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Background: Posture instability gait difficulty-dominant (PIGD) and tremor-dominant
(TD) are two subtypes of Parkinson’s disease (PD). The thalamus is involved in the neural
circuits of both subtypes. However, which subregion of the thalamus has an influence
on the PD subtypes remains unclear.

Objective: To explore the core subregion of the thalamus showing a significant influence
on the PD subtypes and its directional interaction between the PD subtypes.

Methods: A total of 79 PD patients (43 TD and 36 PIGD) and 31 normal controls
(NC) were enrolled, and the gray matter volume and perfusion characteristics in the
thalamus were compared between the three groups. The subregion of the thalamus
with significantly different perfusion and volume among three groups was used as the
seed of a Granger causality analysis (GCA) to compare the causal connectivity between
different subtypes.

Results: Perfusion with an increased gradient among the three groups
(TD > PIGD > NC) in the bilateral ventral intermediate nucleus (Vim) was observed,
which was positively correlated with the clinical tremor scores. The GCA revealed that
TD patients had enhanced causal connectivity from the bilateral Vim to the bilateral
paracentral gyrus, M1 and the cerebellum compared with the NC group, while the PIGD
subtype revealed an increased causal connectivity from the bilateral Vim to the bilateral
premotor cortex (preM) and putamen. Additionally, there were positive correlations
between the tremor scores and a causal connectivity from the Vim to the cerebellum.
The connectivity from the right Vim to the right preM and the right putamen was
positively correlated with the PIGD scores.

Conclusion: This multilevel analysis showed that the Vim had a significant influence
on the PD subtypes and that it differentially mediated the TD and PIGD-related causal
connectivity pattern in PD.

Keywords: Parkinson’s disease, motor subtype, ventral intermediate nucleus, functional magnetic resonance
imaging, granger causality analysis
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INTRODUCTION

For the past few decades, Parkinson’s disease (PD) has been
categorized into posture instability gait difficulty-dominant
(PIGD) and tremor-dominant (TD) subtypes, according to the
predominant motor symptoms (Jankovic et al., 1990). The PIGD
phenotype exhibits a later onset, more rapid deterioration of
motor function, an increased risk of cognitive decline (Alves
et al.,, 2006) and less response to levodopa compared with the
TD subtype (Jankovic and Kapadia, 2001; Rajput et al., 2009).
The classic mechanism of PIGD is (Kish et al., 1988) considered
to be dysfunction in the striatal-thalamo-cortical (STC) circuits
(Alexander et al., 1986), while that of TD is distinctively in
the cerebello-thalamic-cortical (CTC) circuits (Fukuda et al,
2004; Dirkx et al., 2016). Nevertheless, the pathophysiological
mechanisms underlying these disparate circuits and their clinical
manifestations are not currently well understood (Helmich
et al, 2012). Investigating the pathophysiological differences
between the motor subtypes of PD will be a significant step
toward elucidating the mechanisms underlying the distinct
manifestations (Barbagallo et al., 2017) and will allow for more
tailored treatment strategies.

The STC and CTC circuits share a common hub, the thalamus
(Duval et al., 2016; Guan et al., 2017). The thalamus is commonly
divided into seven sub-regions (Behrens et al, 2003). Only
specific subregions, not the entire thalamus, are involved in the
pathological mechanism of PD. Of these, the ventral intermediate
nucleus (Vim) has been frequently reported (Duval et al., 2016).
Deep brain stimulation (DBS) implanted in the Vim can clinically
improve cerebral blood flow (CBF) and the cerebral metabolic
rate (Katayama et al., 1986) with an associated improvement of
tremor (Cury et al., 2017). However, this is not the case for PIGD
patients (Deiber et al., 1993; Ondo et al., 1998). Additionally,
CBEF in the thalamus also tends to increase in PD patients with
gait difficulty (Henriksen and Boas, 1985). These findings suggest
that some specific thalamic nuclei play an important role in
the motor phenotype of PD. However, it is not known which
subregions of the thalamus play a role in the subtype of PD, and
what role it plays.

Neuronal system intrinsic interaction is causal with directivity
(Deshpande et al., 2011). Therefore, investigating the directional
circuit about thalamus subregions would provide a new avenue
for deepening our understanding of different PD subtypes.
However, the traditional functional connectivity is ambiguous
in terms of the underlying causal interactions. Fortunately, this
can be determined by a feasible model——Granger causality
analysis (GCA). GCA is a reliable method for identifying directed
functional (“causal”) connectivity (Jiao et al., 2011), which has
been used in some studies to explore degenerative disease
pathogenesis (Florin et al., 2010, 2016; Yao et al., 2017).

