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Background: Alzheimer’s disease (AD) and bipolar disorder (BIP) are complex traits
influenced by numerous common genetic variants, most of which remain to be detected.
Clinical and epidemiological evidence suggest that AD and BIP are related. However, it
is not established if this relation is of genetic origin. Here, we applied statistical methods
based on the conditional false discovery rate (FDR) framework to detect genetic overlap
between AD and BIP and utilized this overlap to increase the power to identify common
genetic variants associated with either or both traits.

Methods: We obtained genome wide association studies data from the International
Genomics of Alzheimer’s Project part 1 (17,008 AD cases and 37,154 controls) and
the Psychiatric Genetic Consortium Bipolar Disorder Working Group (20,352 BIP cases
and 31,358 controls). We used conditional QQ-plots to assess overlap in common
genetic variants between AD and BIP. We exploited the genetic overlap to re-rank
test-statistics for AD and BIP and improve detection of genetic variants using the
conditional FDR framework.

Results: Conditional QQ-plots demonstrated a polygenic overlap between AD and BIP.
Using conditional FDR, we identified one novel genomic locus associated with AD, and
nine novel loci associated with BIP. Further, we identified two novel loci jointly associated
with AD and BIP implicating the MARK2 gene (lead SNP rs10792421, conjunctional
FDR = 0.030, same direction of effect) and the VAC14 gene (lead SNP rs11649476,
conjunctional FDR = 0.022, opposite direction of effect).
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Conclusion: We found polygenic overlap between AD and BIP and identified novel
loci for each trait and two jointly associated loci. Further studies should examine if the
shared loci implicating the MARK2 and VAC14 genes could explain parts of the shared
and distinct features of AD and BIP.

Keywords: Alzheimer’s disease, bipolar disorder, GWAS, pleiotropy, cognitive symptoms, affective symptoms,
MARK2, VAC14

INTRODUCTION

About a century ago, Alois Alzheimer and Emil Kraepelin
described the historical equivalents of AD and BIP (Alzheimer,
1907; Kraepelin, 1921). Still their etiologies are incompletely
understood and no curative treatments exist (Grande et al., 2016;
Scheltens et al., 2016). The Global Burden of Disease study ranks
AD and BIP among the top thirty causes of years lived with
disability worldwide (Vos et al., 2016).

Alzheimer’s disease is a neurodegenerative disorder (Jack et al.,
2013) usually presenting in late adult life (Koedam et al., 2010),
while BIP is considered a neurodevelopmental disorder (Sanches
et al., 2008; O’Shea and McInnis, 2016) with average age at onset
in early adult life (Baldessarini et al., 2010). Yet, epidemiological,
pathophysiological, and clinical data suggest that AD and BIP
could be related. A recent meta-analysis reports an odds ratio of
2.4 (95% CI 1.4–4.1) for dementia of all causes among patients
with BIP (Diniz et al., 2017). The risk of dementia is higher
among patients with BIP compared to patients with arthritis,
diabetes, and schizophrenia (Kessing et al., 1999; Kessing and
Nilsson, 2003). Among patients with BIP, treatment with lithium
is associated with a reduced risk of dementia (Kessing et al.,
2010; Gerhard et al., 2015) and AD (Nunes et al., 2007) in
most, but not all (Cheng et al., 2017), observational studies.
Among patients with AD or mild cognitive impairment, a meta-
analysis of randomized controlled studies found that lithium
decreased cognitive decline (Matsunaga et al., 2015). Shared
pathophysiological processes between AD and BIP are reported
in the kynurenine pathway (Miller et al., 2006; Myint et al., 2007;
Rahman et al., 2009; Gulaj et al., 2010; Maddison and Giorgini,
2015; Savitz et al., 2015). There is also evidence of inflammatory
processes in both conditions (Goldstein et al., 2009; Antonio
et al., 2015; Heneka et al., 2015). Further, euthymic patients with
BIP have impairments of episodic memory (Torres et al., 2007)
and executive dysfunction (Torres et al., 2007; Martino et al.,
2015), which are also core symptoms of AD (Gold and Budson,
2008; Godefroy et al., 2016).

Despite several lines of evidence suggesting a relation between
AD and BIP, it is not established if the conditions have a shared
genetic basis. AD and BIP are in most cases complex traits,
i.e., they are influenced by several genetic and environmental
factors. Twin studies estimate the heritability of AD and BIP to

Abbreviations: AD, Alzheimer’s disease; BIP, bipolar disorder; FDR, false
discovery rate; GWAS, genome wide association study; IGAP, International
Genomics of Alzheimer’s Project; LD, linkage disequilibrium; LDSR, Linkage
disequilibrium score regression; PGC2-BIP, Psychiatric Genetic Consortium 2
Bipolar Disorder Working Group; SNP single nucleotide polymorphism; QQ,
quantile-quantile.

60% or higher (McGuffin et al., 2003; Kieseppä and Partonen,
2004; Gatz et al., 2006; Lichtenstein et al., 2009). Genome
wide association studies (GWASs) are the gold standard for
hypothesis-free assessment of associations between complex
traits and common genetic variants (Corvin et al., 2010). The
common variants refer to single nucleotide polymorphisms
(SNPs) with minor allele frequencies > 1–5%. The power of
a GWAS is a function of study sample size and the genetic
architecture of the trait (i.e., the narrow-sense heritability, the
number of causal variants, their effect sizes, and population
frequencies) (Schork et al., 2016; Frei et al., 2018). AD and BIP
are considered highly polygenic (Purcell et al., 2009; Escott-Price
et al., 2015), and ∼1/3 of their heritability can be explained by
SNPs with tiny effect sizes that are not individually detectable
given the power of current GWASs (Lee et al., 2011, 2013;
Ridge et al., 2013, 2016).

With the current sample sizes, however, the power of GWASs
can be boosted by leveraging polygenic overlap between complex
traits (Andreassen et al., 2013a,b, 2015). Shared genetic influences
are common among complex traits (Visscher et al., 2017).
Statistical methods based on the conditional FDR framework
can detect polygenic overlap between complex traits and utilize
this polygenic overlap to increase the power to identify common
genetic variants associated with each trait and jointly with
two or more traits (Andreassen et al., 2013a,b, 2015). We
aimed to use these methods to identify the shared genetic basis
between AD and BIP.

MATERIALS AND METHODS

Data Sources
We obtained summary statistics (i.e., effect sizes and
corresponding p-values for all SNPs) from the IGAP (Lambert
et al., 2013) and the PGC2-BIP (Stahl et al., 2019).

International Genomics of Alzheimer’s Project
The IGAP is a two-stage study. We used data from stage 1
of the study, which is based upon four previously published
GWASs [The European Alzheimer’s Disease Initiative (Dreses-
Werringloer et al., 2008; Heath et al., 2008), the Alzheimer
Disease Genetics Consortium (Jun et al., 2010), The Cohorts for
Heart and Aging Research in Genomic Epidemiology consortium
(Psaty et al., 2009), The Genetic and Environmental Risk in
AD consortium (Harold et al., 2009)] on 17,008 AD cases and
37,154 controls of European ancestry. The IMPUTE2 (Howie
et al., 2009) or MaCH/Minimac (Li et al., 2010) software were
used to impute SNPs from the European ancestry haplotypes
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in the 1000 Genome Project (Altshuler et al., 2010). In stage
2 of the study, SNPs with p-values < 1 × 10−3 from stage 1
were selected for genotyping in independent samples. We did
not use data from stage 2 of the study since the conditional
FDR method require genome-wide summary statistics which
are not inflated.

Diagnoses of AD in the sub-studies of IGAP were in most
cases made clinically according to the National Institute of
Neurological and Communicative Disorders and Stroke and the
Alzheimer’s disease and Related Disorders Association criteria
(McKhann et al., 1984) or the Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 1994)
criteria, or post mortem according to the National Institute of
Ageing-Regan criteria (Newell et al., 1999).

Informed consents were provided from all participants, or,
in the case of substantial cognitive impairment, from caregivers,
legal guardians, or other proxies. The sub-studies were approved
by local ethic committees.

For further details, we refer to the original publication
(Lambert et al., 2013).

Psychiatric Genetic Consortium 2 Bipolar Disorder
Working Group
The PGC2-BIP is a GWAS based upon 32 sub-studies on
20,352 BIP cases and 31,358 controls of European ancestry.
Arrays for genotyping were chosen by each sub-study. The
Ricopoli pipeline1 was used to standardize quality control,
imputation, and analyses of genotypic data from all samples
except one. SNPs were excluded by the following criteria:
missingness in > 5 (before sample removal) or 2% (after sample
removal), p-value for Hardy–Weinberg equilibrium < 1× 10−10

in cases or <1 × 10−6 in controls, missingness difference
between cases and controls > 2%, or autosomal heterozygosity
deviation (| Fhet| > 0.2). Individuals with > 2% missing
genotypes were also excluded. The IMPUTE2 (Howie et al.,
2009) and SHAPEIT2 (Delaneau et al., 2012) software were
used for imputation.

Diagnoses of BIP were established by clinical interviews or
obtained from hospital record data according to the Diagnostic
and Statistical Manual of Mental Disorders 4th edition (American
Psychiatric Association, 1994), the International Classification
of Diseases 9th revision (World Health Organization, 1977),
or the International Classification of Diseases 10th revision
(World Health Organization, 1992).

Informed consents were provided from all participants. The
sub-studies were approved by local ethical committees.

For further details, we refer to the original publication
(Stahl et al., 2019).

Data Availability
Data from the IGAP2 and PGC2-BIP3 studies are publicly
available for download.

1https://github.com/Nealelab/ricopili/wiki
2http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
3https://www.med.unc.edu/pgc/results-and-downloads

Statistical Analyses
Conditional Quantile–Quantile (QQ)-Plots
We used conditional QQ-plots to visually assess pleiotropic
enrichment. A conditional QQ-plot displays the distribution of
p-values for the first trait, e.g., AD, conditioned on association
levels for the second trait, e.g., BIP. Pleiotropic enrichment
is present if the degree of leftward shift from the expected
null line for the first trait is dependent on the degree of
association with the second trait. For further details, we refer
to previous studies (Andreassen et al., 2013a,b, 2015) and
Supplementary Methods 1.1.

Conditional False Discovery Rate (condFDR)
The enrichment observed in conditional QQ-plots can be
translated to FDR for each SNP. We used the conditional false
discovery rate (condFDR) to improve power to detect SNPs
associated with AD given associations with BIP and vice versa.
condFDR is defined as “the posterior probability that a given SNP
is null for the first trait given that the p-values for both traits are
as small or smaller than the observed p-values” (Andreassen et al.,
2015). We denoted condFDR for AD given associations with BIP
as condFDR(AD|BIP) and for BIP given association with AD as
condFDR(BIP| AD) and considered values < 0.01 significant. For
further details, we refer to previous studies (Andreassen et al.,
2013a,b, 2015) and Supplementary Methods 1.2.

Conjunctional False Discovery Rate (conjFDR)
We used conjunctional FDR (conjFDR) to identify SNPs jointly
associated with AD and BIP. conjFDR is defined as “the
posterior probability that a SNP is null for either phenotype
or both simultaneously, given the p-values for both traits are
as small or smaller than the observed p-values” (Andreassen
et al., 2015). After repeating the condFDR procedure for both
traits, we identified shared loci at conjFDR < 0.05, which
is given by the maximum between the condFDRs for both
traits. Hence, the conjFDR analysis is a conservative approach
requiring that loci exceed a condFDR significance threshold
for two traits simultaneously. For further details, we refer
to previous studies (Andreassen et al., 2013a,b, 2015) and
Supplementary Methods 1.3.

Conditional and Conjunctional Manhattan Plots
We constructed conditional Manhattan plots to visualize
the chromosomal location of SNPs with condFDR(AD|BIP)

(Supplementary Figure 1) and condFDR(BIP|AD) < 0.01
(Supplementary Figure 2). We constructed a similar
plot for SNPs jointly associated with AD and BIP at a
conjFDR < 0.05 (Figure 2).

Assessment of Novelty
To determine if a locus was novel, we first checked that
the p-value(s) for the implicating variant was > 5 × 10−8

in the original GWAS(s). Further, we used LDlink (Machiela
and Chanock, 2015) to exclude variants which are in LD
(r2 > 0.1) with any of the genome-wide significant hits in the
original GWAS(s). Finally, we conducted a search on PubMed
using the term (“SNP id” OR “gene name”) AND (“Bipolar
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FIGURE 1 | Conditional QQ-plots of nominal p-values at y-axis and 1 - empirical cumulative distribution function on x-axis for (A) Alzheimer’s disease (AD) with lines
representing strata of SNPs according to their degree of association with bipolar disorder (BIP) and (B) BIP with lines representing strata of SNPs according to their
degree of association with AD.

Disorder”[Mesh] OR “Alzheimer Disease”[Mesh]) to exclude that
the variants or implicated genes have been associated with AD or
BIP at genome-wide significance in previous GWASs.

Cerebral Gene Expression Across Lifespan of the
Implicated Loci
The Human Brain Transcriptome (HBT) project4 used
postmortem brain tissue from over 1,340 samples to provide
genome-wide exon-level transcriptome data in 16 cerebral
regions (Kang et al., 2011). We obtained figures from the
HBT project on gene expression in different cerebral areas
as a function of age (i.e., from embryonic life through late
adulthood) for the nearest genes to the loci jointly associated
with AD and BIP.

Control of Spurious Enrichment
We randomly chose one SNP in each LD block (r2 > 0.1), and
calculated the average empirical cumulative distribution function
(ecdf) by using the p-values obtained through 200 iterations.
SNPs within the major histocompatibility complex region
(defined as chr6:25652429–33368333) and the apolipoprotein
E (APOE) gene (chr19:44909039–45912650), and SNPs in
LD (r2 > 0.1) with these SNPs, were excluded from the
analyses due to their complex LD structure (de Bakker and
Raychaudhuri, 2012) and known association to AD (Lambert
et al., 2010; Scheltens et al., 2016), which could bias the estimates
of enrichment. Further, we used LD-independent (r2 < 0.1)
intergenic SNPs, which are depleted of true associations,
to calculate an inflation factor value (Wang et al., 2016a).

4http://hbatlas.org

We divided all test statistics on this value to control for
genomic inflation.

Cross-Trait Linkage Disequilibrium Score Regression
(LDSR)
We calculated the degree of genetic correlation between AD and
BIP using cross-trait LD score regression (LDSR) (Bulik-Sullivan
et al., 2015). For details, we refer to Supplementary Materials 1.4.

Ethics Statement
All GWASs performed and investigated in the present study were
approved by the local ethics committees, and informed consent
was obtained from all participants. Furthermore, the Norwegian
Institutional Review Board for the South-East Norway Region
has evaluated the methods used in the current study and found
that no additional institutional review board approval was needed
because no individual data were used (ref. 2011/1980).

RESULTS

Pleiotropic Enrichment
In the conditional QQ-plots, we observed enrichment of
associations with AD given increasing SNP associations with
BIP, and vice versa (Figure 1). These findings indicate polygenic
overlap between AD and BIP across common genetic variants.

Improving Genetic Discovery Using
Conditional FDR
We then leveraged the pleiotropic enrichment observed
in conditional QQ-plots to boost SNP discovery in both
traits using condFDR.
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FIGURE 2 | Conjunctional Manhatton plot of loci jointly associated with Alzheimer’s disease (AD) and bipolar disorder (BIP) at a conjuntional false discovery
rate < 0.05.

We identified 22 SNPs clumped into 19 independent loci
at condFDR(AD|BIP) < 0.01 (Supplementary Table 1). The
chromosomal locations of the nearest genes are visualized in
a conditional Manhattan plot (Supplementary Figure 1). Red
annotations represent the four loci with a lower conditional than
unconditional FDR. Of these four loci, two loci have uncorrected
p-values > 5 × 10−8 in the original GWAS and are thus not
identified by traditional methods; NDUFS3 (rs71475924, intron
variant) and MTSS1L (rs12597717, intron variant). The signal in
NDUFS3 was driven by one single SNP and is thus probably a
spurious association.

Further, we identified 24 SNPs within 24 loci at a
condFDR(BIP|AD) < 0.01 (Supplementary Table 2). As visualized
in the conditional Manhatton plot (Supplementary Figure 2),
17 loci had a lower conditional than unconditional FDR. Of
these 17 loci, 10 variants have uncorrected p-values > 5 × 10−8

in the original GWAS and are thus not identified by
traditional methods; LOC105378763 (rs1889778, intron variant),
CNTNAP5 (rs13011184, intron variant), KIAA1109 (rs45605540,
intron variant), SSBP2 (rs7707981, intron variant), AK091365
(rs2388334, no genic locational annotation), RCOR2 (rs4980532,
intron variant), STARD9 (rs4447398, intron variant), GRIN2A
(rs11647445, intron variant), THRA (rs61554907, intron variant),
and PRKCA (rs7406066, intron variant). However; the CNTNAP5
gene has previously been associated with the posterior cortical
atrophy variant of AD at genome-wide significance (Schott et al.,
2016) and with BIP (Djurovic et al., 2010).

Identification of Shared Loci
Finally, we applied conjFDR to assess for SNPs jointly associated
with AD and BIP. We used effect sizes from the original data
sources to determine the allelic direction of effects in both traits.

We identified two SNPs at two loci at a
conjFDR(AD&BIP) < 0.05 (Table 1 and Figure 2). A 2 kb
upstream variant at MARK2 (rs10792421) was associated
with AD and BIP with the same direction of effect on AD
and BIP [conjFDR(AD&BIP) = 0.030, z-score(AD) = 3.99,
z-score(BIP) = 4.74]. MARK2 is widely expressed in the
developing and adult human brain (Supplementary Figure 3).
An intronic variant within VAC14 (rs11649476) was associated
with AD and BIP with opposite directions of effect in AD
and BIP [conjFDR(AD&BIP) = 0.022, z-score(AD) = −4.35,
z-score(BIP) = 4.18]. VAC14 is also widely expressed in the
developing and adult human brain (Supplementary Figure 4).
Both SNPs have p-values > 5× 10−8 for both traits in the original
GWASs and are thus not identified by traditional methods.

Genetic Correlation
We estimated that there is no overall genetic correlation
between AD and BIP according to LDSR (rg = −0.0222,
SE = 0.0519, p = 0.669).

DISCUSSION

We used statistical methods based on the condFDR framework
and showed that AD and BIP have a shared genetic basis. Our
study adds new insights into the relation between AD and BIP
by finding polygenic overlap, one novel locus associated with
AD and nine novel loci associated with BIP when conditioned
on associations with the other trait, and two novel loci jointly
associated with both traits.

A polygenic overlap between AD and BIP could implicate
shared genetic influences as a part of the explanation to
the epidemiological (Diniz et al., 2017), pathophysiological
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TABLE 1 | SNPs with related genes jointly associated with Alzheimer’s disease (AD) and bipolar disorder (BIP) at a conjunctional false discovery rate
(conjFDR(AD&BIP)) < 0.05.

SNP Chr. region Position Closest gene Location relative
to the closest

gene

P-value(AD) P-value(BIP) conjFDR(AD&BIP) Effective/
other allele

Direction of
effect in
AD/BIP

rs10792421 11q13.1 63605177 MARK2 Upstream 6.68E-05 2.16E-05 3.02E-02 G/A +/+

rs11649476 16q22.2 70736752 VAC14 Intronic 1.35E-05 2.98E-05 2.18E-02 T/C −/+

(Goldstein et al., 2009; Heneka et al., 2015), and clinical (Gold
and Budson, 2008; Martino et al., 2015; Godefroy et al., 2016)
links between the diseases. However, we do not find an overall
genetic correlation as assessed with cross-trait LDSR (Bulik-
Sullivan et al., 2015). Also, one of the two jointly associated SNPs
demonstrates effects in opposite directions. These findings are
compatible with a scenario where the polygenic overlap between
AD and BIP involves a mixed direction of effects of the implicated
SNPs yielding no genome-wide correlation (Frei et al., 2018).
Thus, absence of an overall genetic correlation between brain
disorders, as evident for several traits (including AD and BIP)
in the study of Anttila et al. (2018), does not imply lack of
genetic overlap.

The loci implicating the MARK2 and VAC14 genes were jointly
associated with AD and BIP (Table 1). Both genes are widely
expressed in the human brain throughout life (Supplementary
Figures 3, 4), which implies a spatial and temporal relation
to both neurodevelopmental and neurodegenerative processes.
The locus implicating the MARK2 gene (rs10792421) had
a concordant direction of effect in both traits (Table 1).
The MARK2 gene encodes the microtubule affinity regulating
kinase 2 (MARK2). The kinase is involved in a diversity of
neuronal cellular processes, including neuronal migration, and
tau phosphorylation (Matenia and Mandelkow, 2009). Migration
of immature neurons is necessary for corticogenesis (Kon
et al., 2017). BIP is considered a neurodevelopmental disorder
partly because of previous findings of cortical cell migration
abnormalities (Sanches et al., 2008; O’Shea and McInnis, 2016).
Abnormal neuronal migration might also be involved in later
stages of life among patients with AD (Reiner et al., 2009).
Tauopathy is one of the pathophysiological hallmarks of AD
(Jack et al., 2013). Gu G.J. et al. (2013) demonstrated that
MARK2 increases the phosphorylation of tau in situ and found
interactions between MARK2 and tau in postmortem human AD
brain tissue. The role of tauopathy has also been explored in BIP.
A study of cerebrospinal fluid among younger patients with BIP
(Jakobsson et al., 2013) and a similar study of elderly patients with
BIP and mild cognitive impairment (Forlenza et al., 2016) did
not find any evidence of tauopathy. However, in another study,
the total to phosphorylated tau ratio was reduced among patients
with BIP carrying the risk allele of a common variant related to
the previously discovered BIP risk gene CACNA1C (Jakobsson
et al., 2016). A similar reduction was not found among healthy
controls carrying the same risk allele. These findings suggest an
alteration in the regulation of tau phosphorylation in carriers
of the risk allele that is restricted to patients with BIP. Further
studies should explore whether interactions with other genes

involved in regulation of tau phosphorylation, like the MARK2
gene, could explain the specificity of the finding to patients with
BIP. Lithium has several molecular targets including inhibition
of glycogen synthase kinase 3β (Freland and Beaulieu, 2012).
Evidence is conflicting on whether glycogen synthase kinase 3β

in turn inhibits or activates MARK2 (Kosuga et al., 2005; Timm
et al., 2008). Consequently, it is unknown whether treatment with
lithium could result in reduced or increased phosphorylation
of tau among carriers of the common variant related to the
MARK2 gene.

The intronic variant within VAC14 (rs11649476) was
related to AD and BIP with opposite directions of effects.
The same variant was shared between BIP and intelligence
with concordant direction of effects in a recent study
using conjunctional FDR (Smeland et al., 2019). VAC14
encodes a part of the PIKfyve protein kinase complex, which
phosphorylates phosphatidylinositol 3-phosphate [PI(3)P] to
phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] (McCartney
et al., 2014). PI(3,5)P2 is involved in endosomal homeostasis
(Di Paolo and De Camilli, 2006). A null mutation of VAC14
in a mouse model resulted in perinatal death and massive
neurodegeneration with vacuolated neurons (Zhang et al.,
2007). Amyloid precursor protein (APP) is a transmembrane
protein involved in the pathophysiology of AD (O’Brien and
Wong, 2011). Balklava et al. (2015) found that APP interacts
with the PIKfyve complex to maintain endosomal homeostasis
in C. elegans. They postulated that aberrant processing of
APP contributes to the pathophysiology of AD through a
cascade of reduced activation of PIKfyve, reduced levels of
PI(3,5)P2, endosomal dysfunction, and reduced clearance of
beta amyloid. Another example of the relationship between
the processing of phosphoinositides and APP comes from a
study of Miranda et al. (2018). They found that inhibition of
Vps34, a kinase phosphorylating phosphatidylinositol (PI) to
PI(3)P, causes endolysosomal dysfunction with secretion of
exosomes containing APP C-terminal fragments. Knowles et al.
(2017) recently reported that serum levels of PI, the precursor
of phosphoinositides like PI(3)P and PI(3,5)P2, is negatively
associated with a proxy of genetic susceptibility to BIP.

Some of the genes implicated by the novel loci identified
by conditional FDR analyses (Supplementary Tables 1, 2
and Supplementary Figures 1, 2) also relate to known
pathophysiological and clinical features of AD and BIP. The
PRKCA gene encodes the protein kinase C alpha (PKCa). PKCa
is described in amyloid plaque of patients with AD (Clark
et al., 1991) where it could contribute to reduced synaptic
activity (Alfonso et al., 2016). The PRKCA gene is higher
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expressed in bipolar mania compared to unipolar depression
(Wang et al., 1999), and is lower expressed in fibroblasts of
patients with BIP treated with lithium compared to those
treated with other medications (Kittel-Schneider et al., 2016).
Common genetic variants implicating the PRKCA gene are
in healthy individuals associated to impairment of episodic
memory (MacLeod and Donaldson, 2014). Variants within the
KIAA1109 gene are in family studies associated with multi-
system syndromes characterized by impaired neurodevelopment
(Alazami et al., 2015; Gueneau et al., 2018), while the MTSS1L
gene is associated with neurodegeneration in a consanguineous
family study (Alazami et al., 2015). The STARD9 gene is
necessary for spindle assembly during cell division in human
development, and a mutation in the gene might cause a syndrome
with intellectual disability (Okamoto et al., 2017). The locus
implicating the AK091365 gene was previously associated with
general cognitive function when conditioned on association with
schizophrenia (Smeland et al., 2017), which in turn has a high
genetic correlation with BIP (Bulik-Sullivan et al., 2015). The
SSBP2 gene encodes the single strand DNA binding protein 2,
which protects telomeres in a mouse model (Gu p. et al., 2013).
In a Mendelian randomization study, Zhan et al. (2015) found
that telomere length is causally related to AD. Telomere length
is probably not reduced in most patients with BIP (Colpo et al.,
2015; Darrow et al., 2016), however; one study found that patients
with BIP treated with lithium had longer telomeres compared
to patients not receiving lithium (Powell et al., 2017). The
RCOR2 gene product is related to cortical development (Wang
et al., 2016b) and inflammation (Alvarez-López et al., 2014) in
mice. The GRIN2A gene encodes the GluN2A subunit of the
N-methyl-D-aspartate (NMDA) receptor. The NMDA receptor
is central for synaptic plasticity and learning (Li and Tsien,
2009). Memantine, an NMDA receptor antagonist, probably
reduces cognitive decline (Reisberg et al., 2003; Howard et al.,
2012) and neuropsychiatric symptoms (Maidment et al., 2008)
in AD. Ketamine, another NMDA receptor antagonist, can give
short term remission of depression in BIP when used as an
add-on to mood stabilizers (Diazgranados et al., 2010; Zarate
et al., 2012). Mutations in GRIN2A are previously associated
with a range of neuropsychiatric phenotypes including mental
retardation, epilepsy, schizophrenia, and BIP (Itokawa et al.,
2003; Yuan et al., 2015).

Some of the genes implicated both at genome-wide
significance in previously GWASs and by conditional FDR
in the present study also have pathophysiological and clinical
plausibility. The expression of TRANK1 is decreased in induced
pluripotent stem cells derived neurons carrying the common
variant found in our study (rs9834970). Decreased expression
of TRANK1 alters the expression of other genes related to
neuronal development and differentiation (Jiang et al., 2018).
Chronic treatment with sodium valproate, a mood stabilizer
used in BIP (Macritchie et al., 2001), normalizes the expression
of TRANK1 (Jiang et al., 2018). The CNTNAP5 gene encodes
a transmembrane protein of the neurexin family, which is
related to cellular adhesion and intercellular communication
(Traut et al., 2006). Common variants implicating CNTNAP5
have previously been associated with the posterior cortical

atrophy variant of AD (Schott et al., 2016), BIP (Djurovic
et al., 2010), and response to antipsychotic treatment in
schizophrenia (Yu et al., 2018), while rare variants within
CNTNAP5 have previously been associated with autism
spectrum disorders (Pagnamenta et al., 2010). The NCAN gene
is involved in neuronal adhesion and migration (Raum et al.,
2015). Common variants implicating NCAN are associated
with cognitive performance (Raum et al., 2015) and limbic
gray matter volumes (Dannlowski et al., 2015) in healthy
individuals, while a rare variant is associated with dyslexia
(Einarsdottir et al., 2017).

Further experimental studies should examine the implications
of our findings. It is unknown if the loci implicated by
condFDR and conjFDR relate to altered levels of gene expression,
pathophysiological processes (e.g., impaired neuronal migration,
tauopathy, and disturbed endosomal homeostasis), clinical
features (e.g., cognitive and affective symptoms), and treatment
response to lithium among patients with AD and BIP. Further,
it is unknown if the loci interact with environmental risk factors
and other genes implicated in AD and BIP.

Our results should be interpreted in light of the following
limitations. We can neither exclude that some of the patients
with AD have had BIP, nor that some of the patients
with BIP will develop AD, which could have confounded
our results. However; this could not explain the finding
in the conjunctional FDR analyses of one locus implicated
in AD and BIP with opposite directions of effect. Due to
linkage disequilibrium among SNPs, our findings do not
necessarily reflect causal variants, or that the same causal
variants are involved in both traits. Although we found
indications of modest polygenic overlap using conditional QQ-
plots (Figure 1), we only detected two genetic loci jointly
associated with both AD and BIP (Figure 2). However, the
observed enrichment suggests that more shared SNPs will
be identified when GWAS sample sizes increase (Schork
et al., 2016). Further, we have only assessed the shared
common genetic variants between AD and BIP. Other genetic
variations, like rare structural variants, are also shown to
increase the risk of AD and BIP (Lord et al., 2014; Cruceanu
et al., 2017). Lastly, most participants in the data used in
our study are of European ancestry. The generalizability of
our findings to samples dominated by participants of other
ancestries is unknown.

CONCLUSION

We find polygenic overlap between AD and BIP and identify
novel loci associated with each trait and jointly with both
traits, providing new insights into their genetic architecture.
The genes MARK2 and VAC14 jointly implicated in AD
and BIP are previously described to be involved in neuronal
migration, tau phosphorylation, and endosomal homeostasis.
Further experimental studies should examine if our findings
translate to altered levels of transcription, pathophysiological
processes, clinical features, and treatment response to lithium
among patients with AD and BIP.
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