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Older adults face many growing challenges to their economic well-being that directly affect their
autonomy and happiness. Increased medical expenses coupled with reduced mobility, impaired
eyesight and hearing, and other external factors often lead older adults to retire and accept a fixed
income that effectively decreases as they continue to age. This leaves less room for error and a
reduced opportunity to recover from poor financial choices, such as those arising from scams and
fraud of which older adults are often the target. Biological changes also challenge the decision-
making processes of older adults, in particular, an older person’s ability to manage personal
finances (Lachs and Han, 2015). Age-related declines in the structural volume and functioning of
the prefrontal cortex (PFC), altered emotion/reward processing (E-RP), and altered connectivity
involving the default mode network (DMN) all play a role in decision making, but compensatory
mechanisms also exist (e.g., conserved gist memory; Reyna and Brainerd, 2011). In addition,
recent evidence involving the DMN has been interpreted as challenging the traditional view that
biased decision making stems from E-RP (Smith et al., 2015; Li et al., 2017). These and other
findings suggest an alternative framework for understanding the neural network underpinnings
financial decision bias in older adults. In this review, we contrast (a) an interactive relationship such
that: DMN activation/connectivity reduces resources dedicated to the cognitive control system to
regulate the reward system, increasing the influence of emotion/reward sensitivity on choices and
subsequently increasing decision bias with (b) an alternative account of DMN activity that adds to
traditional dual-process factors by linking subjective, internal representations to the DMN and to
gist-based biases. We briefly review the literature in these areas and describe PFC decline, altered
E-RP, and altered DMN in aging. These processes may together affect financial decision making
in older adults. We begin, however, with a brief description of decision bias and how traditional
dual-process theory is used to explain such bias.

TRADITIONAL DUAL-PROCESS VIEW OF FINANCIAL
DECISION BIAS

The way in which individuals value options is central to the study of financial decision
bias and consistently choosing options with the greatest subjective value is generally
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accepted as rational, even if objectively superior options are
available (Von Neumann and Morgenstern, 1944). Importantly,
superficial factors such as the positive or negative wording of
identical options should not impact choice when outcomes
remain equivalent. Irrational decision bias occurs when
systematic changes in choice patterns emerge despite such
equivalence (Tversky and Kahneman, 1986). These so-called
“irrational” decision biases (see Reyna, 2012, 2018) might form
a basis of scams and fraud attempts, leading to expected shifts
in behavior for objectively unjustifiable reasons (e.g., the mere
framing of options).

Specifically, one of the most extensively studied financial
decision biases, and one that has been tested in multiple
functional magnetic resonance imaging (fMRI) studies with
younger adults is the risky choice framing effect (RCFE; e.g.,
Gonzalez et al., 2005). In the variation of the risky choice framing
task most studied in neurological investigations, individuals are
provided with an endowment (i.e., $50 or $100) and asked to
make a choice between one of two options framed as either
gains or losses (see Figure 1). One option is safe and offers the
possibility of keeping (gains) or losing (losses) a proportion of
the endowment for sure. A second, risky option is displayed
using a pie chart that is identical between frames (i.e., a
confounded version in which both gains and losses appear in
the gamble; chances of winning might vary: 20, 40, 60, or 80%
as indicated in the pie chart). Typically, the safe and risky
options are equal in terms of expected value (the objective,
long-term expected average return on a gamble if repeated over
many trials) within and across gains and losses. Consistent
preferences for risky, safe or neither option are all rational;
shifting from preferring the risky option (typical in losses) to
preferring the safe option (typical in gains) is not rational. That
is, in many studies involving moderate-sized probabilities, most
people were risk averse for gains (<50% risk-taking) and risk-
seeking for losses (>50% risk-taking), displaying a framing bias.
When probabilities are very small, they tend to be overweighted,
producing opposite risky shifts—risk taking for gains and risk
seeking for losses. These shifts in risk-taking could have dramatic
effects on financial well-being in the real world and present
opportunities for scams and fraud, including the selling of sub-
optimal financial security services to protect against the fear of
unlikely losses (e.g., expensive insurance; but see Reyna, 2018).
Because financial scams and fraud involve taking risks, it is
important to investigate the psychological and neural bases of
RCFEs in older adults.

