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The functional magnetic resonance imaging (fMRI) data and brain network analysis

have been widely applied to automated diagnosis of neural diseases or brain diseases.

The fMRI time series data not only contains specific numerical information, but also

involves rich dynamic temporal information, those previous graph theory approaches

focus on local topology structure and lose contextual information and global fluctuation

information. Here, we propose a novel multi-scale functional connectivity for identifying

the brain disease via fMRI data. We calculate the discrete probability distribution of

co-activity between different brain regions with various intervals. Also, we consider

nonsynchronous information under different time dimensions, for analyzing the contextual

information in the fMRI data. Therefore, our proposed method can be applied to more

disease diagnosis and other fMRI data, particularly automated diagnosis of neural

diseases or brain diseases. Finally, we adopt Support Vector Machine (SVM) on our

proposed time-series features, which can be applied to do the brain disease classification

and even deal with all time-series data. Experimental results verify the effectiveness of our

proposed method compared with other outstanding approaches on Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset and Major Depressive Disorder (MDD) dataset.

Therefore, we provide an efficient system via a novel perspective to study brain networks.

Keywords: functional magnetic resonance imaging, multi-scale time-series, Alzheimer’s disease, major

depressive disorder, functional connection

1. INTRODUCTION

The functional Magnetic Resonance Imaging (fMRI) technique provides an opportunity to
quantify functional integration via measuring the correlation between intrinsic Blood-Oxygen-
Level-Dependent (BOLD) signal fluctuations of distributed brain regions at rest. The BOLD signal
is sensitive to spontaneous neural activity within brain regions, thus it can be used as an efficient
and noninvasive way for investigating neurological disorders at the whole-brain level. Functional
connectivity (FC), defined as the temporal correlation of BOLD signals in different brain regions,
can exhibit how structurally segregated and functionally specialized brain regions interact with
each other. Therefore, the brain network analysis using fMRI data will provide great advantages to
automated diagnosis of neural diseases or brain diseases.

Some researchers model the FC information as a specific network by using graph theoretic
techniques. Differences between normal and disrupted FC networks caused by pathological
attacks provide important biomarkers to understand pathological underpinnings, in terms of
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the topological structure and connection strength. The network
analysis has been becoming an increasingly useful tool for
understanding the cerebral working mechanism and mining
sensitive biomarkers for neural or mental diseases. Zeng
et al. (2018) propose a new switching delayed particle swarm
optimization (SDPSO) algorithm is proposed to optimize the
SVM parameters. Using graph theories, the brain network
analysis provides an effective solution to concisely quantify the
connectivity properties of brain networks, where each node
denotes a particular anatomical element or a brain region, and
each edge represents the relationship between a pair of nodes,
such as anatomical, functional or effective connections (Friston,
2011). The anatomical connection typically corresponds to white
matter tracts betweenmany pairs of brain regions. The functional
connection corresponds to magnitudes of temporal correlations
in activity and occurs between some pairs of anatomically
unconnected regions, which may reflect linear or nonlinear
interactions, as well as interactions within different time scales
(Zhou et al., 2009). The effective connection represents direct
or indirect causal influences of one region on another region,
which may be estimated from observed perturbations whether
synchronous or asynchronous (Friston et al., 2003). As a
brain network analysis approach, the graph theory offers two
important advantages (Tijms et al., 2013). One is that it provides
quantitative measurement, which can preserve the connectivity
information in the network and thus reflect the segregated
and integrated nature of local brain activity. The other is that,
it provides a general framework for comparing heterogeneous
graphs constructed by different types of data, such as anatomical
and functional data.

However, these graph theory approaches have many
drawbacks that must be overcome. First, the graph theory has
many limitations, on the one hand, common graph theory
features such as edge weights, path lengths and clustering
coefficients (Rubinov and Sporns, 2010; Chen et al., 2011)
usually focus on local topology structure and lose their global
topology characteristics (Sanz-Arigita et al., 2010; Jie et al.,
2018); on the other hand, each node in the brain networks
is uniquely corresponding to a specific brain region, mostly
ignoring the label information of each node (Jie et al., 2018).
Second. the functional connectivity is more sensitive to local
information rather than the global topology, but some recent
studies (Hutchison et al., 2013; Leonardi et al., 2013; Zeng
et al., 2013, 2014; Allen et al., 2014) indicate that the FC
network contains rich dynamic temporal information. To
be more concrete, for each brain region, a sliding window
approach is performed to generate a set of BOLD subseries
on schizophrenia disease diagnosis (Damaraju et al., 2014)
and others (Chen et al., 2016; Wee et al., 2016). Third, the
raw functional data is underutilized, building brain network
from raw data may lose the temporal or context information.
For example, Pearson’s Correlation Coefficient (PCC) is the
simplest and most commonly scheme in functional connectivity
estimation, which is the covariance of the two variables
divided by the product of their standard deviations. Clearly,
according to the mathematical definition, the PCC value is
context-independent or order-independent in time series,

not considering nonsynchronous information under different
time dimensions.

In view of the above, the fMRI time series not only contains
specific numerical information, but also involves contextual
information and global fluctuation information. In this paper,
we propose a novel time-series model based on Jensen-Shannon
divergence for identifying the brain disease via fMRI data, and
the flow chart is shown in Figure 1. First, we calculate the
discrete probability distribution of co-activity between different
brain regions with various intervals in multi-scale time series
data. Second, the contextual information is taken into account
in analyzing the correlation and causality among the fMRI
data. Third, we design a novel method based on time-series to
measure the similarity between two object co-activity intensity of
brain functional connectivity. Finally, we adopt Support Vector
Machine (SVM) on our proposed time-series features, which can
be applied to do the brain disease classification and even deal with
all time-series data. Experimental results verify the effectiveness
of our proposed method compared with other outstanding
approaches on Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset and Major Depressive Disorder (MDD) dataset.
The rest of this paper is organized as follows. We start by a brief
review of dataset and pre-processing. Then, we formulate the
problem and present our proposedmethod. Finally, experimental
results are reported, followed by the conclusion of this work.

2. MATERIALS AND METHODS

In this section, we introduce the flow of our method. First,
we preprocessed the original data, removed the noise from the
original data, and segmented the fMRI image data through the
brain region template. Next, we extract information or features
from the perspective of functional connection between brain
regions. To overcome the shortcoming of traditional Pearson
Correlation Coefficient (PCC) methods, we propose a novel
framework for feature extraction of brain functional connection.
Then, through feature selection, we use the classification model
for predicting brain disease. Finally, we discuss parameter
settings in the model.

2.1. Dataset
We carry out experiments on two different datasets. One is
a public Alzheimer’s Disease Neuroimaging Initiative database
(Jack et al., 2010), and another one is a volunteer experiment
of Major Depressive Disorder (Geng et al., 2018). In the data
pre-processing, we deal with the raw data by a widely used
software package (SPM12), and then divide one brain into 116
brain regions.

2.1.1. ADNI
In Alzheimer’s Disease Neuroimaging Initiative database, we
emply a total of 169 subjects, including 87 Alzheimer’s patients
(49 females and 38 males) and 82 normal controls (46 females
and 36 males). We download the ADNI data from website http://
adni.loni.usc.edu/.
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FIGURE 1 | The framework of our proposed multi-scale time-series model for

brain diseases diagnosis.

2.1.2. MDD
In volunteer experiment, we use a total of 60 subjects, including
31 volunteers with Major Depressive Disorder (MDD) (22
females and 8 males, aged 60.5 ± 11.2 years, range 25 − 65
years) and 29 healthy volunteers (18 females and 11 males, aged
50.1 ± 10.6 years, range 25 − 65 years). Those major depressive
disorder subjects without comorbidity had a minimum duration
of illness more than 3 months. Each participant provided written
informed consent and the study was conducted in accordance
with the local Ethics Committee.

2.2. Pre-processing
We perform image pre-processing for the fMRI data using
a standard pipeline, carried out via the statistical parametric
mapping (SPM12, www.fil.ion.ucl.ac.uk/spm/software/spm12/)
software package on Matlab. The data pre-processing procedure
includes slice timing, realign, segment, normalization and band-
pass filtered. For more detailed data pre-processing procedure,
please refer to website.

The whole brain of each subject in fMRI space is parcellated
into 116 brain regions of interest (ROI) according to the
Automated Anatomical Labeling (AAL) template. This atlas
divided the brain into 78 cortical regions, 26 cerebellar regions
and 12 subcortical regions according to anatomy, details in
literature (Tzourio-Mazoyer et al., 2002). For each of the
116 ROIs, the mean time series was calculated by averaging
the Blood-Oxygen-Level-Dependent (BOLD) signals among all
voxels within the specifically ROI. There exist many similar
templates such as Brainnetome template (Fan et al., 2016) and
Harvard-Oxford template.

2.3. Feature Extraction
After pre-processing, how to excavate the location and cause
of lesions is the focus of our research and attention. The most
commonmethod is to calculate the correlation between two brain
regions through Pearson Correlation Coefficient (PCC), and
analyze lesions by observing the changes of correlation. However,
the PCC value is context-independent or order-independent, that
is not considering nonsynchronous information at different time
intervals. Here, we first give a basic introduction to PCC, and
then elaborate on our approach.

2.3.1. Pearson Correlation Coefficient
Pearson’s correlation coefficient (PCC) is the simplest and most
commonly scheme in functional connectivity estimation. For any
two brain regions, the coordination degree of blood-oxygen-level
dependent fluctuation is calculated as the functional connection
strength between these two brain regions. Typically, in the case
of the AAL template, this step extracts the 6,670-dimensional
features. Mathematical definition is the covariance of the two
variables divided by the product of their standard deviations,
as follows:

PCCX,Y =
E[(X − µX)(Y − µY )]

σXσY
(1)

Clearly, according to the formula, the value of the Pearson’s
correlation coefficient is context-independent or order-
independent in time series, which it only limits alignment at the
same time, so information about the time dimension or context
is missing.

2.3.2. Multi-Scale Functional Connectivity of Brain

Regions
We extract the discrete probability distribution of co-activity
in time series data. First, we use the function φ(·) to evaluate
temporal dynamic property of the time series data. In addition,
we convert φ(·) to g(·), defined as follows:

φ(tk1i1 ,j1 , t
k2
i2 ,j2

) = g(fϕ(t
k1
i1 ,j1

), fϕ(t
k2
i2 ,j2

)) (2)

where f (·) represents a mapping function that makes use of prior
knowledge in order to map the original time series into another
specific form, g(·) represents the function to evaluate temporal
information after the mapping operation.
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We utilize the prior knowledge in order to map the original
multivariate time series data into another specific form, such as a
mapping of numeric, state and character. The mapping function
is defined as follows:

fϕ(Ak) = fϕ{T
k
1 ,T

k
2 , · · · ,T

k
i , · · · ,T

k
N}

= {fϕ(T
k
1), fϕ(T

k
2), · · · , fϕ(T

k
N)}

(3)

where Ak denotes the original time series data, and ϕ denotes the
prior knowledge.

In the multivariate time series data Ak, the correlation value
between Tk

i and Tk
j is defined as follows:

Ck
φ(·)(i, j) =

M
∑

m = 1

φ(tki,m, t
k
j,m) (4)

In addition, the correlation value between Tk
i and Tk

j in interval

It = [rt , st] is defined as follows:

Ck
φ(·)(i, j, It) =

M
∑

m=1

st
∑

l=rt

φ(tki,m, t
k
j,m+l) (5)

Notably, it is obvious that Ck
φ(·)

(i, j, It) 6= Ck
φ(·)

(j, i, It).

Generally, we explore the correlation of time series data in
multiple intervals. Let Ck

φ(·)
∈ R

N×N×T denotes the multi-scale

weighted correlation coefficient in multivariate time series data
Ak. Here, Ck

φ(·)
is a 3-order tensor, N is the number of time series

data, T is the number of intervals.
Next, we transform the tensor Ck

φ(·)
into a discrete probability

distribution Pk
φ(·)

for analyzing co-activity in multi-scale time

series data, as follows:

Pk
φ(·) = {pk

φ(·)(i, j, It)|i, j ∈ [1,N], It ∈ I} (6)

where pk
φ(·)

(i, j, It) represents the proportion of correlation value

between i-th time series data and j-th time series data based on
function φ(·) in interval It , defined as follows:

pk
φ(·)(i, j, It) =

Ck
φ(·)

(i, j, It)
∑N

i=1

∑N
j=1

∑T
t=1 C

k
φ(·)

(i, j, It)
(7)

2.4. Classification Model for Predicting
Brain Disease
In disease prediction, the number of samples is limited, but the
feature dimension is usually large, so we need to both compress
the feature space to improve the accuracy and analyze the
etiology with more meaningful features. We use t-test for feature
selection, and then we use Support Vector Machine (SVM) as the
learning model, which is described in detail as follows.

2.4.1. Feature Selection
We use the two-sample t-test as the feature selection method.
We assume that one feature of positive and negative samples
is subject to the distribution of the same mean, and we set the
significance parameter p = 0.05.

2.4.2. Support Vector Machine
We adopt Support Vector Machine (SVM) technique developed
by Cortes and Vapnik (1995) for solve the binary classification
problem. Also, various kinds of binary classification model can
be applied in many other biomedical prediction problems (Guo
et al., 2014, 2015, 2016; Ding et al., 2016a,b, 2017a,b; Liu et al.,
2016; Zeng et al., 2016; Shen et al., 2017a,b; Xuan et al., 2017; Pan
et al., 2018). The decision function is shown as follows:

γ (Ak) = sign{

K
∑

i=1

αiyi ·K(Ak,Ai)+ b} (8)

whereK(Ak,Ai) represents our proposed novel time-series kernel
function, and αi is calculated as follows:

Maximize

K
∑

i=1

αi −
1

2

K
∑

i=1

K
∑

j=1

αiαj · yiyj ·K(Ai,Aj)

s.t. 0 ≤ αi ≤ C

K
∑

i=1

αiγi = 0

(9)

where C is a regularization parameter that controls the tradeoff
between margin and misclassification error.

2.5. Model Parameter
In practice, we make more detailed discussion for parameters in
our method. We discuss some prior knowledge and assumptions
in our problem of Alzheimer’s disease and Major Depression
Disorder diagnosis, and some details need to be clarified. The
time series data not only carry specific numerical information,
but also include contextual and fluctuation trend information.

Here, due to the BOLD imaging principle, we pay more
attention to the time points of high activity state, that is, time
points with high values in time series. We define a dynamic or
soft threshold to distinguish whether a time point is active or not,
that is, converting a numeric sequence into a state sequence or
0/1 sequence.

For all active time points in one set of time series, we
count the number of time points of simultaneous responses in
other sets of time series. Moreover, we analyze the co-active
between two sets of time series in asynchronous. As we get
more details with asynchronous analysis, we’ll get more essential
information. In the experiments, it is also proved by the higher
classification accuracy.

2.5.1. Time Series Mapping
We adopt a empirical rule to indicate the dynamic threshold,
called three-sigma method (WalterA, 1986). This method
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converts a numeric sequence into a state sequence, the dynamic
threshold represented as follows:

th(Tk
i ) = µ(Tk

i )+ η · σ (Tk
i ) (10)

where

µ(Tk
i ) =

∑M
m=1 t

k
i,m

|Tk
i |

(11)

and

σ (Tk
i ) =

∑M
m=1(t

k
i,m − µ(Tk

i ))
2

|Tk
i | − 1

(12)

In a multivariate time series Ak, we calculate a corresponding
dynamic threshold th(Tk

i ) for each set of time series Tk
i . Then,

for a set of time series Tk
i , we convert a numeric sequence into a

0/1 sequence according to mapping function f (·), as follows:

f (tki,m) =

{

1, tki,m ≥ th(Tk
i )

0, else
(13)

The magnitude of η indicates the sensitivity of our method to the
active state. In our experiment, η is set to 1.

2.5.2. Correlation Function φ

The correlation function represents the relationship between a
couple of time points in time series. In disease diagnosis, we only
focus on co-activity, that is, both brain region i in time point m
and brain region j in time point n are in active states. To be more
concrete, tki,m and tkj,n are greater than the threshold th(Tk

i ) and

th(Tk
j ), respectively.

g(f (tki,m), f (t
k
j,n)) =

{

1, f (tki,m) = f (tkj,n) = 1

0, else
(14)

Corresponding to Formula 2 above, φ(·) in our experiment is:

φ(tki,m, t
k
j,n) =

{

1, tki,m ≥ th(Tk
i ) & tkj,n ≥ th(Tk

j )

0, else
(15)

2.5.3. Interval Set I
For a collection of multiple intervals I, we extract local
information by the element of interval, that is, greater element,
more detailed information. Easy to be over-fit and sparse; if the
element of interval is little, we may lose some key information.
Also, for a interval It ∈ I, if It is close to zero, it means
that two time points that we’re interested in are very close; if
It is far from zero, it indicates that we extract long-distance
asynchronous information.

In our experiments, the interval collection I is set to
{[0, 0], [1, 1], [2, 2], [3, 12]}. Here, [0, 0] represents information
for synchronization, [1, 1] and [2, 2] represent short-distance
correlation for asynchronism, [3, 12] represents a loose interval
for asynchronism. Empirically, it is sensitive to close interval of
zero and loose for long distances.

3. RESULTS

Our experiment consists of three parts. To proof the effectiveness
of our approach, we perform on automated diagnoses of
Alzheimer’s disease and Major Depressive Disorder, respectively.
We evaluate the classification performance using the leave-one-
out cross-validation (LOOCV). And also, we adopt Accuracy,
Sensitivity, Specificity and AUC as evaluation standards. First,
we compare the results of the traditional PCC method
and our feature extraction method in the two data sets of
AD and MDD. Then, we compare the effects of different
classifiers. Finally, we compare our approach with some recent
research works.

3.1. Comparison of Different Features
Here, we compare the performance of traditional PCC
method and our feature extraction method to analyze fMRI
data. In addition to feature extraction, we use the same
experimental steps and parameters, including preprocessing,
feature selection and classifier. The results are shown
in Table 1.

On Alzheimer’s disease and major depressive disorder
database, we compare our method to traditional PCC method,
and classification results are summarized in Table 1. The
information extracted by our multi-scale functional connection
(Multi-Scale FC) method is used for predicting brain disease,
which is obviously higher than the traditional PCC method. On
Alzheimer’s disease dataset, our method achieves best specificity
of 0.9268. Moreover, by combining PCC and our method, we
achieve better results, with ACC of 0.8935 and AUC of 0.8748.
On MDD dataset, our method also achieve the best results, but
the difference is that PCC and multi-scale functional connection
are actually lower when combined. The experimental results
indicate that our approach is more effective than traditional PCC
or graph theory feature-based methods. Combining different
methods will yield better results, but there is also a risk of
over-fitting.

3.2. Comparison of Different Classifiers
In this part, we use the feature extraction model in the
previous step to compare the performance of different
classifiers. Specifically, we compare three classifiers:
random forest (RF), logistic regression (LR) and
support vector machine (SVM). The results are shown
in Table 2.

TABLE 1 | Comparison of different features.

Method Data set Accuracy Sensitivity Specificity AUC

PCC AD 0.5858 0.5747 0.5976 0.5612

Multi-Scale FC AD 0.8876 0.8506 0.9268 0.8562

Multi-Scale FC + PCC AD 0.8935 0.8850 0.9024 0.8748

PCC MDD 0.6167 0.6129 0.6207 0.6514

Multi-Scale FC MDD 0.9000 0.8710 0.9310 0.9295

Multi-Scale FC + PCC MDD 0.8667 0.8065 0.9310 0.8961
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TABLE 2 | Comparison of different classifiers.

Method Data set Accuracy Sensitivity Specificity AUC

LR AD 0.8579 0.7931 0.9268 0.8347

RF AD 0.8343 0.8276 0.8415 0.8284

SVM AD 0.8935 0.8850 0.9024 0.8748

LR MDD 0.8333 0.8387 0.8276 0.8684

RF MDD 0.8833 0.9032 0.8621 0.8921

SVM MDD 0.8667 0.8065 0.9310 0.8961

TABLE 3 | Comparison of different existing methods on ADNI.

Method Accuracy Sensitivity Specificity AUC

Baseline 0.5858 0.5747 0.5976 0.5612

FON 0.8580 0.8161 0.9024 0.8195

Shortest-path 0.7396 0.8161 0.6585 0.6938

WL-edge 0.6272 0.6437 0.6098 0.6084

WL-subtree 0.7811 0.7816 0.7805 0.7645

WL-Shortestpath 0.6095 0.5977 0.6220 0.5735

SKL 0.8462 0.8046 0.8902 0.8166

Our method 0.8876 0.8506 0.9268 0.8562

In this part, we use our proposed multi-scale functional
connection method to extract features, and compare the results
of different classifiers. Comparing these three classifiers, SVM
can achieve the highest AUC in both AD dataset and MDD
dataset, the best ACC can also be obtained on the AD data set,
which is generally a stable classifier. In addition, RF can obtain
the best ACC on the MDD dataset, and LR can obtain the best
Spe on the AD dataset. Overall, all three classifiers can achieve
good accuracy, indicating that the information extracted by our
method is effective and stable.

3.3. Comparison of Different Existing
Methods
We compare our proposed method to recent outstanding
studies. Baseline represents the traditional graph theory feature-
based method. Moreover, the state-of-the-art methods represent
three major groups of graph kernels on edge, subtree and
shortest-path, respectively. These graph kernel belong to
the Weisfeiler-Lehman graph kernel framework (Shervashidze
et al., 2011), denoted as WL-edge, WL-subtree and WL-
shortestpath, respectively. In addition, in the Alzheimer’s disease
diagnosis, we also compare with the graph kernel method with
shortest-path (Shortest-path) (Borgwardt and Kriegel, 2006),
the sliding window method (FON: 70-length sliding window
with 1-step) (Chen et al., 2016) and the sub-network kernel
method (SKL) (Jie et al., 2018). In the Major Depressive
Disorder classification problem, we compare to the method of
Geng et al. (2018).

On Alzheimer’s Disease Neuroimaging Initiative database,
we compare our method to seven existing methods, and
classification results are summarized in Table 3. Our method
achieves best accuracy of 0.8876 and best AUC of 0.8562.

TABLE 4 | Comparison of different existing methods on MDD.

Method Accuracy Sensitivity Specificity AUC

Baseline 0.6167 0.6129 0.6207 0.6514

Shortest-path 0.7833 0.8065 0.7586 0.8135

Xu et al. 0.8667 0.8710 0.8621 0.9103

Our Method 0.9000 0.8710 0.9310 0.9295

However, the accuracy values for Baseline, FON, Shortest-path,
WL-edge, WL-subtree, WL-Shortestpath and SKL are 0.5858,
0.8580, 0.7396, 0.6272, 0.7811, and 0.6095, respectively. Also, the
AUC values for these seven methods are 0.5612, 0.8195, 0.6938,
0.6084, 0.7645, and 0.5735, respectively. Comparing to these
methods, our method achieves accuracy improvement of 0.0296
and AUC improvement of 0.0367, respectively. The experimental
results indicate that our approach is far better than traditional
graph theory feature-based methods, and slightly better than the
state-of-the-art graph kernel-based methods.

On the volunteer experiments of Major Depressive Disorder,
we compare our method to three existing methods, and
classification results are summarized in Table 4. Our method
achieves best accuracy of 0.9000 and best AUC of 0.9295.
However, the accuracy values for Baseline, Shortest-path
and method of Xu et al. are 0.6167, 0.7833, and 0.8667,
respectively. Also, the AUC values for these three methods
are 0.6514, 0.8135, and 0.9103, respectively. Comparing to
these methods, our method achieves accuracy improvement
of 0.0333 and AUC improvement of 0.0192, respectively. The
experimental results indicate that our approach is far better than
traditional graph methods, and slightly better than the current
outstanding methods.

4. CONCLUSIONS

The fMRI time series data not only contains specific
numerical information, but also involves rich dynamic
temporal information. However, those previous graph
theory approaches focus on local topology structure and
lose contextual information and global fluctuation information.
Here, we propose a novel multi-scale functional connectivity
for identifying the brain disease via fMRI data. We calculate
the discrete probability distribution of co-activity between
different brain regions with various intervals. Also, we
consider nonsynchronous information under different time
dimensions, for analyzing the contextual information in
the fMRI data. Therefore, our proposed method can be
applied to more disease diagnosis and other fMRI data,
particularly automated diagnosis of neural diseases or brain
diseases. Experimental results verify the effectiveness of our
proposed method, so we provide an efficient system via a novel
perspective to study brain networks.In the future, parallel
computing (Zou et al., 2017), computational intelligence (Xu
et al., 2017; Zou et al., 2017) and neural networks (Song
et al., 2018; Xu et al., 2018) can be considered with the
growing of dataset.
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