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The goal of our research was to develop a compound computational model with the

ability to predict different variations of the “watercolor effects” and additional filling-in

effects that are triggered by edges. The model is based on a filling-in mechanism

solved by a Poisson equation, which considers the different gradients as “heat sources”

after the gradients modification. The biased (modified) contours (edges) are ranked and

determined according to their dominancy across the different chromatic and achromatic

channels. The color and intensity of the perceived surface are calculated through a

diffusive filling-in process of color triggered by the enhanced and biased edges of

stimulus formed as a result of oriented double-opponent receptive fields. The model can

successfully predict both the assimilative and non-assimilative watercolor effects, as well

as a number of “conflicting” visual effects. Furthermore, the model can also predict the

classic Craik–O’Brien–Cornsweet (COC) effect. In summary, our proposed computational

model is able to predict most of the “conflicting” filling-in effects that derive from edges

that have been recently described in the literature, and thus supports the theory that a

shared visual mechanism is responsible for the vast variety of the “conflicting” filling-in

effects that derive from edges.

Keywords: computational models, watercolor effect, filling-in, diffusion process, visual system mechanism

INTRODUCTION

One of the most important goals of the higher levels of visual system processing is to reconstruct an
appropriate representation of a surface after edge detection is performed by early vision. Such tasks
are attributed to the opponent receptive fields in the retina and in the lateral geniculate nucleus
(LGN). The visual system processing involves the cortical double-opponent as well as the simple
and complex receptive fields, which perform non-oriented and oriented edge detection of both
chromatic and non-chromatic edges (von der Heydt et al., 2003).

There are a number of visual phenomena and illusions that can provide information about
the mechanisms that enable the reconstruction of surfaces from their edges. These include the
watercolor illusions (Pinna et al., 2001) and the Craik-O’Brien-Cornsweet illusion (Cornsweet,
1970). In this study we will concentrate mainly on developing a computational model for the
watercolor illusions to include a prediction of “conflicting” watercolor effects.

The Watercolor Effect described in the literature refers to a phenomenon involving assimilative
color spreading into an achromatic area, produced by a pair of heterochromatic contours
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surrounding an achromatic surface area (Pinna et al., 2001;
Pinna, 2008; Devinck and Spillmann, 2009). The coloration
extends up to about 45◦ (visual degree) and is approximately
uniform (Pinna et al., 2001).

There have been many studies that investigated the chromatic
and the luminance parameters required for the two inducing
contours and for the inducing contours and background of
the watercolor effect (Pinna et al., 2001; Devinck et al., 2005,
2006, 2014; Pinna and Grossberg, 2005; Pinna and Reeves, 2006;
Tanca et al., 2010; Cao et al., 2011; Devinck and Knoblauch,
2012; Hazenberg and van Lier, 2013; Coia and Crognale, 2014;
Coia et al., 2014). The conclusion was that even though many
color combinations can produce the effect, the strongest result is
induced by a combination of complementary colors. The studies
of Pinna et al. (2001),Devinck et al. (2005, 2006) characterized
these findings as assimilation effects (i.e., the perceived color is
similar to the color of the nearest inducer). Reversing the colors of
the two inducing contours, reverses the resulting perceived colors
accordingly (Pinna, 2008).

However, a non-assimilation effect of coloration has also been
discussed (Pinna, 2006; Kitaoka, 2007). Pinna (2006) reported
that if one of the inducers is achromatic, while the other is
chromatic, the induced color can be complementary to that
of the chromatic inducer. Kitaoka (2007) demonstrated that a
combination of red-magenta or green-cyan can give rise to a
yellowish coloration, indicating that the perceived effect may
not be completely attributable to assimilation effects. Indeed, an
achromatic watercolor effect has been recently proved to exist,
albeit with a lower magnitude than the chromatic watercolor
effect (Cao et al., 2011).

The only computational model that has been reported to
explain the watercolor effect is called the “Form And Color
And Depth” (FACADE) model (Grossberg and Mingolla, 1985)
and is based on neurophysiological evidence from neurons in
the cortical areas V1–V4 (Pinna and Grossberg, 2005). This
model also attempts to explain a number of other visual
phenomena including the Kaniza illusion (Kanizsa, 1976), neon
color spreading (van Tuijl and Leeuwenberg, 1979), simultaneous
contrast, and assimilation effects. FACADE describes two main
visual processing systems: a boundary contour system (BCS) that
processes boundary or edge information; and a feature contour
system (FCS) that uses information from the BCS to control
the spreading (filling-in) of surface properties such as color and
brightness. According to this model, higher contrast boundaries
in the BCS inhibit lower-contrast boundaries thereby enabling
color to flow out through weaker boundaries.