In regard to RCFEs and other financial decision biases, the
bulk of studies have relied on one of a host of traditional
dual-process theories to interpret their results. Although subtle
differences exist, most of these views agree that decision bias
results from a failure of deliberative thinking to regulate
emotion/reward processing (E-RP; Kahneman and Frederick,
2007; Evans and Stanovich, 2013). When a choice problem
is encountered, as in the case of a gain- or loss-framed
monetary gamble, individuals have an initial positive or negative
emotional/reward response and this response must be regulated
to achieve desirable behavior. If responses are not regulated, then
behavior may differ in undesirable ways, such as the tendency to

select risky prospects (i.e., gambles) due to the mere wording of
options. Note that while some researchers have highlighted the
positive role that emotions can play in providing feedback during
the decision-making process (Bechara et al., 1997; Schiebener and
Brand, 2015), most traditional dual-process accounts emphasize
the negative impact of emotions on decision bias, and this view
typifies the majority of dual-process explanations of RCFEs.

Insufficient effort or a lack of necessary “mindware” (i.e.,
learned decision rules) have been thought to account for failures
of cognitive control processes to regulate E-RP, but enhanced E-
RP may also lead to regulatory failures by increasing regulatory
demands beyond the limiting abilities of cognitive control
systems. When effort and ability are sufficient, however, control
network processing (i.e., deliberative thinking) exerts a top-down
regulating influence on subjective emotional/reward responses
and choices are rational, consistent, and free from decision
bias. Thus, most traditional dual-process theories view decision
making as a competition between E-RP and control processes.

In this view, financial decision bias could represent a failure
of the PFC centered control network to properly modulate E-
RP activity in the valuation network. Neural structures associated
with E-RP include the amygdala and nucleus accumbens as
well as medial portions of the PFC. Thus, medial portions of
the PFC, in close physical proximity to the control network,
are also implicated in reward network processing (Hare et al.,
2009), and as will be discussed, this region also appears in
common definitions of the DMN. This observation may be
important for understanding how the “compensation” strategies
used by older adults (discussed below) leads to undesirable co-
activation between neural networks and an increase in financial
decision bias. Notwithstanding, a voluminous body of research
has provided general support for the traditional dual-process
view, including the neurological evidence described in the
preceding paragraph.

PFC DECLINE AND ENHANCED E-RP
SUPPORT THE TRADITIONAL
DUAL-PROCESS VIEW

Many changes in the decision making of older adults may be
related to declines in prefrontal brain regions. Known as the
“frontal lobe” hypothesis (Moscovitch and Winocur, 1995; West,
1996), there is large agreement in the neuroscience literature
that one of the most pervasive effects of normal aging on
the brain is a gradual decline in structural volume and the
physical connections between brain regions (see, Weller et al.,
2011; Samanez-Larkin and Knutson, 2015 for reviews). That
is, as individuals age, the physical connections (i.e., structural
connectivity) that underlie functional network connectivity begin
to deteriorate, compromising the structural integrity of networks
and their functioning. In particular, frontal regions implicated
in reward valuation and cognitive control decline most rapidly
with age and are associated with impairments in decision
making (see Samanez-Larkin and Knutson, 2015; Koestner et al.,
2016 for reviews). Relevant frontal structures associated with
reward valuation include the ventromedial prefrontal cortex
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FIGURE 1 | The Risky Choice Framing task. On each trial, an initial fixation cross is presented for ∼6.5 s, followed by the presentation of an endowment for 2 s ($50 or

$100). A decision screen is then presented for 4 s in which a safe option is always presented on the left and a risky option is always presented on the right. The safe

and risky options are always equal in terms of expected value and range between 20 and 80% of the initial endowment. After participants indicate their choice, a check

mark indicating the selected option is presented for 1.5 s before proceeding to the next trial. Gain (A) and loss (B) trials are pseudorandomly varied within subjects.

(vmPFC); structures involved in control network processing
include dorsolateral portions of the parietal and frontal cortices
(i.e., the fronto-parietal control network; FPCN) as well as
portions of the dorsomedial prefrontal cortex (dmPFC) in close
physical proximity to reward network structures (Fox et al., 2005;
Fair et al., 2009; Anderson et al., 2011; Power et al., 2011; Yeo
et al., 2011; Barber et al., 2013; Sato et al., 2015; Smith et al., 2015;
Li et al., 2017).

These findings are relevant for traditional “dual process”
theories of decision making which, as noted above, hold that
decision bias occurs when control network processing fails
to regulate E-RP (De Martino et al., 2006). More precisely,
according to traditional dual-process theories, processing in
emotion/reward regions (amygdala, vmPFC) is inhibited by
processing in cognitive control regions (FPCN; dmPFC) to resist
decision bias. Structural declines in the brains of older adults,

however, are thought to affect the competition between control
and emotion/reward network processing. Specifically, functional
changes are thought to overlay these structural declines and result
in impaired reward processing and a reduced ability to integrate
options (Samanez-Larkin and Knutson, 2015).

In regard to behavioral regulation, functional declines in
prefrontal control network regions may reduce the ability of
some older adults to predict and appropriately exert control
over responses to emotions as well as rewards/valuations. In
terms of neural network interactions, this reduced ability to
modulate emotion/reward network processing could manifest
as a reduction in the anti-correlation in neural activity
between networks. That is, activity in the control network
would be negatively (i.e., anti) correlated with activity in the
emotion/reward network for the control network to regulate E-
RP and resist financial decision bias, and functional declines
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in control network processing would reduce the ability of
the control network to establish and maintain this negative
correlation. As a result, the anti-correlation between the control
and emotion/reward networks should be greater in younger vs.
older adults, according to the traditional view.

Alternatively, behavioral regulation (i.e., resistance to financial
decision bias) may be negatively affected in older adults primarily
due to increases in E-RP. A number of exceptions have been
reported, but the bulk of evidence suggests that older adults
have a positivity bias (Carstensen et al., 1999; Mather and
Carstensen, 2003; Adams, 2004; Leigland et al., 2004; Dudley
and Multhaup, 2005; Löckenhoff and Carstensen, 2008), are
sensitive to rewards (Bauer et al., 2013), are less responsive to
and have poorer memory for negative stimuli (for review see
Samanez-Larkin and Knutson, 2015), often base decisions on
affect more than the numeric value of options, particularly when
decisions are complex and require the integration of multiple
options (Eppinger et al., 2013; Worthy et al., 2016), and generally
rely more on the use of heuristics and biases (Löckenhoff and
Carstensen, 2008; Worthy and Maddox, 2012; Worthy et al.,
2016). However, it should be noted that reliance on memory for
gist, as opposed to precise details such as numbers, occurs in
adults regardless of whether decisions are complex (Reyna and
Brainerd, 2011; Reyna et al., 2014). Moreover, memory for gist
is relatively conserved in healthy aging. Thus, it is wrong to say
that “memory” declines in old age; instead, verbatim memory
declines creating greater reliance on relatively intact gist memory
(Reyna, 2011).

Perhaps not surprisingly then, some research has shown that
older adults are more susceptible to framing manipulations that
vary the positive or negative wording of objectively equivalent
options, although this may be driven primarily by differences in
the domain of gains (Weller et al., 2011; see Best and Charness,
2015 and Mata et al., 2011, for reviews). In a recent study (Weller
et al., 2011), a large sample of individuals aged 5–85 completed
a form of risky choice framing task known as the “Cups” task.
Overall, whereas older and younger adults displayed similar levels
of risk-taking for losses, older adults took fewer risks in the
domain of gains. Other research appears to corroborate this
finding, but several exceptions have also been reported (see Best
and Charness, 2015 and Mata et al., 2011, for reviews). In order
to clarify these age differences, it is crucial in future research to
unconfound factors that are known to influence choices, such
as risk preferences for framing problems and verbatim memory
for outcomes of prior gambles (i.e., older and younger adults are
not solving the same decision problems if they remember prior
relevant outcomes differently).

COMPENSATORY ACTIVATION IMPROVES
TASK PERFORMANCE BUT MAY HAVE
UNDESIRABLE CONSEQUENCES

Despite claims of overall greater susceptibility to financial
decision bias among some older adults, it should be noted
that many are able to achieve performance levels comparable
to younger adults by recruiting compensatory activation in

additional brain regions (Halfmann et al., 2014; Lighthall
et al., 2014; Worthy et al., 2016). Termed the “compensation
hypothesis,” it is thought that older adults are sometimes able
to compensate for structural declines and achieve performance
levels similar to younger adults by recruiting additional resources
and/or employing alternative decision strategies, such as an
increase in the use of gist-based heuristics (Mata et al., 2011;
Worthy and Maddox, 2012; Halfmann et al., 2014; Lighthall
et al., 2014; Worthy et al., 2016). Indeed, experiments and
mathematical models have shown that older adults compensate
in recall tasks by using gist memory to reconstruct verbatim items
that were studied (Reyna, 2011). When reported in neurological
investigations, compensation in older adults is often inferred
from the presence of bilateral activation in the dlPFC (which is
part of the FPCN) whereas only unilateral activation is observed
in younger adults, indicating that different brain regions are
recruited in older adults to compensate for age-related declines.

Another key test is based on task performance–if performance
increases in concert with the recruitment of additional areas
and/or resources, then recruitment was compensatory; if not,
then the additional resources/activations were not compensatory
(Lighthall et al., 2014). Recent neuroimaging studies have
supported the compensation hypothesis (Halfmann et al., 2014;
Lighthall et al., 2014; Worthy et al., 2016). In one, right dlPFC
and striatal activation significantly correlated with performance
on a reward learning task in older adults (r = 0.66, p < 0.01), but
not in younger adults (r = 0.17, p = 0.49), consistent with the
notion that increased activation in the DLPFC compensated for
age-related declines in dlPFC functioning (Worthy et al., 2016).
These findings shed light on the compensation strategies used by
older adults and suggest that preserved (and possibly extended)
control network functionality may overcome structural declines
and facilitate resistance to financial decision bias.

One issue that may arise from compensatory activation,
however, is the extent to which regions outside of the control
network, but located in close spatial proximity to the control
network, may be recruited. A case in point are the lateral
and medial PFC regions of the control network and medial
PFC regions of the emotion/reward network. In younger adults,
control network and emotion/reward network processing are
typically uncorrelated at rest and become more anti-correlated as
the control network exerts a regulatory influence on E-RP. This
is an important condition in resisting decision bias according to
the traditional dual-process view.

Co-activation with other neural networks may also affect
financial decision bias. Although cognitive control processes
modulate framing biases, such processes are not necessary
either to generate or to eliminate framing biases (Kühberger
and Tanner, 2010; Reyna et al., 2014). Instead, reliance on
simple gist representations (e.g., preferring to gain some
money for sure over the possibility in the risky option of
some money or no money) generates framing biases and
reliance on precise verbatim process eliminates those biases.
These effects occur without varying cognitive control, although
when cognitive control does vary, framing biases can be
modified (see Stanovich and West, 2008). In addition, recent
evidence suggests that DMN activation is associated with

Frontiers in Neuroscience | www.frontiersin.org 4 March 2019 | Volume 13 | Article 184

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


McCormick et al. Older Adults’ Neurofinancial Decision Bias

susceptibility to financial decision bias, and portions of the
medial PFC are also included in this network (Smith et al.,
2015; Li et al., 2017). The DMN reflects more than an
absence of task engagement (Smith et al., 2015). It also
reflects internal mental representations, such as the gist memory
representations that underlie framing biases (see Reyna and
Huettel, 2014).

DMN ACTIVATION AFFECTS DECISION
BIAS IN YOUNGER ADULTS AND IS
ENHANCED IN OLDER ADULTS

Despite voluminous behavioral and some neurological support, a
growing body of research calls into question the completeness of
the traditional dual-process view of decision making (Gonzalez
et al., 2005; Kruglanski et al., 2006; O’Keefe and Jensen, 2007,
2009; Kühberger and Tanner, 2010; Gigerenzer and Gaissmaier,
2011; Reyna and Brainerd, 2011; Wright et al., 2012, 2013; Mega
et al., 2015; Smith et al., 2015; Van’t Reit et al., 2016; Li et al., 2017;
Seta et al., 2017; Voss et al., 2018). Two recent brain imaging
studies, for example, reported that increased DMN activation

(and/or connectivity) was related to RCFE susceptibility to a

greater extent than reward related processing, contrary to the
predictions of traditional dual-process theories (Smith et al.,

2015; Li et al., 2017). The DMN is comprised, in part, of the
posterior cingulate cortex (PCC), the medial prefrontal cortex

(mPFC) and the inferior parietal lobule (IPL), and has been
associated with both internal/subjective thought processing and
task disengagement (Turner and Spreng, 2015). Note that a
portion of themPFC is included in definitions of the DMN. Thus,
distinct but physically close portions of the mPFC belong to the
DMN, the control network and the emotion/reward network.

In one study which was conducted with younger adults, a task-
based connectivity analysis (i.e., Psychophysiological Interaction
or PPI) revealed that RCFE susceptibility (when participants
received feedback) was associated with increased coupling

between the DMN and a region within the mPFC which is not
part of the DMN (Smith et al., 2015). Resistance to the RCFE also

included activation in the mPFC, but in a different portion and
as part of an Executive Control network (EC) that overlaps with

the FPCN. Thus, distinct portions of the mPFC were associated

with susceptibility and resistance to the RCFE, dependent on
functional connections with the DMN and EC, respectively.

In another study, DMN activation was associated with RCFE
susceptibility while resistance to the RCFE was associated with
neural profiles related to task engagement (Li et al., 2017).
The task engagement related neural profiles were generated

using the online database “Neurosynth” and contained frontal

and parietal regions associated with cognitive control. Other
evidence suggests that DMN activation/connectivity is likely to
be enhanced relative to cognitive control or task engagement
in older adults, further challenging the ability to resist financial
decision bias (Turner and Spreng, 2015).

Importantly, both framing studies found that susceptibility
to financial decision bias was primarily the result of
DMN activation/connectivity and not the result of

activation/connectivity in the amygdala, part of an
emotion/reward network. Accordingly, findings for both
were interpreted as inconsistent with the traditional dual-
process view. In the case of Li et al. (2017), DMN involvement
was interpreted as reflecting task disengagement, with the
implication that decision bias arises from a lack of task
involvement. However, Smith et al. (2015) interpreted DMN
activation as reflecting “interoceptive” attentional processes.
Note that task disengagement—by itself—cannot produce
framing biases per se; simply disengaging produces random
responses. Thus, it is reasonable to conclude that processes in the
DMN, in concert with other brain areas, give rise to a behavioral
framing effect.

DEFAULT-EXECUTIVE COUPLING
HYPOTHESIS OF AGING (DECHA)

A relatively new model known as the Default-Executive
Coupling Hypothesis of Aging (DECHA) is consistent with
some results we have discussed and may help identify a
second mechanism through which decision bias increases in
older adults (Turner and Spreng, 2015). According to the
DECHA, due to prefrontal structural decline, older adults have
a reduced ability to modulate prefrontal activity involving the EC
(primarily dorsolateral regions associated with the FPCN) and
this co-occurs with reduced suppression of the DMN. Reduced
suppression of the DMN produces relatively higher levels of
DMN activation/connectivity during external task completion
than normally observed in younger adults. The end result is
that the EC and DMN tend to be co-activated (i.e., functionally
connected) to a greater extent in older than younger adults,
supporting a greater reliance on internal mental representations
and on experience when making decisions. That is, increased
EC-DMN coupling is seen as reflecting the increased active
incorporation of subjective/internal thoughts into the task-
relevant processing of the EC.

In regard to financial risk taking, increased EC-DMN coupling
may increase the extent to which older adults consider the
subjective, personal consequences of their choices relative to
younger adults. This increased internal processing may increase
the likelihood that older adults consider the gist that “some
money will be lost” or “some money will be saved,” and to
the extent that they value saving some money over saving
none, they would be expected to display risk-aversion when
considering gains and risk-seeking behavior when considering
losses (Reyna and Brainerd, 2011). In addition to enhanced EC-
DMN coupling among older vs. younger adults, the extent of
EC-DMN coupling may be associated with bias susceptibility.
If so, resistance to financial decision bias would be associated
with preserved EC-DMN segregation. Future research is needed
to test these predictions but such findings would have important
theoretical implications as they would suggest that the traditional
dual process view is incomplete or inaccurate regarding the
processes underlying decision making in older adults.

It is important to note, however, that the findings discussed
above were all derived using task-based data; no previous studies
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have reported a link between framing susceptibility and DMN
connectivity in resting-state data. This is an important gap in the
literature given that it is difficult to completely infer the operation
of intrinsic functional networks when a task is being completed.
That is, task-based data reveals activation in areas that are used
for task completion, but it is probably not appropriate to infer
that the same areas would co-activate or form a network when
a different task is completed or in a baseline state when the
subject is not engaged in an active task. This is important because
resting state baseline activity is known to bias or modulate task-
evoked activity (Yeo et al., 2011). Only by examining resting-
state data when no task is required is it possible to infer the
fundamental organization of the brain and measure the extent
to which intrinsic functional networks affect behavior (Yeo et al.,
2011; see also Mesulam, 1990 and Posner et al., 1988, for early
discussions). Thus, the analysis of resting-state data is important
for examining the theoretical neural underpinnings of decision
making. Moreover, detecting susceptibility to decision bias in
resting-state scans would be highly beneficial to society given that
such scans are relatively low-cost and patient friendly, requiring
only that participants lie still for a few minutes.

POTENTIAL INTERACTIONS AND
RECONCILIATION OF FINDINGS

Given the persistence and ubiquity of traditional dual-process
distinctions, despite disconfirmatory evidence, it is important
for future research to reconcile how representations of options,
reward/emotion and cognitive control (or executive processes)
may together significantly affect financial decision bias among
older adults. In aging, PFC decline and enhanced E-RP could
provide one source of upward pressure on the magnitude
of decision bias, and enhanced DMN activation/connectivity
could provide another source of bias. If so, individuals could
display susceptibility to decision bias due to either PFC
decline (with or without changes in E-RP) or enhanced DMN
activation/connectivity, or both.

Limited resources and capacity constraints may restrict
the functioning of these systems and may account for
their interaction (though see Reyna and Brainerd, 1995, for
contradictory evidence across the lifespan). Note that if enhanced
DMN activation/connectivity taps internal thought processing
of gist, this reduces the need for cognitive resources and
inhibition associated with cognitive control regions (Reyna
and Rivers, 2008). Hence, there is less need to regulate E-
RP. Nevertheless, a lack of sufficient deactivation of the DMN
during task performance has been implicated in sub-optimal
or even maladaptive behavioral performance in other contexts
(see Turner and Spreng, 2015). Therefore, it is crucial to test
the applicability of these mechanisms in the context of financial
decision bias in older adults.

In order to test which of the possibilities described above
may better reconcile the traditional dual process and DMN-
centered approaches to financial decision bias in older adults,
one may employ advanced connectivity models (in additional to
traditional activation) for investigating the interaction between

control, reward, emotion, and DMN regions. A straightforward
choice will be either PPI (task-based; Di and Biswal, 2018)
or Pearson’s correlation based functional connectivity (resting
state; Rangaprakash et al., 2017). ICA or other alternative
methods could also be used to characterize resting state
functional connectivity (Rangaprakash et al., 2013; Syed et al.,
2017). However, these models are incapable of identifying
the directionality of interactions. Therefore, we propose using
a data-driven method such as multivariate autoregressive
model coupled with hemodynamic deconvolution to determine
candidate models (Havlicek et al., 2011; Deshpande et al.,
2012; Sathian et al., 2013; Hutcheson et al., 2015; Sreenivasan
et al., 2015; Rangaprakash et al., 2018). This approach has been
used in the context of both task-based and resting state data
(Grant et al., 2014, 2015; Liang et al., 2014, 2016; Wheelock
et al., 2014; Wang et al., 2017; Zhao et al., 2017; Palaniyappan
et al., 2018). Such candidate models can then be tested using
a confirmatory approach such as Dynamic Causal Modeling
(DCM; deterministic DCM for task-based and stochastic/spectral
DCM for resting state; Friston et al., 2003; Razi et al., 2017).
Multiple regression analyses could be used to determine which
models more accurately describe how the brain makes choices
and becomes susceptible to financial decision bias.

CONCLUSION

Age-related declines in brain functioning accelerate after age 60
and may contribute to the tendency of some older adults to be
prone to financial decision bias. Regardless of whether there are
age differences in financial bias, it is unarguable that the impact
of poor choices is greater for older than younger adults because
they are past their peak earning years. Poor economic choices
arising from cognitive changes not only affect individual older
adults, they may also increase societal costs, such as reliance on
federal programs. In any case, understanding the factors that
increase suffering in society, such as financial decision biases
in older adults, is important for all individuals and the society
at large. Traditional dual-process theory is most commonly
used to explain susceptibility to decision bias and has received
considerable empirical support, but recent reports suggest that
this view is either inaccurate or incomplete. While the traditional
view holds that susceptibility to decision bias results from a
failure of PFC-centered cognitive control processes to regulate
reward processing, more recent evidence suggests that DMN
activation/connectivity may play a bigger role by introducing
subjective/internal thoughts into the decision process.

Of course, PFC decline and enhanced DMN
activity/connectivity may both contribute to decision bias
in older adults. We propose a framework to test whether these
factors operate independently or jointly, thereby providing a
means for reconciling competing accounts. The joint influence
of these factors may be observed if increased EC-DMN (or
FPCN-DMN) connectivity among older adults is found to
reduce the resources or capacity available to the EC (or FPCN)
to control emotion/reward network processing, and this
results in increased decision bias. If so, then susceptibility
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to the RCFE should be associated with a failure of the EC
to control reward/emotion processing, but this relationship
should be mediated by enhanced coupling between the EC and
DMN. Future research will be needed to test these predictions,
particularly studies involving resting-state connectivity analyses
that investigate the fundamental organization of the brain and
are not influenced by the particular features of a single task.
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