figure 1) and percentage longitudinal change
in RAVLT scores (R2 = 20.6, β = 0.127, p = 0.025; Table 3 and
Supplementary Figure 2).

Multiple regression modeling was repeated to determine
the associations between established AD biomarkers,
cognitive scores and MTf based on diagnosis (Tables 4, 5
and Supplementary Figures 3, 4). The regression model
demonstrated higher levels of CSF MTf were positively
associated with hippocampal volume in CN (R2 = 24.8,
β = 0.311, p = 0.005; Table 4 and Supplementary Figure 3A)

TABLE 2 | Demographics of MCI subjects based on their conversion status: MCI
non-converters (MCI-nc) and converters (MCI-c) to AD.

MCI-nc MCI-c p-value

N 50 85 NA

Age (years) 75.10 (6.92) 74.46 (7.62) 0.618

Female, n (%) 16 (32) 28 (32.94) 0.911

Education (years) 16.26 (2.86) 15.85 (3.03) 0.430

APOEε4 +ve, n (%) 22 (44) 49 (57.65) 0.129

CSF MTf (a.u.) 8.82 (0.44) 8.64 (0.44) 0.020

CSF Aβ (pg/ml) 180.17 (54.95) 149.76 (43.29) 0.001

CSF ttau (pg/ml) 96.28 (52.09) 106.99 (51.32) 0.115

CSF ptau (pg/ml) 31.94 (15.24) 37.20 (14.80) 0.033

MMSE score 27.56 (1.59) 26.54 (1.72) 0.001

ADAS-Cog13 score 16.51 (5.83) 20.50 (5.84) 2.28 × 10−4

RAVLT score 33.44 (9.54) 27.88 (7.02) 0.001

Hippocampal
Volume (mm3)

6662.65 (1050.19) 5940.97 (1010.71) 2.95 × 10−4

Hippocampal FDG
(a.u.)

1.25 (0.14) 1.17 (0.11) 0.014

Data is presented as mean ± standard deviation. P-values presented for two-tailed
T-test of CSF proteins, hippocampal volume and FDG, cognitive measures and AD
biomarkers, with significant p-values denoted in bold italics (a.u., arbitrary units).

and MCI individuals (R2 = 21.6, β = 0.206, p = 0.016; Table 4
and Supplementary Figure 3A). Although CSF MTf was
not associated with hippocampal volume in AD, MTf
were associated with longitudinal hippocampal volume
change (R2 = 43.8, β = 0.288, p = 0.036; Table 4 and
Supplementary Figure 3A). Also, CSF MTf was positively
correlated to baseline glucose metabolism (R2 = 17.7, β = 0.426,
p = 0.019; Table 4 and Supplementary Figure 3B) in
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TABLE 3 | Modeling the association of CSF Aβ, total tau (ttau), phosphorylated tau (ptau), and melanotransferrin (MTf) with neuroimaging measures of the hippocampus
and cognitive scores in the total cohort (Supplementary Figures 1, 2).

Aβ Ttau Ptau MTf Adjusted R2 (%)

β p β p β p β p

Neuroimaging measures

Volume 0.027 0.654 −0.028 0.739 −0.138 0.107 0.169 0.001 38.0

Volume % change 0.265 6.1 × 10−5 0.079 0.390 −0.200 0.033 0.066 0.227 34.7

FDG 0.023 0.783 0.208 0.107 −0.309 0.014 0.115 0.129 29.4

FDG % change 0.165 0.058 −0.071 0.588 −0.088 0.495 0.087 0.274 17.4

Cognitive measures

MMSE 0.041 0.389 0.027 0.684 −0.042 0.533 0.012 0.769 59.4

MMSE % change 0.298 8.0 × 10−6
−0.033 0.724 −0.043 0.645 0.080 0.151 23.1

ADAS-Cog13 −0.121 0.011 0.043 0.520 −0.010 0.888 −0.076 0.059 59.0

ADAS-Cog13 % change −0.193 0.005 −0.037 0.697 0.125 0.203 −0.017 0.770 15.9

RAVLT 0.067 0.211 −0.087 0.250 0.020 0.798 0.025 0.574 48.5

RAVLT % change 0.244 3.0 × 10−4 0.084 0.370 −0.099 0.297 0.127 0.025 20.6

Age, sex and diagnosis were included as covariates. The % change represents the longitudinal change in neuroimaging/cognitive measures from baseline to the follow-up
period for each respective patient. Since the follow-up time points were different between subjects, we included the follow-up time as a covariate. Data is presented as
mean ± standard deviation. The standardized coefficient (β) with adjusted R2 and p-values are stated, with significant p-values in bold italics.

TABLE 4 | Modeling the association of CSF Aβ, total tau (ttau), phosphorylated tau (ptau), and melanotransferrin (MTf) with neuroimaging measures of the hippocampus
in cognitively normal (CN), mild cognitive impairment (MCI) or Alzheimer’s disease (AD) (Supplementary Figure 3).

Aβ Ttau Ptau MTf Adjusted R2 (%)

β P β p β p β p

CN

Volume −0.259 0.022 0.006 0.971 −0.394 0.014 0.311 0.005 24.8

Volume % change 0.212 0.043 −0.280 0.054 −0.013 0.927 0.079 0.428 38.4

FDG −0.021 0.910 0.228 0.468 −0.260 0.397 −0.058 0.764 3.80

FDG % change 0.368 0.027 −0.233 0.393 0.340 0.190 0.180 0.266 1.50

MCI

Volume 0.094 0.379 −0.143 0.331 0.033 0.832 0.206 0.016 21.6

Volume % change 0.100 0.312 0.159 0.236 −0.260 0.076 0.115 0.135 38.9

FDG 0.160 0.284 0.281 0.226 −0.137 0.584 0.160 0.211 4.70

FDG % change 0.000 0.999 −0.056 0.774 −0.243 0.255 0.048 0.668 25.2

AD

Volume −0.026 0.856 0.047 0.816 −0.285 0.161 0.078 0.521 33.7

Volume % change 0.209 0.174 −0.245 0.270 −0.092 0.681 0.288 0.036 43.8

FDG −0.027 0.895 −0.470 0.179 0.138 0.696 0.426 0.019 17.7

FDG % change −0.072 0.802 0.214 0.642 −0.403 0.370 0.136 0.595 23.4

Age and sex were included as covariates. The % change represents the longitudinal change in neuroimaging scores from baseline to the follow-up period for each
respective patient. Since the follow-up time points were different between subjects, the follow-up time was also included as a covariate. Data is presented as
mean ± standard deviation. The standardized coefficient (β) with adjusted R2 and p-values are stated, with significant p-values in bold italics.

AD subjects. The only associations between CSF MTf and
cognitive scores were observed in MCI, with MTf negatively
associated with ADAS-Cog13 scores (R2 = 7.00, β = −0.172,
p = 0.050; Table 5 and Supplementary Figure 4C) and
positively associated with longitudinal change in RAVLT
scores (R2 = 17.6, β = 0.248, p = 0.003; Table 5 and
Supplementary Figure 4C).

Interestingly, MCI subjects that converted to AD (MCI-
c) demonstrated significantly lower levels of baseline CSF
MTf compared to those that did not (MCI-nc; p = 0.020;
Table 2 and Figure 1). MCI-c had significantly decreased

Aβ (p = 5 × 10−4; Table 2 and Figure 1) and increased
ptau compared to MCI-nc subjects (p = 0.028; Table 2
and Figure 1). Levels of ttau were similar between MCI-c
and MCI-nc (p = 0.0984; Table 2 and Figure 1). Multiple
regression modeling was also performed, including
established AD biomarkers and CSF MTf according to
the conversion status of MCI subjects (Table 6 and
Supplementary Figures 5, 6), where CSF MTf was found
to be positively correlated to percentage longitudinal change
in RAVLT score in MCI-nc but not MCI-c (Table 6 and
Supplementary Figure 6C).
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TABLE 5 | Association of CSF Aβ, total tau (ttau), phosphorylated tau (ptau), and melanotransferrin (MTf) with cognitive scores in cognitively normal (CN), mild-cognitive
impairment (MCI), or Alzheimer’s disease (AD) (Supplementary Figure 4).

Aβ Ttau Ptau MTf Adjusted R2 (%)

β P β p β p β p

CN

MMSE −0.198 0.121 0.188 0.296 −0.041 0.819 0.080 0.509 3.10

MMSE % change 0.364 0.003 −0.234 0.162 0.169 0.304 0.021 0.858 17.2

ADAS-Cog13 −0.242 0.047 0.016 0.925 −0.126 0.459 0.169 0.147 11.7

ADAS-Cog13 % change −0.112 0.349 0.366 0.030 −0.078 0.636 −0.164 0.177 16.7

RAVLT 0.068 0.596 0.003 0.987 0.079 0.660 −0.131 0.283 1.90

RAVLT % change 0.284 0.027 −0.282 0.113 0.288 0.101 0.088 0.482 6.50

MCI

MMSE 0.198 0.084 −0.038 0.813 0.013 0.077 −0.013 0.883 −0.400

MMSE % change 0.272 0.006 0.017 0.904 −0.102 0.490 0.141 0.072 26.2

ADAS-Cog13 −0.227 0.041 0.015 0.925 0.115 0.489 −0.172 0.050 7.00

ADAS-Cog13 % change −0.140 0.177 −0.144 0.324 0.257 0.103 −0.049 0.550 17.8

RAVLT 0.079 0.481 −0.173 0.273 −0.007 0.969 0.138 0.123 2.90

RAVLT % change 0.174 0.094 0.103 0.480 −0.097 0.536 0.248 0.003 17.6

AD

MMSE 0.211 0.211 0.048 0.851 −0.074 0.767 −0.081 0.579 −0.060

MMSE % change 0.143 0.366 −0.257 0.292 0.213 0.367 0.060 0.661 6.70

ADAS-Cog13 −0.083 0.620 0.306 0.230 −0.302 0.227 −0.181 0.216 −5.10

ADAS-Cog13 % change −0.215 0.169 −0.011 0.964 0.066 0.775 0.091 0.500 9.80

RAVLT 0.236 0.146 −0.281 0.253 0.272 0.257 0.081 0.563 2.60

RAVLT % change 0.011 0.939 0.052 0.823 −0.061 0.788 −0.028 0.831 14.4

Age and sex were included as covariates. The % change represents the longitudinal change in cognitive scores from baseline to the follow-up period for each respective
patient. Since the follow-up time points were different between subjects, the follow-up time was also included as a covariate. Data is presented as mean ± standard
deviation. The standardized coefficient (β) with adjusted R2 and p-values are stated, with significant p-values in bold italics.

DISCUSSION

We demonstrate diminished levels of baseline CSF MTf
are associated with lower hippocampal volumes in CN and
MCI and worse cognitive scores in MCI subjects. Moreover,
significantly lower levels of baseline CSF MTf were observed in
MCI subjects converting to AD compared to non-converters,
underscoring the possibility of CSF MTf to identify those
individuals with increased susceptibility of converting to AD.
In AD, lower CSF MTf levels was associated with a reduction
in hippocampal volume over time and appear to reflect
disease progression.

We found similar levels of CSF MTf in CN, MCI, and
AD subjects. In contrast, a previous study demonstrated
increased levels of CSF MTf in AD compared to individuals
suffering from various neurodegenerative diseases (Kennard
et al., 1996). However, our study cohort was a greater size,
comprised mixed ethnicity and age-matched CN subjects, while
the Kennard et al. study had only a Japanese cohort and
the AD group older than the “control” group of individuals
with non-AD neurodegenerative disease. With less genetic
variability compared to our mixed ethnicity cohort, their
results may not be representative of the general population.
To the best of our knowledge, our study is the first
report addressing the levels of CSF MTf levels in AD
compared to CN subjects.

While elevated serum MTf have been found in AD (Kennard
et al., 1996; Kim et al., 2001), others have observed this
in early milder AD cases but no further increases in latter
stages of AD (Kim et al., 2001). It is noted that serum
MTf of varying glycosylated conformations were unchanged in
another, but rather poor (see “Introduction”), study on AD
subjects (Desrosiers et al., 2003). Desrosiers and co-workers
used two-dimensional gel electrophoresis, whereas other, but
validated studies, utilized sandwich fluorescent assay (Kennard
et al., 1996), radioimmunoassay (Feldman et al., 2001), and
dot-immunoblot assay (Kim et al., 2001) to measure serum
MTf levels. The present study suffers from the limitation
that plasma/serum levels of MTf were not available in the
ADNI repository.

It is well documented that MCI subjects are at an increased
risk of acquiring AD, and around 10–15% of these subjects
convert to AD on a yearly basis (Risacher et al., 2009). By
stratifying MCI individuals to MCI-c and MCI-nc, we found
significantly diminished baseline CSF MTf levels in the former
group. Indeed, lower CSF MTf were associated with greater
cognitive deficits (ADAS-Cog13) in MCI and lower hippocampal
volumes in both CN and MCI. While not associated with
hippocampal volume, CSF MTf was associated with longitudinal
hippocampal volume change in AD. MTf appears to have
a role in mediating cellular iron uptake (Kennard et al.,
1995), and hence likely to be involved in iron metabolism.
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FIGURE 1 | Baseline characteristics of mild cognitive impaired subjects stratified by conversion to Alzheimer’s Disease. Data are represented as mean ± standard
deviation. The student’s T-test was used to test for differences in CSF melanotransferrin (MTf), Aβ, phosphorylated tau (ptau), and total tau (ttau) between
non-converters (MCI-nc) and converters (MCI-c) with p < 0.05 being considered significant.

Perturbed MTf expression may contribute to iron dysregulation
and cellular iron accumulation, precipitating oxidative stress
as iron is a potent source of free radicals, hastening AD
pathogenesis. Greater iron content in the subcortical areas has
been associated with poorer memory performance, lower general
cognitive aptitude, mental retardation, and poorer cognitive and
motor control in a healthy population (Sullivan et al., 2009;
Penke et al., 2012; Rodrigue et al., 2013; Adamo et al., 2014;
Daugherty and Raz, 2015). Furthermore, higher hippocampal
iron has been correlated to smaller hippocampal volume, which
in turn predicted poorer episodic memory (Rodrigue et al.,
2013). Additionally, iron overload has been shown to accelerate
cognitive impairment in human and transgenic mouse models
of AD (Rodrigue et al., 2013; Becerril-Ortega et al., 2014).
Interestingly, MCI subjects exhibited increased iron levels in
the cortex and cerebellum (Smith et al., 2010). Another study
reported an increase in the redox-active iron in the CSF of
MCI but not AD cases, with levels correlating with the extent
of cognitive impairment (Lavados et al., 2008). Consistent with
these reports, we demonstrated a decrease in the baseline

CSF MTf levels of MCI-c compared to MCI-nc, but no
differences between CN, MCI, and AD groups, which suggests
that iron dysregulation is an early event in AD pathogenesis
(van Bergen et al., 2016).

There are two forms of MTf, one form is located on the
cell surface via a GPI anchor on the plasma membrane, and
the other is a soluble form that is secreted and found in the
serum (Food et al., 1994; Desrosiers et al., 2003). Soluble MTf
was originally thought to be derived from improper processing
resulting in the protein evading the GPI-addition or endogenous
(phosphatidylinositol-specific phospholipase D) cleavage of GPI-
anchored MTf (McNagny et al., 1996). Moreover, soluble MTf was
proposed to be generated from an alternatively spliced mRNA
transcript lacking a GPI signal coding sequence (McNagny et al.,
1996). However, more recently, Yang et al. (2004) conducted a
detailed study in which deletion of the GPI pre-anchor sequence
in human p97 led to a soluble form of MTf, and proposed more
convincing mechanisms that could account for the soluble forms
of GPI proteins. Apparently, three critical recognition sites are
needed for the processing of GPI proteins in the endoplasmic
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TABLE 6 | Association of CSF Aβ, total tau (ttau), phosphorylated tau (ptau), and melanotransferrin (MTf) with hippocampal neuroimaging measures and cognitive scores
in MCI non-converters (MCI-nc) and converters (MCI-c) to Alzheimer’s Disease (Supplementary Figures 5, 6).

Aβ Ttau Ptau MTf Adjusted R2 (%)

β p β p β p β p

Neuroimaging measures

MCI-nc

Volume 0.202 0.201 −0.248 0.262 0.160 0.607 0.068 0.607 39.6

Volume % change −0.075 0.651 1.052 5.2 × 10−5
−1.131 6.3 × 10−5

−0.043 0.763 33.1

FDG 0.153 0.450 −0.416 0.384 0.845 0.104 0.211 0.222 39.9

FDG % change 0.375 0.139 −0.235 0.675 0.041 0.946 0.028 0.888 11.0

MCI-c

Volume −0.106 0.382 0.008 0.963 −0.111 0.547 0.206 0.065 11.0

Volume % change 0.120 0.167 −0.058 0.640 −0.058 0.654 0.061 0.433 60.5

FDG 0.100 0.598 0.278 0.264 −0.204 0.435 −0.028 0.880 −0.081

FDG % change −0.213 0.174 0.030 0.882 −0.316 0.152 −0.154 0.317 16.1

Cognitive scores

MCI-nc

MMSE 0.112 0.567 0.109 0.699 −0.098 0.750 0.097 0.553 −4.9

MMSE % change 0.618 0.001 −0.281 0.260 0.544 0.049 0.063 0.662 19.5

ADAS-Cog13 −0.326 0.083 0.175 0.515 −0.292 0.321 −0.155 0.323 5.5

ADAS-Cog13 % change −0.166 0.379 −0.256 0.336 0.262 0.366 0.043 0.781 7.7

RAVLT 0.145 0.425 −0.181 0.491 0.259 0.367 0.107 0.483 9.6

RAVLT % change 0.199 0.279 −0.002 0.992 0.056 0.842 0.334 0.029 13.8

MCI-c

MMSE 0.117 0.332 −0.111 0.527 0.150 0.418 −0.109 0.326 4.5

MMSE % change 0.144 0.182 0.194 0.221 −0.354 0.036 0.052 0.607 23.3

ADAS-Cog13 −0.103 0.389 −0.096 0.587 0.265 0.155 −0.148 0.185 5.6

ADAS-Cog13 % change −0.010 0.927 −0.208 0.193 0.310 0.068 0.014 0.892 21.9

RAVLT −0.052 0.671 −0.198 0.275 −0.031 0.871 0.074 0.516 −1.1

RAVLT % change 0.185 0.105 0.210 0.208 −0.237 0.182 0.109 0.303 14.5

Age and sex were included as covariates. The % change represents the longitudinal change in neuroimaging/cognitive measures from baseline to the follow-up period
for each respective patient. Since the follow-up time points were different between subjects, the follow-up time was also included as a covariate. Data is presented as
mean ± standard deviation. The standardized coefficient (β) with adjusted R2 and p-values are stated, with significant p-values in bold italics.

reticulum: a transamidase, the residues to which the GPI anchor
is linked and a carboxyl terminal signal peptide. Disruption in
any of these could potentially alter MTf processing to result in
soluble MTf, without a GPI anchor (Alemany et al., 1993; Maxwell
et al., 1995; Yang et al., 2004). MTf in the blood has been known
to undergo a high rate of transcytosis across the blood-brain-
barrier (BBB) from the bloodstream to the brain (Demeule et al.,
2002). We postulate that impaired transcytosis of MTf from the
bloodstream into the brain may in part account for the decrease
in CSF MTf levels in MCI-c and consistent with reports of
increased serum MTf in AD (Kennard et al., 1996; Feldman et al.,
2001; Kim et al., 2001). It is important to mention that MTf is not
exclusively located in the brain but is also found in the liver and
intestinal epithelial cells (Sciot et al., 1989; Alemany et al., 1993).

The low-density lipoprotein receptor (LRP) has been
identified as a receptor for MTf and appears to actively transport
MTf from the blood across the BBB into the brain (Demeule et al.,
2002). Genetic studies strongly implicate the LRP gene locus in
enhanced susceptibility to AD with APOE and Aβ being key LRP
ligands (Kounnas et al., 1995; Kang et al., 1997). Furthermore,
LRP levels are lower in AD, and of the two isoforms, LRP1 and

LRP2, higher levels of the former have been associated with
later onset of disease in AD patients, suggesting LRP1 may be
protective against AD (Kang et al., 2000). At the BBB, LRP1
has been shown to be essential for the elimination of Aβ from
the brain into the blood (Storck et al., 2016), with escalating
Aβ levels in the brain associated with reduced LRP1 expression
(Shibata et al., 2000). This reduction in LRP at the BBB may
explain the lack of transcytosis of MTf from the blood into the
brain and so, the low baseline CSF levels in MCI-c. However, it
has been hypothesized that the brain capillary endothelial cells
themselves produce MTf and that there is transcytosis in both
directions at the BBB (Rothenberger et al., 1996). Thus, further
investigations are needed to understand MTf import and export
through the BBB and possible interactions with Aβ transport
in aging and AD.

Neuroimaging and post-mortem studies have implicated
BBB dysfunction as an early and common occurrence in
AD, characterized by microbleeds, impaired glucose transport,
disrupted functioning of P-glycoprotein 1, perivascular deposits
of blood-derived proteins, cellular infiltration and degeneration
of endothelial cells (Sweeney et al., 2018). Since the function of
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the BBB is to strictly regulate the blood-to-brain and brain-to-
blood transport of solutes, MTf may simply leak through the
disrupted BBB into the general circulation, leading to diminished
levels of CSF MTf in the MCI-c at baseline. As the BBB is also
known to be disrupted in AD, CSF MTf will also be expected to
be reduced in AD, but this was not observed.

Additionally, the lower MTf levels in the CSF of MCI-c may,
in part, arise from increased export of MTf from the CSF into the
blood. LRP1 has also been detected at the choroid plexus (Pascale
et al., 2011; Spuch et al., 2012) and suggests that MTf may be
exported from the CSF to the blood via this route. Aβ (1–40)
has been shown to be actively eliminated from the CSF, thought
to be partly via LRP1 at the choroid plexus (Fujiyoshi et al.,
2011). We propose that the lower CSF MTf in MCI-c in our study
may result from its increased export from the CSF to the blood
due to concomitant attenuated competition with the diminishing
CSF Aβ levels arising from impaired Aβ clearance from the
brain parenchyma. Future experiments are required to perform
detailed investigations of whether other LRP substrates can
influence the transcytosis of MTf, and the mechanisms governing
MTf transport from the CSF to the blood and vice versa.

If CSF MTf is determined by Aβ clearance from the
parenchyma into the CSF, this would imply that CSF MTf would
be reduced in AD as levels of CSF Aβ are significantly reduced.
A reduction in CSF MTf in AD was not observed in our study,
but this may be explained by the increased production of MTf
in the brain parenchyma from a subset of reactive microglia
associated with amyloid plaques (Jefferies et al., 1996; Yamada
et al., 1999). The subset of reactive (dysregulated) microglia
surrounding plaques appear to be an exclusive hallmark of AD
pathology and not observed in other neurodegenerative diseases
(Jefferies et al., 1996; Rothenberger et al., 1996; Yamada et al.,
1999). Whatever the mechanism(s) for reduced CSF MTf levels in
MCI-c (described above), they are likely to be operational in AD
as well and ought to lead to reduced CSF MTf in AD, we propose
this is not observed as levels are maintained by MTf production
from these reactive microglia surrounding plaques. The microglia
appear to be laden with iron, as evident by high expression
of the iron storage protein, ferritin (McGeer et al., 1987;
Grundke-Iqbal et al., 1990; Food et al., 1994). We speculate that
increased iron uptake by the reactive microglia via expression
of GPI-anchored MTf leads to cellular iron accumulation,
further exacerbating microglial dysfunction. Chinese hamster
ovary (CHO) cells defective in the transferrin receptor but
transfected to express MTf, showed doubling of iron intake.
Iron-associated microglial-driven neuroinflammation may be a
significant driver behind neuronal and synaptic destruction,
working synergistically with Aβ (Gallagher et al., 2012; McGeer
and McGeer, 2013). Determining the source of CSF MTf
may aid determination of the defect that is contributing to
AD pathogenesis.

Based on our results, CSF MTf levels appears to be significantly
decreased in MCI-c compared to MCI-nc at baseline. However,
no significant changes were found in MTf levels at the AD stage.
MTf may be involved in iron metabolism, iron dyshomeostasis
may be an early event in disease pathogenesis. Indeed, redox-
active CSF iron levels were shown to be increased from normal

to MCI subjects, while in AD, there was an abrupt decrease
in iron levels close to zero (Lavados et al., 2008). Through
histochemical iron analysis, increased brain iron content was
reported in MCI and preclinical cases of AD (Smith et al.,
2010). It is likely that perturbations in baseline MTf levels
and resultant dysfunction at the stage of MCI, may be a
significant and early contribution to the disease process prior
to acquiring AD.

CONCLUSION

In conclusion, we demonstrate that baseline CSF MTf levels are
significantly decreased in MCI-c compared to MCI-nc. However,
our results remain to be validated in an independent cohort.
Future directions would be required to elucidate the role of MTf
in the context of AD, especially determining the source of MTf
in the CSF and how brain MTf is regulated by cellular barriers,
Aβ and activated microglial cells in human and transgenic AD
models, requiring measurements in paired blood-CSF samples.
Nevertheless, our study implies that baseline CSF MTf levels may
be a useful marker to identify individuals with increased risk of
conversion to AD, although much development still needs to be
undertaken to ensure robust assay reproducibility across multiple
clinical laboratories.
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