A number of studies have proposed the FACADE model as a
possible mechanism for predicting the watercolor effect since it
explains some of the properties of the phenomenon (Grossberg
et al., 2005; Pinna and Grossberg, 2005; Pinna, 2006; Tanca
et al., 2010). However, neither the mathematical equations of
the FACADE model nor other previous studies have succeeded
in simulating and predicting all the experimental findings
concerning the watercolor effect. Moreover, the FACADE model
cannot predict the non-assimilative version of the watercolor
effect (Pinna et al., 2001; Kitaoka, 2007; Hazenberg and van
Lier, 2013; Kimura and Kuroki, 2014a). Kitaoka (2007) observed

that in the non-assimilative watercolor effect, the induced color
becomes more prominent when the outer contour has a higher
luminance (and thus a lower-contrast with respect to the white
background) than the inner contour. In this case, the BCS in
the FACADE model would be expected to inhibit the boundaries
of the lower-contrast outer contour and permit the color of the
outer contour to spread out. This prediction is not supported by
the actual perceived color as demonstrated in Figure 5, where
a yellowish color spreads in and there is no perceived magenta
color that spreads out, as the FACADE model would predict.

At present, the visual mechanisms responsible for the
watercolor effect are still unknown and the watercolor effect
“presents a significant challenge to any complete model of
chromatic assimilation” (Devinck et al., 2014).

In their study on the watercolor effect, Knoblauch et al.
(Devinck et al., 2014) summarized the requirements for a future
computational model: “In a hierarchical model, two other steps
need to be considered, surface detection then color filling-in.”

In this study, we present a computational model, which
detects edges through biological receptive fields, modifies them,
and then applies them as a trigger for a diffusive filling-in process.
The objective of the model is to predict both the assimilative and
the non-assimilative configurations of the watercolor effect.

COMPUTATIONAL MODEL

The main building blocks of the model are: (A) The inducing
stimulus (B) The chromatic and achromatic opponent receptive
fields (RFs). (C) The oriented double-opponent RFs, which
detect chromatic and achromatic edges. (D) Calculation of
the modification value through determination of the dominant
chromatic/achromatic stimulus edge among several edges, which
have different spatial scales. (E) Calculation of the new modified
edges that trigger a diffusive filling-in process. (F) The filling-
in process, performed by solving the Poisson equation. (G)
The perceived afterimage of both the assimilative and the non-
assimilative watercolor effects (Figures 1A-G).

Model Assumptions
The model is based on the following assumptions: (A) The visual
system needs to reconstruct surfaces that are not represented in
the early vision stages, which perform chromatic and achromatic
edge detection (in the retina and the cortical V1 and V2 areas). In
addition, we assume that in cases such as the watercolor stimuli,
the visual system performs filling-in processes in order to make
an “educated guess” and to reconstruct surfaces. (B) Each edge
triggers a diffusion process and determines its color (Cohen-
Duwek and Spitzer, 2018). (C) The trigger for the diffusion
process is determined by the interactions between the gradients
of the image, i.e., the gradients between the inner contour (IC)
and the outer contour (OC), the gradients between the IC and
the background, and between the OC and the background. The
exact contribution of each gradient is determined automatically
according to the chromatic and achromatic stimulus. (D) The
visual system uses separated chromatic opponent channels [L/M,
(L+M)/S and achromatic], in order to process each contrast
color pathway separately (Kandel et al., 2012). This assumption
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FIGURE 1 | The Flowchart of the suggested filling-in model. (A) The chromatic stimulus. (B) The opponent RFs, which are used as the first derivative in the chromatic

and chromatic channels. (C) The oriented RFs, which represent the real chromatic gradients of the stimulus. (D) The calculation of weight function W for the

modification of the gradients. (E) The calculation of the triggers for the filling-in process, i.e., the real and the modified edges where each of them exists in the x and y

directions. (F) The filling-in process, calculated by the Poisson equation. (G) The solution of the diffusion equation yields to the perceived image.

is in agreement with experimental studies which claimed that
the (L/M) and S-cones are regulated differently with respect to
the watercolor effect (Devinck et al., 2005; Kimura and Kuroki,
2014a,b). (E) The chromatic channels are mediated by the
Luminance channel (the achromatic channel). This assumption
is supported by the observation that there is color spreading in
response to a stimulus where both the IC and OC have the same
color (hue) but a different luminance (Devinck et al., 2006).

Rationale for the Model
The early stages of the visual system, the retina, and the early
visual areas V1 and V2, have receptive fields (RFs) that mainly
detect edges. In the retina, for example, the opponent receptive
fields perform a Difference of Gaussian (DOG) operation, which
is approximately a second spatial derivative while the chromatic
retinal opponent RFs performs derivatives on the color domain.
The simple and complex RFs in the V1 and V2 areas perform
oriented edge detection. It has been assumed that at higher visual
processing levels, the system acts to reconstruct the surfaces that
are not represented (lacked) by the early visual areas. In order to
perceive the physical world and not only its edges/gradients, the

system (visual system) needs to reconstruct the image from its
edges (von der Heydt et al., 2003). Tomimic the original surfaces,
the system could use the image’s original gradients (in a similar
fashion to that used in the engineering world, i.e., by solving
the Poisson equation or by any parallel method (Bertalmio
et al., 2000; Pérez et al., 2003). However, we now believe that
in addition, the visual system also performs additional tasks,
which can be regarded as “educated guesses” in order to enhance
important information in the scene. Examples of such “educated
guesses” include: edge completion, detection of occluded objects
in the image, and the interpretation of specific gradients as
indicative of adjacent surfaces. The watercolor stimulus is such
an example of specific edges, where the visual system supplies a
guess regarding the chromatic surface. We suggest here, that this
educated guess calculation is achieved bymodifying the gradients
and modifying the weights of the image gradients. In addition,
we describe a set of rules that determine how the weights are
calculated in the context of the stimulus.

In order to produce the chromatic (or the achromatic)
diffusion process, the visual system needs to enhance or change
the original gradients in order to obtain an image which creates
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the perception and avoids a return to the original image. Based on
psychophysical findings, the model assumes that the chromatic
edges, which determine the filling-in effect, are significantly
influenced by the intensity and by the chromaticity of the
contours (IC and OC) (Pinna et al., 2001; Devinck et al., 2005,
2006; Pinna and Grossberg, 2005; Pinna and Reeves, 2006; Cao
et al., 2011; Hazenberg and van Lier, 2013; Coia and Crognale,
2014; Kimura and Kuroki, 2014a,b).

The Watercolor Stimulus
The input of the model comprises the watercolor stimulus and
its variations, which are composed of a pair of heterochromatic
contours surrounding achromatic surface areas, Figure 1A.

Chromatic and Achromatic Opponent RF
The first component of the model (Figure 1B) is designed to
simulate the opponent receptive fields (Nicholls et al., 2001).
The spatial response profile of the retinal ganglion RF is
expressed by the commonly used DOG. The “center” signals for
the three spectral regions, L, M, and S, (Long, Medium, and
Short wavelength sensitivity, respectively) that feed the retinal
ganglion cells, are defined as the integral of the cone quantum
catches, Lcone,Mcone, and Scone with a Gaussian decaying
spatial weight function (Shapley and Enroth-Cugell, 1984; Spitzer
and Barkan, 2005):

ic = icone ∗ fc; i ǫ {L,M, S}
is = icone ∗ fs; i ǫ {L,M, S} (1)

fj =
exp

(

−(x2+y2)

ρ2
j

)

πρ2j
, j ∈ {c, s}

Where Lc,Mc and Sc represent the response of the center area
of the receptive field of each cell type, Equation 1. Ls,Ms, and Ss
represent the surround sub-region of these receptive fields. ρc and
ρs represents the radius of the center and the surround regions,
of the receptive field of the color-coding cells, respectively. fc and
fs are the center and surround Gaussian profiles, respectively and
∗ represents the convolution operation.

For the center-surround cells, the opponent responses are
expressed as: OPL+M− , OPS+(L+M)− and Y (for the summation
of the L, M, and S channels) in order to express the
Luminance channel.

OPRG : OPL+M− = Lc −Ms (Red− Green channel)

OPBY : OPS+(L+M)− = Sc − (L+M)s (Blue− YellowChannel)

(2)

Y = Lc +Mc + Sc (Luminance channel)

Where Lc,Mc, sc, Ls,Ms, and Sc are the cell responses to the
receptive filled sub-regions: center and surround, Equation (1).

Oriented Double-Opponent RF
The color coding of the opponent receptive fields, Equation
(2), encodes color contrast, but not spatial contrast. In
other words, the color opponent receptive fields are able to

differentiate between colors, but cannot detect spatial gradients
or edges (Conway, 2001; Spitzer and Barkan, 2005; Conway and
Livingstone, 2006; Conway et al., 2010). The double opponent
receptive fields, however, are sensitive to both spatial and
chromatic gradients (Spitzer and Barkan, 2005) since they have
color opponent receptive fields both at the center and in the
surround RF regions (Shapley and Hawken, 2011). A large
number of studies have reported that many double-opponent
neurons are also orientation-selective (Thorell et al., 1984;
Conway, 2001; Johnson et al., 2001, 2008; Horwitz et al., 2007;
Solomon and Lennie, 2007; Conway et al., 2010). Accordingly,
the model takes into account the oriented double opponent RF,
ODO, to the three opponent RF channels,OPL+M− ,OPS+(L+M)− ,
and Y (Conway and Livingstone, 2006), Equation (2). We
modeled this chromatic RF structure, ODOL+M− , ODOS+(L+M)−

and OY by a convolution between the Gabor function and
the opponent responses, Equation (3), Figure 1C. It should be
noted that previous work indicates that by using the linear
Gabor function, we neglect some non-linearities e.g., half wave
rectification in the simple cells and full rectification in the
complex cells, in the neuronal responses (Movshon et al., 1978;
Spitzer and Hochstein, 1985).

ODOL+M− = OPL+M− ∗Gaborodd,θ ,σ
ODOS+(L+M)− = OPS+(L+ M)− ∗Gaborodd,θ ,σ (3)

OY = Y ∗Gaborodd,θ ,σ

Gaborodd,θ ,σ = exp(
−

(

x′2 + y′2
)

2σ 2
)sin(2πx′) (4)

Gaboreven,θ ,σ = exp(
−

(

x′2 + y′2
)

2σ 2
)cos(2π x′)

Where : x′ = xcos (θ) + ysin(θ)

y′ = −xsin (θ) + ycos(θ)

This opponency in both spatial and chromatic
properties produces a spatio-oriented-chromatic edge
detector, Equation (3).

Where θ represents the orientation of the normal to the
parallel stripes of a Gabor function and σ is the standard
deviation of the Gaussian envelope of the Gabor function.

Gradient Weights
We chose to express this property of gradient modification by
adding weighted functions to the Oriented-double-opponent
RF (Figure 1D). The model modifies the original gradients
(Equation 3) by multiplying the double-opponent responses
by the weight function, Equation (6), Figure 1D. In order to
calculate the weight functions, several Gabor-filters on different
scales [different standard deviations, σ , Equation (5)] are
calculated and the maximum response to a specific Gabor RF
scale is chosen as the weight function for each channel separately,
Equation (6). This maximum response represents the dominant
gradient in the image, which is used by the model to determine
the strongest effect on the diffusion process. This determination
of the strongest effect (i.e., the strongest edge in the stimulus) is
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in agreement with previously reported psychophysical findings
(Pinna et al., 2001; Devinck et al., 2005, 2006; Kimura andKuroki,
2014a,b). The multiplication operation of the chosen weight is
done with a 2D Gabor filter, Equation (5). (It should be noted
that we could also obtain good results by making a summation of
the responses from all scales).

RRG,i =
∣

∣OPRG ∗Gaboreven (θ , σi)
∣

∣

RBY ,i =
∣

∣OPBY ∗Gaboreven (θ , σi)
∣

∣ (5)

RLuminance,i =
∣

∣Y ∗Gaboreven (θ , σi)
∣

∣

Where σi represents different standard deviations of the Gaussian
envelope (different scales).

WRG(i, j) = max {RRG,1(i, j),RRG,2(i, j), . . . ,RRG,N(i, j)}
WBY (i, j) = max {RBY ,1(i, j),RBY ,2(i, j), . . . ,RBY ,N(i, j)} (6)

WY (i, j) = max{RLuminance,1(i, j),RLuminance,2(i, j), . . . ,

RLuminance,N(i, j)}

WhereWRG,WBY , andWLum are the maximal responses among
the several scales at each channel.

This calculation is done separately for both the chromatic
channels and the achromatic channels (RG, BY, and Y). After
determining which scale yields the strongest response at each
channel, the three responses are summarized across the channels,
Equation (7), to reflect a combination of all the edges in each
spatial location. In other words, the weight function W, for
each spatial location in the image (or stimulus), is taken as
the normalized sum of the maxima, values from the strongest
response scale, across all the channels, Equation (7).

W = WRG +WBY +WY (7)

This calculation procedure can detect the middle chromatic (or
achromatic) edge between the two contours (IC and OC), which
are the triggers for the diffusion process. This detection is possible
because in most cases, the dominant edge is a coarse edge, which
contains the edge that is adjacent to the inner and the outer
region. The center of this coarse region is often the edge between
the two chromatic contours in the watercolor stimuli.

The Diffusion Triggers (Second Derivative)
The trigger for the diffusion process consists of the sum of
two components: the modification component (β) and the
“real” (α) oriented double-opponent RF component, Equation
(8). These modification components are added separately for
each orientation directions and then, the modified gradients
are convolved again with an odd Gabor filter (in the same
orientation, θ), Equation (10), in order to perform a second
derivative. Both derivative direction (x and y axis, θ = 0 and
θ = π

2 ) are then summarized in order to create the divergence,
Equation (10), Figure 1F, which is then used as the trigger for
the diffusion process in all the required directions, Equation
(10), across each of the channels. The trigger for the diffusion
process is the oriented-double-opponent response, Equation (3),

multiplied by the weight function (W) in each individual channel,
Figure 1E, Equation (8).

TrigRG = ODORG · (α + βW(x, y))

TrigBY = ODOBY · (α + βW) (8)

TrigY = OY · (α + βW)

Where α and β are constants and α > β. TrigRG, TrigBY , and TrigY
are the diffusion triggers in each channel.

Note that the results of the above equations change only the
weights of the ODO (Equation 3) responses, and therefore their
spatial properties and polarities are retained. According to the
suggested model, the prominent gradient makes the strongest
contribution to the filling-in process, Equation (7). However, the
other two gradients also contribute to the filling-in process, due
to the chromatic and achromatic strength of their gradients. This
consideration of the different gradients is in agreement with the
Weber contrast rule (Kimura and Kuroki, 2014a).

Filling-In Process
The filling-in process is expressed by the diffusion (or heat)
Equation (10) (Weickert, 1998), and is determined according
to the weighted triggers, Equation (8), Figure 1E. The model
assumes that the filling-in process represents “isomorphic
diffusion” (von der Heydt et al., 2003; Cohen-Duwek and
Spitzer, 2018), although it does not necessarily negate other
possible filling-in mechanisms, such as “edge integration” (Rudd,
2014). This filling-in process is reminiscent of the physical
diffusion process, where the signals spread in all directions, until
“blocked” by another heat source (image edges). We would like
to emphasize that this type of filling-in infers that the borders
(chromatic or achromatic) do not function primarily as blockers,
but instead they act as heat sources that can trigger the diffusion.
We would like to emphasize that this type of filling-in infers that
the borders (chromatic or achromatic) do not function primarily
as blockers, but instead they act as heat sources that can trigger
the diffusion, and then spread in opposite directions and thus
trap the diffused color. The diffusion spread, therefore, will be
blocked by the heat source, in such a case. These principles are
applied in our model through the well-known diffusion equation
(Weickert, 1998):

∂I
(

x, y, t
)

∂t
− D∇2I

(

x, y, t
)

= hs = −div
(

Trigc
)

;

where c = {L+M−, S+(L+M)−, Y} (9)

where I
(

x, y, t
)

denotes the image in a space-time location
(

x, y, t
)

, D is the diffusion (or heat) coefficient, and hs represents
a heat source. The time course of the perceived image is assumed
to be very fast, in accordance with previous reports (Pinna et al.,
2001). This time course is also termed “immediate filling-in” (von
der Heydt et al., 2003).

Following this assumption, for the sake of simplicity, we can
ignore the fast-dynamic stages of the diffusion equation, and
therefore compute only the steady-state stage of the diffusion
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FIGURE 2 | Illustration of the calculation of the edges for the “heat sources” filling-in process from the stimulus gradients. (A) 1-D achromatic stimulus with white and

black contours. (B) The second derivative of the stimulus (A), with a negative sign. (C) The modified second derivative of the stimulus (A). The arrows indicate the

direction and the color of the diffusion process. The higher heat sources (the gradients in the middle) have a greater influence on the filling-in process.

process. Consequently, the diffusion (heat) Equation (5) is
reduced to the Poisson Equation (10).

D∇2I = −hs = div
(

Trigc
)

; where c = {RG, BY, Y} (10)

D∇2I = div((α + βW) ·ODO) (11)

The “heat sources” are the weighted second derivative of an
opponent channel; Figure 1E (weighted oriented-double-
opponent). The heat equation (diffusion equation) with
heat sources requires second derivatives, reflecting the “heat
generation rate” which is the second derivatives of a heat source.
Because the edges are playing a role as heat sources, the values
near the edges do not decay over time. Since the two adjacent
edges operate as heat sources with opposite signs, the conclusion
is that they are operating with opposite directions, and therefore
the diffusion process of one color (one heat source) cannot
diffuse to the “other” direction. This approach is not consistent
with previous reports that the edges function as borders that
prevent the colors from spreading (Cohen and Grossberg, 1984;
Grossberg and Mingolla, 1985, 1987; Pinna and Grossberg,
2005). In the suggested model the derivatives trigger a positive
diffusion process toward one side of the spatial derivative and
a “negative diffusion” process to the other side of the spatial
derivative, Figure 2 demonstrates this type of diffusion, which is
considered separately for each color channel.

METHODS

In this section we describe each stage of the model’s
implementation in detail.

Opponent RF
For the sake of simplicity, we compute the opponent response
of the opponent receptive fields as color-opponent only, where
each chromatic encoder has the same spatial resolution. This is
computed by an opponent color-transformation (van de Sande
et al., 2010), Equation (12). This transformation converts each
pixel of the image I0, in each chromatic channel R,G, and B into
opponent color-space, via the transformation matrix O (van de
Sande et al., 2010). In order to obtainmore perceptual value in the
luminance channel, we have slightly modified the transformation

matrix O, and use a = 0.2989, b = 0.5870, and c = 0.1140,
instead of using a = b = c = 1/

√
3 as originally reported

(van de Sande et al., 2010). These values are taken from the Y
channel in YUV (or YIQ) color space. The Y represents the Luma
information: Y = 0.2989R + 0.5870B + 0.1140C. IOPPONENT =
OPPONENT{RGB} as follows:

IOPPONENT =





ORG

OYB

OY



 =





1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 −2/

√
6

a b c









R
G
B



 (12)

Another perceptual option for the opponent transformation
matrix is to use the transformation presented by Wandell (1995),

IOPPONENT = MOpponentW{MLMS {MXYZ {RGB}}}

MXYZ =





0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505





MLMS =





0.2430 0.8560 −0.0440
−0.3910 1.1650 0.0870
0.0100 −0.0080 0.5630



 (13)

MOpponentW =





1 0 0
−0.59 0.80 −0.12
−0.34 −0.11 0.93





IOPPONENT =





OY

ORG

OYB



 =





0.2814 0.6938 0.0638
−0.0971 0.1458 −0.0250
−0.0930 −0.2529 0.4665









R
G
B





(14)

These matrix values are calculated from the linear conversion
of the RGB color space to the XYZ color space, which is then
converted to the LMS color space to which we apply the opponent
transformation fromWandell (1995), Equation (13).

where ORG, OYB, and OY, Equations (12–14) are the
new channels of the transformed image IOPPONENT. R, G,
and B are the red, green, and blue channels of the input
image I, respectively.
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Oriented Opponent and
Double-Opponent RF
The oriented opponent RFs are modulated as convolution
between each opponent channel and an odd Gabor function,
Equation (4). For the sake of simplicity, we discretized the Gabor
function and instead of computing the exact Gabor functions,
we used a discrete derivative filter in two directions, vertical (y-
axis, θ = 0), and horizontal (x-axis, θ = π

2 ), Equations (15–16)
(Gonzalez and Woods, 2002).

Gaborodd,x ≈ Godd,x = [−1, 1] ; Gaborodd,y ≈ Godd,y = [
−1

1
] (15)

Gaboreven,x ≈ Goeven,x = [−1, 2,−1] ; Gaboreven,y ≈ Geven,y = [

−1

2

−1

]

(16)

The above discretization of the Gabor filters: Godd,x and Godd,y

also represent the discrete gradient operator ∇ :

∇I = (∇xI,∇yI) = (I ∗ Godd,x, I ∗ Godd,y) (17)

The structure of the oriented-double-opponent receptive field
can be seen as a filter which acts as a second derivative in both
the spatial and chromatic domains.

Weights of Modified Edges
In order to calculate the response of an opponent channel to a
Gabor RF on different scales, Equation (5), we use a Gaussian
Pyramid (Adelson et al., 1984). In this way, the image is down-
sampled instead of up-sampling the Gabor filter.

Rc,i =
∣

∣GaussianPyramid{OPc}σi ∗ Gaboreven (θ)
∣

∣ (18)

Filling-In Process
The divergence operator, div Equation (10), is computed as:

div (F) =
∂F

∂x
+

∂F

∂y
= F ∗ Godd,x + F ∗ Godd,y (19)

Where F is an image input.
Therefore, Equation (10) can be written as:

△Iop = ∇2Iop = div(Trig) = Trigx ∗ Godd,x + Trigy ∗ Godd,y

(20)

Parameters
We performed a set of simulations in order to determine the
constants α and β . We found that increasing the β parameter
(increasing the weight of the modified gradient, ODO, Equation
8) increases the saturation of the predicted result (since the level
of the relevant gradient is increased). This means that choosing
a higher value for β increases the saturation of the filled-in
predicted color and also increases its intensity while preserving
its hue. The α parameter affects the magnitude of the original
gradient of the original stimulus. We arrived at the conclusion
that the ratio between α and β determines the level of the filled-in
predicted saturation. In all the simulations presented here α = 1
and β = 0.5.

Comparison to Psychophysical Findings
In order to compare the predictions of the model to
psychophysical findings we created sets of images that contain the
same color values that have been used in previous psychophysical
experiments (Devinck et al., 2005; Kimura and Kuroki, 2014b).
Each color value used in the stimulus was converted from the CIE
Lu’v’ 1976 color space to the sRGB color space, in order to create
the input images for the model. The model was then applied to
each image stimulus, and the predicted colors were calculated and
converted back to the CIE Lu’v’ 1976 color space. These CIE Lu’v’
1976 color values are presented in the results section.

RESULTS

The results present the simulations of the model through its
equations (according to the Methods section) implemented by
MATLAB software. The model’s equations were solved in a
similar way to that reported in “Methods for Solving Equations”
(Simchony et al., 1990) but another option was through “Poisson
Image Editing” (Pérez et al., 2003).

Model’s Simulation and Predictions
The model and simulation results (Figure 1G) are divided into
three parts. The first part presents the model predictions for the
assimilative (classic) watercolor effect. The second part presents
the predictions of the model for the non-assimilative (non-
classic) watercolor effect, while the third part presents the model
predictions that relate to additional properties of the watercolor
effect: the influence of the background luminance, and the effect
of the inner color luminance on the perceived hue and the
perceived brightness (Devinck et al., 2005, 2006; Cao et al., 2011;
Kimura and Kuroki, 2014a,b).

Predictions—Assimilative (Classic) Watercolor Effect
The model simulations were tested on a large number of classic
stimuli with a variety of chromatic thin polygonal curves (e.g.,
star shapes) that produce the watercolor effect. Figure 3 shows
that the model succeeded in predicting the correct coloration
of the classic assimilative watercolor effect. Note that the most
of the assimilative watercolor effects present the complementary
colors of the IC and the OC (the IC and the OC color are
complementary in these stimuli). Our model indeed predicts a
strong filling-in color response to such stimuli, Figures 3A–C.

Figure 3 demonstrates that the filling-in perceived color is
more prominent in the predicted result (right side), which
represents the model prediction for the corresponding stimulus,
i.e., the original stimuli (left side). The filling-in effect of the
stimuli with orange and purple polygonal edges were obtained
as expected, Figure 3A, as well as a reddish color and cyan,
Figure 3B. The level of saturation in the simulation results
can be controlled by the parameters α and β , Equation (8).
We also tested our model with achromatic watercolor stimulus.
Figure 3C shows that the model correctly predicts a perceived
darker or lighter inner area, according to the luminance of the
inner contour.
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Comparison to psychophysical findings
We confronted our model predictions with quantitative
psychophysical results (Devinck et al., 2005). Figure 4 presents

FIGURE 3 | The model’s predictions for assimilative watercolor stimuli. (A) The

classic watercolor stimulus (left) and the model’s predictions (right). (B)

Additional example of an assimilative watercolor stimulus (left), with different

colors, and the model’s predictions (right). (C) An example of achromatic

watercolor stimulus (left) and the model’s predictions (right). Our model

predicts that in the assimilative watercolor stimuli, the inner contour color is

spread to the inner area of the stars.

the predictions of the model in CIE Lu’v’ (1976) coordinates
instead of RGB images, see Methods. In order to enable
the comparison between the model predictions and the
psychophysical results, we applied the same set of colors as
described in Devinck et al. (2005), as parameters to our model,
see Methods.

Figure 4 demonstrates the comparison of the model
prediction with Devinck et al. (2005) findings, which tested
the assimilative effect on three pairs of colors: Orange and
Purple, Red and Green, and Blue and Yellow. Note that, the
psychophysical findings are obtained from a hue cancellation
test and therefore represent the complementary colors of the
perceived colors; however, our results represent the predicted
perceived colors. Most of the predicted colors, Figure 4A, are
in agreement with the psychophysical findings, Figure 4B. Only
in the orange and the purple stimuli pair the predicted color is
slightly more yellowish then in the psychophysical findings for
the IC: Orange OC: Purple stimulus (Figure 4A top left) and
slightly more bluish then in the psychophysical findings for the
IC: Purple OC: Orange stimulus (Figure 4A top right).

Predictions—Non-assimilative (Non-classic)

Watercolor Effect
We also tested two known versions of the non-assimilative
watercolor effect (Pinna, 2006; Kimura and Kuroki, 2014a). In

FIGURE 4 | Comparison between the predictions of the model and the psychophysical findings of the assimilative effect, both presented in u’v’ (CIELu’v’ 1976) color

space. The prediction of the model (A) and the chromatic cancelation data (B) that are taken from Devinck et al. (2005). Each row (A,B) presents a pair of IC and OC

colors, which are orange–purple, red–green, and blue–yellow, respectively. The colored dots (A) represent the predicted results. The colored lines (A) represent the

hue line of the IC contour color that was used in each pair of contours.
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FIGURE 5 | The model’s predictions for non-assimilative watercolor stimuli.

Each row presents different color variation of the inner and outer contours

(A–C). Column I presents color configurations which produce a perceived

non-assimilative effect, while column II presents color configurations that

produce a perceived assimilative effect, even though the diffused perceived

color does not reflect the color of the inner contour only. The colors predicted

by the model are yellowish in the non-assimilative configurations (I), and

blueish in the opposite assimilative configuration (II).

this case, we chose to test the three chromatic stimuli colors
as tested originally by Kimura and Kuroki (2014a) for the
non-assimilative watercolor effect. The stimuli in these versions
have chromatic and achromatic edges/contours (Figure 5A) or
specific pairs of colors (Figures 5B,C).

Kimura and Kuroki (2014a,b) psychophysically tested
stimuli similar to those in Figures 5A,B and found that the
induced colors were yellowish. The psychophysical results also
demonstrated that a stimulus such as that in Figure 5A (left star),
yielded a complementary color (yellowish) to the OC (bluish).
Our model correctly predicts these complementary perceived
coloration effects (filling-in effect), Figure 5A (left star).

Again, in accordance with psychophysical findings, our
model could also correctly predict the influence exerted by the
location of the chromatic contours, as to whether the same or
complementary filling-in color is perceived in the inner area
(Pinna, 2006; Kimura and Kuroki, 2014a), Figure 5A.

Kimura and Kuroki (2014a) observed that the perceived
colors were not necessarily the “same” as or “complementary”
to the IC/OC, but could be a combination of the IC and OC
colors, Figures 5B,C (left stars). In agreement, the model results
(Figure 5II) show indeed that the perceived color is determined
by combination of the outer and the inner contours. In Figure 5B
(left star), for example, the red IC contributes the same (red)
color to the coloration effect, while the magenta OC contributes
its complementary color (green). An additive combination of red
and green colors yields a perceived yellowish coloration (Berns,
2000). These results are consistent with the model principles
and Equations [Filling-in process; Equation (10)], such that both
the IC and OC contours contribute as triggers to the filling-in
process. The model correctly predicts the general trend that has
been shown in previously reported experimental results (Pinna
and Reeves, 2006) where the perceived chromatic filling-in color

was determined by the combined influence of the chromatic and
achromatic edges.

Comparison to psychophysical findings
Furthermore, we confronted our model predictions with
quantitative psychophysical results (Kimura and Kuroki, 2014b).
In order to enable the comparison between the model predictions
and the non-assimilative watercolor effect experiment results,
we applied the same set of colors as described in the results
of Kimura and Kuroki (2014b), as parameters to our model,
see Methods.

The psychophysical experiments of Kimura and Kuroki
(2014b) investigate both the assimilative and the non-assimilative
effects as well as the role of intensity in the perceived effect.
Figure 6 presents the model predictions and the results of
Kimura and Kuroki (2014b) on a large repertoire of stimuli.

Figure 6 presents the predicted (A) and experimental results
(B) of stimuli that share the same IC color at each sub-figure
while the experiment tested 8 different OC colors. The top row
presents the results for the red IC color and the bottom row
presents the result for the achromatic IC color, while the outer
color was presented with different chromatic colors. Left column
presents the result when the IC color has a higher luminance level
and the right column present the results when the IC color has a
lower luminance level.

The stimuli with higher luminance of the red IC (Figure 6B)
yielded perceived colors which were ranged from red to orange.
Therefore, this trend of results shows an assimilative reddish
color effect. The predicted result (Figure 6A) shows assimilate
effects in adjustment to the red line. However, the perceived
color is more reddish than orange as in the experimental results
(Figure 6B). The stimuli with lower luminance of the red IC
(Figure 6B) yielded an oval shape adjacent to the -S line. Our
result also predicts an oval shape, but the shape is adjacent to
the L line. It will be discussed in Discussion. The stimuli with
higher luminance of the achromatic IC yielded a small magnitude
of the perceived effects, in both the experimental (Figure 6B) and
the predicted (Figure 6A) results. However, in the experimental
results the effects slightly tend to be yellowish, while in the
predicted results the effect is almost invisible (no filling-in effect).
The stimuli with lower luminance of the achromatic IC also
yielded a yellowish perceived color in the experimental results. In
the predicted result the predicted colors are the complementary
colors of the OC. It has to be noted that the achromatic
configuration of the experimental result were tested also in
additional studies such as Pinna (2006) and Hazenberg and van
Lier (2013), and their trend of results are in better agreement with
the prediction of the model (Figure 6A), see Discussion.

The Role of the Luminance Contrast Between the IC

and the OC
Having discussed the model’s predictions to highly saturated
stimuli from the literature with different variations of chromatic
properties (Figures 3, 5) we then tested the model’s predictions
for stimuli with different luminance as well as different chromatic
properties. Devinck et al. (2005) and Pinna et al. (2001)
showed that the magnitude of the filling-in effect increases with
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FIGURE 6 | