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It has long been observed in humans that the occurrence of depressive symptoms is
often accompanied by the dysfunction of hypothalamic-pituitary-adrenal (HPA) axis. The
rodent experiments also showed that chronic corticosterone exposure could induce
depression-like phenotype. However, rodents are phylogenetically distant from humans.
In contrast, non-human primates bear stronger similarities with humans, suggesting
research on primates would provide an important complement. For the first time, we
investigated the effects of chronic glucocorticoid exposure on rhesus macaques. Seven
male macaques were selected and randomized to glucocorticoid or vehicle groups,
which were subjected to either prednisolone acetate or saline injections, respectively.
The depression-like behaviors were assessed weekly, and the body weights, HPA axis
reactivity, sucrose solution consumption and monoaminergic neurotransmitters were
further compared between these two groups. The glucocorticoid group was not found
to display more depression-like behaviors than the vehicle group until 7 weeks after
treatment. Chronic glucocorticoid exposure significantly decreased the levels of cortisol
determined from blood (a biomarker for acute HPA axis reactivity) but increased the hair
cortisol concentrations (a reliable indicator of chronic HPA axis reactivity) compared with
controls. The glucocorticoid group was also found to consume less sucrose solution
than controls, a good manifestation of anhedonia. This could be possibly explained
by lower dopamine (DA) levels in cerebrospinal fluid induced by chronic glucocorticoid
treatment. The results presented here indicate that chronic glucocorticoid exposure
could disturb both the acute and chronic HPA axis reactivity, which eventually disturbed
the neurotransmitter system and led monkeys to display depression-like phenotype.
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INTRODUCTION

According to the World Health Organization (WHO), depression
is estimated to become the second leading burden of illness in the
world by 2020 (Mathers and Loncar, 2006). The core symptoms
of depression include low mood and anhedonia (i.e., lack of
interests in pleasurable activities), but it is always accompanied
by a complex cluster of clinical symptoms that may include
weight changes, sleep disturbances, psychomotor agitation or
retardation, loss of energy, feelings of worthlessness, difficulty
concentrating, and/or recurrent thoughts of death (American-
Psychiatric-Association, 2013). In addition, depression can also
cause increased physical illness, decreased social functioning,
and a high mortality rate (Nemeroff, 1998). As is the case with
other affective disorders, depression also has both a genetic
and environmental basis. Twin studies revealed that about
25% of the variance was genetic and environmental factors
accounted for about 75% of the variance (Henn et al., 2004).
Further studies showed that stress was the most important
environmental factor in the development of depression (Paykel,
2003; Charney and Manji, 2004).

The connection between stress and depression was initially
drawn from clinical observations of abnormalities of stress
reactivity in depressed patients, including dysfunction of
hypothalamic–pituitary–adrenal (HPA) axis (Carroll and Curtis,
1976; Carroll et al., 1976b,c), disrupted cortisol rhythmicity
(Sachar et al., 1973; Linkowski et al., 1985) and elevated cortisol
levels in plasma (Carroll et al., 1976a), cerebrospinal fluid
(Träskman et al., 1980), urine (Scott and Dinan, 1998), saliva
(Vedhara et al., 2003), and hair samples (Staufenbiel et al., 2013).
These findings solidly underpin a crucial role of cortisol in the
development of depression. The link between disruption of the
HPA axis and depression also comes from evidence that patients
experiencing elevated cortisol levels as a result of Cushing’s
disease (Kelly et al., 1983; Sonino et al., 1998) or synthetic
glucocorticoid therapy (Brown and Suppes, 1998; Antonijevic
and Steiger, 2003; Brown et al., 2004) suffer from depressive
episodes. Moreover, some effective antidepressant drugs were
found to act on the function of glucocorticoid receptors (GR) to
restore the function of HPA axis (Pariante et al., 2001; Okuyama-
Tamura et al., 2003; Pariante et al., 2003).

Although dysfunction of the HPA axis has been verified
to be closely related to the development of depression,
it is still unknown that whether depression promotes
dysfunction of the HPA axis or vice versa. In order to
elucidate the causal relationship between them, animal
models were developed. Among numerous animal models
that currently exist, those involving repeated injection are
the most promising as this paradigm could provide control
over increases in circulating glucocorticoids to manipulate
the function of HPA axis (Johnson et al., 2006), which
cannot be achieved with other administration methods
(e.g., corticosterone pellet implantation or corticosterone in
drinking water).

However, previous animal studies involving glucocorticoids
are mostly based on rodents, which may pose a major challenge.
Rodent brain is phylogenetically distant from human brain

(Piper et al., 2011), which makes them differ greatly from
humans in anatomy, neurophysiology, function, and behavioral
performance and thus limits the degree to which insights derived
from the rodents can be applied to understanding human
depression (Belmonte et al., 2015). There is another obvious
limitation for rodent models that they cannot exhibit the core
symptoms of depression (low mood and anhedonia) because
of relatively simple brain structure (Song and Leonard, 2005),
and they secrete corticosterone in response to stress (Wasser
et al., 2000). Compared with cortisol, which is the primary
glucocorticoid in both primates and humans, corticosterone has
only weak glucocorticoid and mineralocorticoid potencies and
is important mainly as an intermediate in the steroidogenic
pathway from pregnenolone to aldosterone. By contrast, non-
human primates share a common ancestry with humans,
and bear strong similarities to humans, such as intricacy of
brain organization, details of reproductive biology, complex
cognitive capabilities, and great social complexity (Belmonte
et al., 2015). As with human beings, non-human primates
produce cortisol to cope with stress and can display core
depression-like symptoms after exposed to chronic mild
stress (Qin et al., 2015a). But what’s even more crucial is
that cortisol hyper-secretion can accelerate the occurrence
of depressive behaviors in monkeys experiencing more stress
(Qin et al., 2016).

Epidemiological studies have indicated that depression occurs
nearly twice as frequently in females than in males, which
can be ascribed to fluctuations in estrogen associated with
reproductive function (Garde, 2007). Therefore, in order to
avoid the disturbances of estrogen, male rhesus macaques
(Macaca mulatta) were selected in this study and were injected
repeatedly with synthetic glucocorticoid to characterize the
behavioral and neurobiological consequences of prolonged
glucocorticoid treatment, and to further provide insights
into the biological mechanisms underlying the link between
glucocorticoid and depression.

MATERIALS AND METHODS

Animals
Seven male rhesus macaques, aged 8–10 (8.60 ± 0.60) years
old, were randomly selected from Kunming Primate Research
Center of the Chinese Academy of Sciences. The animals
were singly housed (0.80 × 0.80 × 0.80 m) in a controlled
environment (temperature: 22 ± 1◦C; humidity: 50 ± 5% RH),
with 12 h light/12 h dark cycle (lights on at 07:00 h and
lights off at 19:00 h). All monkeys were given commercial
monkey biscuits twice a day and were fed with fruits and
vegetables once daily. The animals were accommodated in
their cages for at least 3 months prior to initial manipulation,
and all efforts were made to minimize the monkeys’ suffering.
For example, hair samples were taken from the back of the
monkeys’ neck using an electric-razor without anesthetic and
no animals were sacrificed in this study. Routine veterinary care
was provided throughout the experiment by professional keepers
and veterinarians.
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All animal procedures were approved by the National Animal
Research Authority (P.R. China) and the Institutional Animal
Care and Use Committee (IACUC) of Kunming Institute of
Zoology, Chinese Academy of Sciences.

Experimental Design
Animals were firstly habituated to experimental procedures to
minimize the influences of stress, and then were randomized
to glucocorticoid or vehicle group, which was subjected to
either prednisolone acetate (3 monkeys) or saline (4 monkeys)
treatment. Body weights, HPA axis reactivity and monoaminergic
neurotransmitters as well as depression-like behaviors and
anhedonia were assessed to analyze the effects of chronic
glucocorticoid exposure on monkeys.

Injection of Prednisolone Acetate and
Saline
After 3 months of acclimatization in single cages, the monkeys
were injected intramuscularly with prednisolone acetate,
which is a synthetic glucocorticoid. The injections (State
Medical Permitment Number: H33020824, Drug Specifications:
25 mg/ml) were purchased from Zhejiang Xianju Pharmaceutical
Co., Ltd. (China). According to previous studies, the injection
dose for rats was 40 mg/kg and this dose reliably induced
depression-like behavior in the forced swim test (Kalynchuk
et al., 2004; Gregus et al., 2005; Johnson et al., 2006). Using
the BSA (body surface area) method, the injection dose
for monkeys was calculated (15.89 mg/kg). Saline was used
as solvent of prednisolone acetate injection in this study,
because it is less painful than sterile water for injection. As
a result, the vehicle group was injected with equivalent does
of saline. Throughout the experiment, all treatments were
performed at 10:00 a.m.

Blood and Hair Samples Collection
In order to assess the acute HPA axis reactivity, each monkey
was sampled 2 ml of blood. Each cage that monkeys lived
was equipped with one locking push-pull device and the
restraint could be achieved by reducing volumes of the cage.
After 15 min of restraint, the blood was sampled from
the femoral vein by pulling out the monkey’s leg, with the
restraint being the acute stressor. The blood samples were
then put into a heparin lithium-treated vacuum collection
tube. However, the stress of restraint, blood collection, and
the limitation on the volume of blood that could be safely
drawn from each monkey, precluded the possibility of repeated
sampling of the same monkey. As a result, three blood samples
were collected for each monkey every 14 days, with the
first, second and third sample obtained on 14, 28, and 42
days after treatment, respectively. As there was an obvious
rhythmic change in blood cortisol, all blood samples were
obtained at the same time of the day (between 10:30 a.m.
and 11:30 a.m.).

Hair samples from all monkeys were collected at the same
time of the day (between 10:30 a.m. and 11:30 a.m.) to assess
the chronic HPA axis reactivity. Before treatment, each monkey

was captured by an experienced technician and taken out of the
cage for hair sampling. The monkey was manually restrained,
and the hair on the back of each animal’s neck was shaved with
an electric razor without the use of anesthetic, with particular
attention paid by technicians not to break or damage the skin.
After completion of treatment, newly grown hair was shaved
as previously described and the hair samples were placed into
a small pouch of aluminum foil for protection (Wennig, 2000;
Davenport et al., 2006).

Measurement of Cortisol From Blood
and Hair Samples
The blood samples were centrifuged at 8,000 × g for 10 min to
isolate plasma, and the hair samples were ground to powder to
break up the hair’s protein matrix and to increase the surface area
for the extraction of cortisol (Davenport et al., 2006; Feng et al.,
2011; Qin et al., 2013, 2015a,b). The cortisol concentration in each
blood and hair sample was quantified with a commercial cortisol
radioimmunoassay (RIA) kit. In order to minimize the cross-
reaction for prednisolone, the cortisol Kit “TFB” (Immunotech,
Tokyo, Japan) was used because of its lowest cross-reaction
(2.5%) for prednisolone (Horie et al., 2007). The cortisol RIA
was performed in triplicate under a double-blind design at
the Department of Nuclear Medicine of the Second Affiliated
Hospital of the Kunming Medical College. The limit of detection
for the cortisol assay was 0.5 µg/dL, and the intra-assay coefficient
of variability (CV) for this assay was 2.08%. All the samples were
assayed at the same time using the same kit.

Cerebrospinal Fluid Sampling and
Measurement of Monoaminergic
Neurotransmitters
Before and after the treatment, all monkeys were sampled
cerebrospinal fluid (CSF) under ketamine anesthesia (15 mg/kg)
within 10–20 min after their anesthesia. Using a spinal needle,
the CSF was obtained through a lumbar puncture. During the
procedure, the monkey was positioned in lateral recumbency
and a needle was inserted usually between the 3rd and
4th lumbar vertebrae. The CSF fluid was collected into a
polypropylene tube and immediately frozen in liquid nitrogen.
For purposes of comparison, CSF samples were collected from
the same sites. All the collected CSF samples were stored at
−80◦C until assayed.

Before analysis, CSF sample was centrifuged at 4◦C in
a high speed freezing centrifuge at 8,000 × g for 10 min.
Homovanillic acid (HVA), 5-hydroxyindole acetic acid (5-HIAA)
and dopamine (DA) concentrations in the supernatant was
quantified by high performance liquid chromatography (HPLC)
with electrochemical detection (Yang and Beal, 2011). The CSF
samples from a given subject obtained before and after treatment
were paired and run in a single assay.

The HPLC system was composed of an Antec LC-110
solvent delivery module, and an Antec Autoinjector AS-110.
The separation of HVA and 5-HIAA was performed using
an Antec ALF-115 column (C18, 3 µm, 150 × 1 mm). The
mobile phase comprising 50 mM monobasic sodium phosphoric
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acid, 8 mM Sodium chloride, 0.1 mM EDTA, 10.0% (v/v)
methanol, 500 mg/L OSA with the final pH adjusted to 6.00 with
phosphoric acid, was maintained at a flow rate of 40 µl/min.
The separation of DA was performed using an Antec ALF-105
column (C18, 3 µm, 50 × 1 mm). The mobile phase comprising
50 mM phosphoric acid, 50 mM Citric acid, 8 mM Sodium
chloride, 0.1 mM EDTA, 12.5% (v/v) methanol, 500 mg/L OSA
with the final pH adjusted to 3.25 with phosphoric acid, was
maintained at a flow rate of 40 µl/min. The optimal electrical
potential settings were: E1 −700 mV and E2 +700 mV. For
electrochemical detection, an Antec Decade-11 detector was
used. Quantification of the detector signals was achieved by
means of peak area integration. Data represent the average of at
least two analysis.

Behavioral Sampling and Analysis
Animal behaviors were video-recorded using a focal follow
technique (Altmann, 1974). Before the experiment, fourteen
1 h recordings were collected for each monkey, 1 h each day.
Specifically, they were, respectively, collected from 7:00 a.m.
to 8:00 a.m., 8:00 a.m. to 9:00 a.m., 9:00 a.m. to 10:00 a.m.,
10:00 a.m. to 11:00 a.m., 11:00 a.m. to 12:00 p.m., 12:00 p.m.
to 13:00 p.m., 13:00 p.m. to 14:00 p.m., 14:00 p.m. to 15:00
p.m., 15:00 p.m. to 16:00 p.m., 16:00 p.m. to 17:00 p.m., 17:00
p.m. to 18:00 p.m., 18:00 p.m. to 19:00 p.m., 9:00 a.m. to
10:00 a.m., and 14:00 p.m. to 15:00 p.m. After the start of
the experiment, the monkeys’ depression-like behaviors were
assessed weekly. Once the monkey was observed to become
obviously depressed, the treatment was finished and another
fourteen 1 h recordings were collected for each monkey at the
same time as before.

Each video-recording was scored simultaneously by three
observers unaware of experimental design. During the scoring,
the observers calculated the duration of specific behaviors
by manually starting and stopping the video, and they all
agreed on the definition of observed behaviors, including
depression-like huddling behavior, environmental exploration,
locomotion, stereotypic behaviors and self-grooming. All these
behaviors were quantified as frequencies and seconds per
hour. The inter-rater correlation coefficient was found to
be > 0.90 through SPSS statistical analysis and there were
no significant changes (Version 19.0 for the PC) after a
period of training.

Depression-like huddling behavior was defined as a fetal-
like, self-enclosed posture with the head at or below the
shoulders during the waking state (Harlow and Suomi, 1971;
Shively et al., 2005). Environmental exploration included tactile
exploration of the cage or environments and oral exploration
of the cage or environments (Davenport et al., 2008). The
locomotion was divided into spontaneous locomotion (defined
as any voluntary movement within the cage, including walking,
running, jumping and climbing) and reactive locomotion
(defined as the locomotion caused by external stimuli) (Rogers
et al., 2008). The stereotypic behaviors were defined as
frequent, repetitive, and constant postures or behaviors that
appear to serve no purpose, including pacing, saluting,
somersaulting, weaving and head tossing (Hugo et al., 2003).

Self-grooming included any picking, scraping, spreading, mouth
picking, or licking of the hair on monkey’s own body
(Parks and Novak, 1993).

Sucrose Preference Test
Anhedonia is a core symptom of depression (Gaillard et al.,
2013), and can be evaluated in rhesus monkeys using the
sucrose preference test (Paul et al., 2000). During the period
of acclimatization, all animals were adapted to a 23 h/day
water restriction schedule, and had access to water in two
identical bottles for 1 h per day. During the test period, animals
were supplied with 1.5% sucrose solution (SIGMA, Aldrich,
China, dissolved in tap water) in one bottle, and tap water
in the other one. Bottle positions were alternated daily to
control for position preference, and the bottles were refilled
30 min after the start of the access period to accommodate the
increased consumption. The sucrose concentration was selected
based on previous experiments with rhesus monkeys (Paul
et al., 2000). The test schedule included 14 days of continuous
exposure to sucrose solution and tap water, corresponding to
the behavioral sampling period. The test occurred between 9:00
a.m. and 10:00 a.m. The sucrose preference was calculated
as ml consumed per kg body weight because the monkey’s
water consumption was correlated with its body weight
(Paul et al., 2000).

Statistical Analysis
Data analysis was conducted with the SPSS software package
(SPSS Inc., Chicago, IL, United States). The normality of the
data was determined using the Kolmogorov-Smirnov test, the
results of which demonstrate that they are normally distributed
(all P-values > 0.05). And the data were further analyzed in
separate 2 (groups: predonisolone versus vehicle)× 3 (time: 14th
day, 28th day, and 42nd day) or 2 (time: pre-treatment and
post-treatment) repeated-measures ANOVAs, with time being
the repeated-measure. Further post hoc pairwise comparisons
(Bonferroni correction) were also made. The alpha level was set
at P = 0.05, and all P-values were generated using two-sided
tests. All the data were presented as the mean ± SEM (standard
error of the mean).

RESULTS

Body Weights
As shown in Figure 1A, no significant changes over time were
observed in monkeys’ body weights during the experiment
(F = 3.434, P = 0.073, ηp

2 = 0.407) and there were no
significant differences between the two groups (F = 1.872,
P = 0.230, ηp

2 = 0.272), including on the 14th day (F = 1.701,
P = 0.249), the 28th day (F = 2.219, P = 0.197) and
the 42nd day (F = 1.482, P = 0.278) after treatment. The
group by time interaction was also non-significant (F = 0.626,
P = 0.554, ηp

2 = 0.111). Further post hoc pairwise comparisons
(Bonferroni correction) showed no significant differences (all
P-values > 0.05).
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FIGURE 1 | Physiological changes induced by chronic glucocorticoid exposure. Mean (±SEM) physiological changes, including body weights (A) and plasma
cortisol (B), are depicted for the glucocorticoid and vehicle group on 14th day, 28th day, and 42nd day post-treatment. Chronic glucocorticoid exposure induced no
significant changes in monkeys’ body weights throughout the experiment, but the glucocorticoid group exhibited attenuated cortisol reactivity to the acute stressor
than the vehicle group. Before and after treatment, the hair cortisol (C) and CSF DA (D) were also measured to assess the chronic stress reactivity and
neurotransmitter function. The glucocorticoid group displayed exaggerated cortisol reactivity and neurotransmitter deficiency compared with the vehicle group.

Acute Stress Reactivity
The glucocorticoid group exhibited attenuated cortisol reactivity
to the acute stressor compared with the vehicle group (Figure 1B,
F = 8.419, P = 0.034, ηp

2 = 0.627), and on the 42nd day
after treatment, the cortisol level was decreased significantly
(Figure 1B, F = 30.034, P = 0.003). Further post hoc pairwise
comparisons (Bonferroni correction) showed no significant
differences (all P-values > 0.05).

Chronic Stress Reactivity
Although there was no significant difference between the
two groups in cortisol reactivity to the chronic stress
(Figure 1C, F = 1.353, P = 0.297, ηp

2 = 0.213), the
glucocorticoid group displayed exaggerated cortisol reactivity
as group by time interaction was significant (F = 9.678,
P = 0.027, ηp

2 = 0.659).

Monoaminergic Transmitters
During the treatment, the monkeys displayed significant
changes over time in the level of dopamine (Figure 1D,
F = 24.092, P = 0.004, ηp

2 = 0.828), and the group by time
interaction was also significant (Figure 1D, F = 15.693,
P = 0.011, ηp

2 = 0.758). The level of dopamine was higher
in the vehicle group than that of the glucocorticoid group

on the 42nd day after treatment (Figure 1D, F = 8.862,
P = 0.031). While, no significant differences were found in
metabolites of the other two monoaminergic neurotransmitters,
including HVA (F = 1.334, P = 0.300, ηp

2 = 0.211; vehicle
group, pre-treatment versus post-treatment: 160.085 ± 23.278
versus 178.031 ± 41.083; glucocorticoid group, pre-
treatment versus post-treatment: 121.236 ± 59.749 versus
95.602 ± 24.181) and 5-HIAA (F = 0.138, P = 0.726,
ηp

2 = 0.027; vehicle group, pre-treatment versus post-treatment:
61.026 ± 4.987 versus 64.064 ± 5.417; glucocorticoid group,
pre-treatment versus post-treatment: 76.099 ± 16.593 versus
87.030± 16.774).

Depression-Like Behavior
During the experiment, the monkeys’ huddling behaviors
exhibited significant changes over time, including frequencies
(Figure 2A, F = 6.368, P = 0.053, ηp

2 = 0.560) and durations
(Figure 2B, F = 53.476, P = 0.001, ηp

2 = 0.914), and the
group by time interactions were also significant in frequencies
(Figure 2A, F = 7.003, P = 0.046, ηp

2 = 0.583) and durations
(Figure 2B, F = 68.111, P = 0.0004, ηp

2 = 0.932). The
differences between the two groups were also found to be
significant (frequencies: F = 14.691, P = 0.012, ηp

2 = 0.746;
and durations: F = 20.680, P = 0.006, ηp

2 = 0.805). While
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FIGURE 2 | Depression-like behaviors. The monkeys’ depression-like behaviors, including the huddling behavior (A: frequencies per hour and B: seconds per hour)
measuring depressed mood, and sucrose solution intake (C) assessing anhedonia, were recorded for 14 consecutive days and the changes before and after
treatment were compared between the two groups. Chronic glucocorticoid exposure induced significant changes in external behavioral phenotype, such as
increases in the huddling behavior and decreases in sucrose solution intake, which, respectively, represented two core symptoms of depression.

the frequencies and durations of other behaviors, including
environmental exploration, spontaneous locomotion, passive
locomotion, stereotyped behaviors and self-grooming, did not
display significant changes (all P-values > 0.05) except for
significant changes over time in durations of reactive locomotion
(F = 12.400, P = 0.017, ηp

2 = 0.713).

Anhedonia
There were no significant changes over time in the preference of
sucrose water (Figure 2C, F = 0.102, P = 0.763, ηp

2 = 0.020),
but the group by time interaction was significant (F = 10.610,
P = 0.023, ηp

2 = 0.680) with the glucocorticoid group consuming
less sucrose solution than the vehicle group (F = 9.640, P = 0.027).
However, no significant changes were found in the consumption
of tap water (all P-values > 0.05).

Relations of HPA Reactivity and
Neurotransmitters to Depression-Like
Behaviors
There were no significant correlations between HPA axis
reactivity and the levels of dopamine, including the acute
stress reactivity (Pearson Correlation Coefficient = 0.470,
P = 0.288), and chronic stress reactivity (Pearson
Correlation Coefficient = 0.704, P = 0.077). Further
analysis revealed that the acute stress reactivity was not
related to the chronic stress reactivity (Pearson Correlation
Coefficient = 0.328, P = 0.472).

Although plasma cortisol was not related to the frequencies
of huddling behavior (Figure 3A, Pearson Correlation
Coefficient = −0.516, P = 0.059), it was strongly related
to the durations of huddling behavior (Figure 3B, Pearson
Correlation Coefficient = −0.553, P = 0.040). Moreover, the
plasma cortisol level showed a strong negative correlation
with the severity of anhedonia symptoms (Figure 3C, Pearson
Correlation Coefficient = 0.699, P = 0.005).

Further analysis revealed a moderate positive correlation
between the huddling behavior and the cortisol reactivity to the
chronic stressor as quantified by hair cortisol (Figure 3D, Pearson
Correlation Coefficient = 0.582, P = 0.029). The hair cortisol
was not found to be related to huddle frequencies (Figure 3E,

Pearson Correlation Coefficient = 0.303, P = 0.292) and correlated
with sucrose solution intake (Figure 3F, Pearson Correlation
Coefficient =−0.233, P = 0.422), but these correlations displayed
weak tendencies.

As analyzed above, the monkeys’ depression-like
phenotype was not only caused by abnormal HPA axis
reactivity, including both the acute and chronic stress
reactivity, but also was related to neurotransmitter
deficiency, such as the lower level of dopamine in CSF
(Figure 3G, huddle frequencies: Pearson Correlation
Coefficient = −0.547, P = 0.043; Figure 3H, huddle durations:
Pearson Correlation Coefficient = −0.670, P = 0.009;
and Figure 3I, sucrose water intake: Pearson Correlation
Coefficient = 0.422, P = 0.133).

DISCUSSION

It has long been recognized that glucocorticoid plays a
crucial role in mediating the pathogenic effects of stress
on depression, but clarifying mechanisms are still dependent
upon the development of validated animal models. The
majority of studies have been focused on rodents, and it has
been consistently reported that chronic corticosterone (CORT)
injections can induce depressive behavioral manifestations
(Marks et al., 2009; Sterner and Kalynchuk, 2010; Xu et al.,
2011). However, it is controversial that whether the results
obtained from rodents can serve humans because rats and
mice lack the enzyme 17 alpha-hydroxylase in their adrenal
cortices, so that they produce CORT (Van Weerden et al.,
1992). However, the CORT is of minor importance in
humans, except in the very rare case of congenital adrenal
hyperplasia due to 17 alpha-hydroxylase deficiency (D’armiento
et al., 1983). This makes rodents dubious for experiments
on the HPA axis, perhaps also for studying the relationship
between glucocorticoid and human depression. In humans
and other primates, cortisol is the most abundant and
naturally occurring glucocorticoid, suggesting research on
primates will provide a critical complement on previous
rodents’ studies. That is exactly why the macaques were
chosen for this study.
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FIGURE 3 | Relations of stress reactivity and dopamine to depression-like behaviors. The depression-like behaviors, including huddling behavior and anhedonia,
were caused by attenuated acute stress reactivity (A–C), exaggerated chronic stress reactivity (D–F), and neurotransmitter deficiency (G–I).

To our knowledge, this is the first study using macaques
to clarify the mechanisms underlying the causal relationship
between glucocorticoid and depression. It was found that
chronic glucocorticoid treatment can inflict severe damage on
the monkeys’ responses to stress, including both the acute
and chronic HPA reactivity. When an organism undergoes
stress, cortisol acts to mobilize energy stores and modulate
the immune system, preparing it for fighting or fleeing. Blood
samples provide a measurement of the cortisol secretion at the
time of stress experiencing, and blood cortisol can therefore be
used to test the acute HPA reactivity (Maidana et al., 2013).
Hair of monkeys grows at an average speed of 1 cm/month,
and the cortisol is constantly deposited in the growing hair
shaft. This makes cortisol measurement from newly grown
hair capturing systemic cortisol response over the period of
hair growth, and therefore can serve as a biological marker
for the chronic HPA reactivity (Russell et al., 2012). In
this study, prolonged glucocorticoid exposure induced blunted
cortisol reactivity in response to acute restraint stress but
an exaggerated cortisol response to chronic stress experienced
during the treatment. This indicated both the acute and
chronic HPA reactivity were disturbed as a result of chronic
glucocorticoid treatment.

The hyper-secreted cortisol can cross the blood brain barrier
to rob the brain of dopamine, a neurotransmitter that plays a
critical role in the subjective pleasure associated with positive
rewards (Wise, 2008). This is also evidenced by our study
that the monkeys exposed to chronic glucocorticoid treatment
have decreased levels of dopamine in the cerebrospinal fluid,
which induces them showing less of a preference for sucrose
solution, a good manifestation of anhedonia. Postmortem
investigations, especially the subjects with severe depression, have
also demonstrated reduced concentrations of dopamine both
in the cerebrospinal fluid and in brain regions that mediate
mood and motivation (Dunlop and Nemeroff, 2007). It has
also been found that drugs decreasing the dopamine level or
the dopamine receptor antagonist can increase the duration
of huddling behavior in monkeys (McKinney et al., 1971;
Rosenzweig-Lipson et al., 1994).

Chronic glucocorticoid treatment caused severe damages on
stress reactivity and neurotransmitter systems, which induced
significant changes in external behavioral phenotype, such
as increases in the huddling behavior reflecting depressed
mood, and decreases in sucrose solution consumption reflecting
anhedonia. These are two core symptoms of human depression.
However, this behavioral depression was not induced by
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decreases in exploration, locomotion, stereotyping and self-
grooming, as these behaviors did not change significantly
throughout the treatment. This was also not the result of poor
health caused by glucocorticoid treatment as no significant
changes over time were observed in monkeys’ body weights.
Although systemic glucocorticoids play an integral role in
the management of many inflammatory and immunologic
conditions, there are side effects. Prolonged glucocorticoids
treatment commonly causes weight gain and redistribution of
adipose tissue. The body weights of monkeys exhibited slight
increases, but no significant changes were observed. This is
possibly because the glucocorticoid treatment was relatively short
in duration (only 7 weeks). The monkeys’ depression had become
obvious before a significant weight gain. Further correlation
analysis showed that this behavioral depression was caused by
abnormal HPA axis reactivity, including both acute and chronic
stress reactivity, and it was also related to neurotransmitter
deficiency, such as a decreased level of dopamine in CSF.

The behavioral alterations were not significant until 6 weeks
after the first daily treatment, and the data justified the conclusion
that prolonged glucocorticoid exposure can induce depression-
like phenotype in rhesus macaques. The application of this
primate model can help clarifying the role of glucocorticoid
in stress-induced depressive disorders, as well as screening for

novel therapeutic targets and specific preventive strategies for
hypercortisolemia-induced depression.
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