Taken together, in the present study we aim to explore the
core subregion of the thalamus, showing a significant influence
on the PD subtypes and the directional interactions between the
PD subtypes within the STC and CTC circuits. We first compare
the gray matter volume and perfusion characteristics within
the thalamus between the PD subtypes. Next, we compare the
effective connectivity between the core subregion of the thalamic

nuclei within the STC and CTC pathways in the PIGD and TD
subtypes, respectively, using GCA.

MATERIALS AND METHODS

Subjects

A total of 79 PD subjects (43 TD and 36 PIGD patients)
and 31 NCs were recruited for this study from the Second
Affiliated Hospital of the Zhejiang University School of Medicine.
All participants were right handed. The PD patients were
all diagnosed according to the United Kingdom Parkinson’s
Disease Brain Bank (Hughes et al., 1992) by an experienced
neurologist. Before a magnetic resonance imaging (MRI) scan
and clinical assessments, the PD patients were asked to withdraw
from all anti-Parkinson medications for approximately 12 h.
The Unified Parkinson’s Disease Rating Scale (UPDRS), the
Hoehn and Yahr disability scale (HY) and the Mini-Mental
Sate Examination (MMSE) were obtained from each PD subject.
Psychiatric or other neurological illnesses constituted exclusion
criteria as Miroshnichenko et al. reported (Miroshnichenko
et al., 2018). All subjects were free of hypothyroidism, epilepsy,
drug/alcohol/nicotine abuse, and free of kidney or liver disease.
The patients’ tremor scores were defined by summing items 16
and 20-21 of the UPDRS and dividing the sum by 3, and the
balance and gait score were defined by adding items 13-15 and
29-30 and dividing the sum by 5. Patients were determined
as TD if the ratio of the tremor score divided by the balance
and gait score was >1.50, and as PIGD if the ratio was <1
(Huertas et al., 2017). The levodopa equivalent dose (LED) was
calculated as formerly reported (Tomlinson et al., 2010). Every
subject signed informed consent. This study was approved by
the Ethics Committee of the Second Affiliated Hospital of the
Zhejiang University School of Medicine.

MRI Data Acquisition and Preprocessing
The images were acquired using a 3.0-T scanner (GE Discovery
750) with an eight-channel head coil. Foam pads were placed on
both sides of the lower jaw to limit head motion. All patients
were asked to keep their eyes closed and to avoid falling asleep.
The anatomical data were acquired using T1-weighted sagittal
images (3DMPRAGE T1, repetition time (TR) = 7.3 ms, echo
time (TE) = 3.0 ms, field of view (FOV) = 260 x 260 mm?,
matrix size = 256 X 256, slice thickness = 1.2 mm, 196
slices). Arterial spin labeling (ASL) images were acquired with
a pseudocontinuous ASL sequence and background suppression
(TR = 4632 ms, TE = 10.5 ms, postlabeling delay = 1.5 s, labeling
duration = 1.5 s, eight interleaved spiral arms, 30 phase encoded
and 512 samples at a 62.5 kHz bandwidth, slice thickness = 4 mm,
NEX = 3). Axial echo-planar imaging (EPI) resting-state fMRI
images were also acquired (TR = 2000 ms, TE = 30 ms, flip
angle = 77°, FOV = 240 x 240 mm?, matrix size = 64 x 64, slice
thickness = 4 mm, slices = 38, time points = 205).

The arterial spin labeling (ASL) images were preprocessed
based on a voxel-wise analysis with SPM12' and FMRIB Software

'http://www.filion.ucl.ac.uk/spm/software/spm12
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Library (FSL) toolbox as follows: (i) every subject’s arterial spin
labeling-derived perfusion map was coregistered to the CBF
images; (ii) the normalization parameters produced were used to
warp the perfusion images (CBF images) into the standardized
space of the Montreal Neurological Institute (MNI) EPI template;
(iii) normalized (unmodulated) CBF images were resliced to
2 x 2 x 2 mm?; (iv) the images were standardized using the whole
brain mean CBF value; (v) and the images were smoothed using
an 8 mm full width at half maximum (FWHM) Gaussian filter.

Voxel-based-morphometry (VBM) analyses of the structural
images were performed with the VBMI2 toolbox, using the
default parameters and incorporating the DARTEL toolbox in the
SPM 12 software. All structural images were coregistered using
a linear transformation. Then, by using a unified segmentation
algorithm, the resulting structural images were segmented into
gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF). The GM maps were affine-transformed into MNI space
and further modulated to compensate for the local compression
and stretching that occurs as a consequence of the warping
and affine transformation. Finally, the resultant GM maps were
smoothed with a Gaussian kernel with an 8 mm FWHM.

The fMRI data were preprocessed and analyzed with Dpabi®
and SPMI12. All data were coregistered, normalized and
smoothed successively (see Supplementary Material for details).

Regions of Interest

We defined the thalamus as the region of interest (ROI) from
the Automated Anatomical Labeling (AAL) template (Tzourio-
Mazoyer et al, 2002). In this ROI, the perfusion parameters
and gray matter volume differences were compared between the
three groups. As a result, specific regions within the thalamus
where there were statistical differences between the three groups
were obtained. This statistically specific regions was overlaid
to the Oxford thalamic atlas using the FSL toolbox (Behrens
et al., 2003) to locate its specific subregion within the thalamus.
This resulting subregion was also seeded for GCA analysis in
the STC and CTC loops. The STC and CTC circuits were
identified as the basal ganglia [globus pallidus (GP), putamen,
and caudate], the motor cortex/premotor cortex, somatosensory
cortex and cerebellum (Alexander et al., 1986; Zhang et al., 2015;
Supplementary Figure S1).

Causal Connectivity Between the
Thalamus and the STC-CTC Circuits

Causal connectivity characterizes the direct causal effect of one
brain area on another area (Deshpande and Hu, 2012). GCA is a
reliable causal connectivity analytical method (Deshpande et al,,
2011). Itis an approach that defines causality as a tendency for the
past values of a time series to improve the accuracy of predicting
the future value of a time series (Park and Madsen, 2017). The
basic idea is that if the previous X and Y time series can more
accurately predict the current X than the previous X time series
alone, then the time series Y is causally driving the time series X
(Chen et al., 2009). Since there were no differences in the VBM
among the groups, the seed areas were defined as the abnormal

Zhttp://www.restfmri.net

CBEF areas in the group comparisons (which were located in the
Vim in the Oxford thalamic atlas), with coordinates: x = —12,
y =16, z = 4 (left) and x = 12, y = 15, z = 4 (right), with a
3 mm radius. The GCA value was calculated using the REST-GCA
toolkit (Zang et al., 2012) based on an ROI-wise analysis using the
age and sex as covariates. A signed-path coefficient algorithm was
selected to calculate the effective connectivity from the Vim to
other regions in the STC and CTC circuits and from other regions
in the STC and CTC circuits to the Vim.

The Lateralization of the TD Subtype
Circuits

There are hemispheric differences in the tremor-related circuit.
Is the circuit in the brain of the patient with only one side of
the limb tremor bilateral or unilateral? To further verify the
lateralization of the TD subtype circuit, a complementary analysis
was performed. Thirteen TD patients with only left limb tremor
and four TD patients with only right limb tremor were collected.
The brains of this four patients with only right limb tremors were
then turned left and right using the FSL toolbox, and the four
patients were reclassified as left limb tremors. Thus, these 17 TD
patients can be considered to have tremor only on the left limb.
Then explore the loop in their brains. We calculated the causal
connectivity between the bilateral thalamus and STC circuit in
the same manner as above. Since PIGD is dominated by axial
symptoms, we did not perform an analysis of lateralization in
the PIGD subtype.

Statistics Analysis

One-way analysis of variance (ANOVA) was employed to
compare the demographic, clinical information, VBM and CBF
of the bilateral thalamus differences among three groups. Then,
a false discovery rate (FDR) corrected post hoc analysis was
conducted with P < 0.05.

Causal connectivity statistics were conducted using
the random-effects model implemented in SPM12. Due
to the asymmetric nature of PD, which is important in
pathophysiological mechanisms, we compared the causal
connectivity of the most-affected and least-affected thalamus in
the STC and CTC circuits. We performed a 3 x 2 full ANOVA
(full factorial design) with Group (43 TD, 36 PIGD, 31 NC) and
Hemisphere (most affected, least affected) factors. Because there
were no interaction effect between the Group and Hemisphere,
we performed a post hoc analysis among the groups with the
age and gender as covariates (P < 0.05, FDR corrected). Finally,
the correlation between these variables and motor deterioration
was analyzed in PD subtypes using SPSS 19 (IBM Corporation,
New York, NY, United States).

RESULTS

Demographic and Clinical Information

There were no statistically significant differences in gender, age,
educational levels or MMSE scores among the three groups.
For the PD subtypes, no statistically significant differences were
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found in the disease duration, total UPRDS, LED or Hoehn and
Yahr scores (Table 1).

The Different Perfusions and Volume in

the Subregion of the Thalamus
The post hoc analysis revealed that the TD group had significantly
higher CBF values than the NC group in the bilateral thalamus

(Figure 1A), with most lying in the Vim. In the left hemisphere,
92.67% (volume: 523 mm?) laid in the Vim, and in the right,
72.12% (520 mm?) laid in the Vim (Figure 2G). Even though
the difference in the CBF values between the PIGD group and
the NC group did not have a statistical significance after the
FDR correction, there was a trend of an increased CBF value
in the bilateral Vim in the PIGD group at a test threshold
(P < 0.005, cluster size >10) (Figure 1B). Moreover, The CBF

TABLE 1 | Demographic characteristics.

PIGD NC TD P
PIGD vs. NC TD vs. PIGD TD vs. NC
Number of patients 36 31 43 - - -
Sex (male/female) 18/18 12/19 24/19 0.63 0.87 0.32
Age, years (SD) 62.11(7.03) 59.10(7.42) 62.53(8.96) 0.11 0.97 0.16
H-Ystage 2.00 - 1.82 0.00 0.1 0.00
education, years (SD) 8.42(5.72) 9.68(4.11) 7.56(4.22) 0.53 0.70 0.14
Duration, years (SD) 4.11(4.56) - 4.60(2.76) 0.00 0.75 -
MMSE, mean (SD) 26.00(5.33) 27.35(5.45) 25.58(5.68) 0.58 0.94 0.37
Moca, mean (SD) 22.81(5.87) 23.13(6.34) 22.66(5.76) 0.97 0.89 0.79
LED, mean (SD) 249.58(262.04) 0 181.16(231.94) - 0.33 -
Tremor scores, mean (SD) 2.36(1.71) - 8.37(4.56) - 0.00 -
PIGD scores, mean (SD) 4.31(2.58) 2.74(1.72) - 0.00 -
UPDRS-IIl, mean (SD) 27.78(13.58) 0.29(0.64) 28.84(14.84) 0.00 0.92 0.00
UPDRS-total, mean (SD) 40.89(18.16) 0.29(0.64) 40.19(19.53) 0.00 0.98 0.00

UPDRS-IIl, unified Parkinson’s disease rating scale part lll; MMSE, mini mental state examination, H-Ystage, hoehn and yahr staging for Parkinson’s disease; LED, the

levodopa equivalent dose. Group comparison conducted using ANOVA.

A Changes of CBF value (TD patients-NC)
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FIGURE 1 | Tremor-dominant subtype showed significantly increased perfusion in the ventral intermediate nucleus (Vim) with P < 0.05, FDR corrected (A). There
was a trend of an increased CBF value in the Vim in a test threshold (P < 0.005, cluster size >10), especially from the NC to PIGD to TD groups (B). The CBF value
in this significant area (bilateral Vim) was positively correlated with clinical tremor scores (C). **P < 0.05.
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FIGURE 2 | The core pathophysiology subregion of the thalamus lies in the Vim (G). TD patients have enhanced causal connectivity from the bilateral Vim to the
contralateral paracentral, bilateral M1 and cerebellum compared with the NC group (A). The PIGD subtype revealed an increased causal connectivity from the
bilateral Vim to the bilateral premotor cortex and putamen (B). Directly comparing TD and PIGD, the connectivity from the bilateral Vim to the bilateral cerebellum
significantly increased in TD (C) (A-C), P < 0.05, FDR corrected. Correlation analysis showed that there were positive correlations between the tremor scores and
the causal connectivity from the left Vim to the right cerebellum (D), between the PIGD scores and causal connectivity from the right Vim to the right preM (E), and
between PIGD scores and the causal connectivity from the right Vim to right putamen (F).
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value in the Vim was positively correlated with the clinical tremor
scores (r = 0.29, p = 0.02) (Figure 1C). There was no significant
difference in the gray matter volume among these groups.

The Causal Connectivity Between the
Bilateral Vim and STC-CTC Circuits

We then explored the causal connectivity patterns of the Vim
to the STC and CTC circuits in the PD subtypes. The group

effects are shown in Figure 2. First, TD patients showed enhanced
causal information from the bilateral Vim to the bilateral
paracentral gyrus, M1 and cerebellum compared to the NC group
(Figure 2A). There were no significant group differences between
the Vim and basal ganglia in the TD group. Second, in PIGD
patients, the bilateral Vim input a significantly increased flow to
the bilateral premotor cortex (preM) and putamen (Figure 2B)
compared to the NC group. Crucially, these effects were not
observed in the caudate or GP. Third, when directly comparing
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the TD and PIGD groups, the information flow from the
bilateral Vim to the bilateral cerebellum significantly increased
in the TD patients (Figure 2C). There were no significant
differences in the causal connectivity from the STC and CTC
circuits to the Vim.

Furthermore, the tremor-related clinical scores were positively
correlated with a causal connectivity from the left Vim to the
right cerebellum (Figure 2D). The causal connectivity from the
right Vim to the right putamen and right preM was positively
correlated with the clinical PIGD scores (Figures 2E,F).

Laterality of the Tremor-Related Circuit

We compared 17 TD patients who can be seen as only left
lateral limb-affected patients to the NC group. The result
showed that in these patients, the causal connectivity from
the right Vim to the left cerebellum and right paracentral
gyrus was increased (Figure 3). This analysis confirmed the
laterality of the tremor-related circuit. That is, one side of
the limb tremor was due to contralateral Vim disorder, and
the disordered Vim enhanced the flow of information to
the cerebellum on the same side of the affected limb and
contralateral motor cortex.

DISCUSSION

There were three main findings. First, as a subregion of the
thalamus, the Vim exhibited significantly increased perfusion
in the TD subtype. This change was positively correlated with
the clinical tremor scores. There was an increased gradient of
the CBF value among the three groups (TD > PIGD > NC).
Second, the TD and PIGD patients displayed different causal
connectivity patterns (Figure 4). In TD patients, the Vim
had enhanced causal connectivity with the bilateral paracentral
gyrus, M1 and the cerebellum, while the causal connection
from the Vim to the cerebellum was positively correlated with
the tremor score. The PIGD patients showed an increased
causal connectivity from the bilateral Vim to the bilateral
preM and putamen. These changes were positively correlated
with the PIGD scores. Third, we confirmed the TD-related
circuits are from the Vim to the contralateral cerebellum and
paracentral gyrus. Together, our outcomes support the presence
of an underlying pathophysiological discrepancy between the
PD motor subtypes.

right paracentral gyrus

FIGURE 3 | Left lateral limb-affected TD patients; showed increased causal
connectivity from right Vim to left cerebellum and the right paracentral gyrus
was increased.

TD connectivity pattern

PIGD connectivity pattern

FIGURE 4 | The different causal connectivity patterns in the PD subtypes.

Perfusion in the Vim

Past studies found that PD patients exhibited significantly
higher CBF in the thalamus (Hsu et al, 2007), especially
in TD patients. Furthermore, the CBF alteration could be a
biomarker distinguishing TD patients from essential tremor
(Song et al, 2014). On that basis, we further found that
almost all significant areas of the thalamus lie in the Vim. Its
perfusion was significantly increased in the PD subtypes without
a significant structural alteration, and these perfusion values
showed a close relationship with the tremor scores. In 1-methyl-
4-phenyl-1.2.3.6-tetrahydropyridine (MPTP) primate model of
parkinsonism, the GP is an important cause of tremor triggering
(Rivlin-Etzion et al., 2008; Kammermeier et al., 2016) due to
increased synchrony among neurons (Bergman et al, 1998).
Anatomically, the Vim received an afferent projection from GP,
and then explosively emphasized signals (Helmich et al., 2012).
Hence, the Vim was implicated in generating the supraspinal
components of tremor (Duval et al., 2016). From our results, the
Vim may be a “key nodal point” in both the STC and CTC circuits,
affecting both PD subtypes.

The Vim Nucleus in the Tremor-Related
Causal Connectivity Pattern

Our findings indicate that the enhanced causal connectivity from
the Vim to M1 and cerebellum is associated with parkinsonian
tremor. In the validation, we identified that these changes
coincided with hemisphere-affected TD patients.

The cerebellum is a vital hub in this circuit. It plays a critical
role in parkinsonian tremor amplitude modulation (Helmich
et al., 2011). In the MPTP monkey mode, improved motor
symptoms are associated with the mean discharge rates of
neuron activity in the cerebellar receiving areas of the motor
thalamus (Vitek et al., 2012). In human, increased metabolism
in the cerebellum is associated with parkinsonian tremor and its
metabolism is reduced by the DBS of Vim (Mure et al., 2011).
The cerebellum receives input from the posterior thalamus and
then relays it back to the thalamus (Iwata and Ugawa, 2005).
In the present study, the causal influence from the Vim to the
cerebellum was increased in TD patients. This causal connectivity
becomes more strengthened as the tremor becomes more severe.
This result could imply that the Vim exerts its influence on
cerebellum-stimulating activity. Notably, an enhanced influence
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from the Vim to the cerebellum was not found in PIGD patients.
This elucidates that the Vim-cerebellum topology may be a
characteristic pattern in the TD population.

Additionally, M1 is classically viewed as direct cortical
selecting the muscles and force for executing an intended
movement (Yao et al., 2017). The Vim nucleus has tight fiber
connections with M1. The DBS of the Vim could diminish the
metabolism in M1, which further advocates the pathology of
the Vim to M1 in TD patients (Fukuda et al., 2004). In this
study, the information flow from the Vim to M1 was enhanced
in TD patients. This implies that the motor impairments in TD
subtypes could be due to an abnormal strengthening output from
the Vim to the motor cortex in addition to striatal pathology.
Taken together, our results indicate that parkinsonian tremor is
peculiarly mediated by a flow from the Vim to the cerebellum,
where the dysfunction of the Vim may lead to disruption in M1
via the Vim-M1 circuit.

The Vim Nucleus in the PIGD-Related

Causal Connectivity Pattern

The pathological hallmark in PD is the progressive deficiency
of dopamine within the substantia nigra and striatum (Jellinger,
1999). As the main component of striatum, the putamen has
been regarded in the pathophysiology of motor impairment
(Jellinger, 2012). In the non-human primate model of Parkinson’s
disease, increased metabolism in the putamen is a characteristic
topography (Ma et al., 2012). The putamen also play an important
role in defining the PD motor subtypes (Vervoort et al., 2016).
Single photon emission computed tomography studies found that
patients with worse rigidity had more pronounced dopaminergic
loss in the posterior putamen (Eggers et al, 2011). A lower
putamen volume was linked with a higher (worse) instability
gait score (Rosenberg-Katz et al, 2016). In the present study,
we further found that the Vim input a significantly increased
flow to the putamen in PIGD patients. Since the putamen is
the major input structure of the basal ganglia and receives
afferents from the thalamus (Braak et al, 2006), we suspect
that the enhanced connectivity from the Vim to the putamen
may be a feedback mechanism of dopaminergic loss. To balance
the dynamic equilibrium between the striatum and thalamus,
the Vim enhanced the feedback flow to the putamen after the
decreased input from the striatum due to dopaminergic loss.
Additionally, this causal connectivity was correlated with the
severity of the PIGD scores, which emphasized the relation
between the PIGD motor impairments and the feedback flow
from the Vim to the putamen. These findings provide further
evidence of the role of the putamen in PD subtypes.

Recently, some researchers have held the notion that the PIGD
and TD could simply be different stages of PD (Nutt, 2016),
since some TD patients evaluated at onset were predominantly
PIGD in more advanced stages (Hershey et al., 1991). However,
our results support the notion that the PIGD and TD motor
phenotypes could not be accounted for by differences in disease
stage or duration. In the present study, there were no significant
differences in the duration, LED, HY stage, or UPDRS total scores
for the different phenotypes. However, they expressed different

causal connectivity patterns. Therefore, our findings support the
existence of TD and PIGD subtypes.

There are some limitations in the present study. Though our
samples are larger than many other prior reports, larger samples
are required to enhance the power of future studies. Another
limitation is that all patients were scanned in a practical off-state
at 12 h of anti-parkinsonism medication withdrawal. While the
dopamine agonists could have lasting effects, we did not find a
significant difference in the LED between the different subtypes,
which means the lasting effects may make no difference to the PD
subtypes in our population.

In conclusion, the present study showed that the Vim may be
a “key nodal point,” affecting both PD subtypes. The Vim is a
causal flow hub of the STC and CTC circuits. A differential causal
connectivity pattern exists in TD and PIGD-related networks,
which is related to behavioral heterogeneity in PD. Our findings
are helpful for explaining the existence of PD subtypes that are
interrelated to TD and PIGD manifestation in PD.
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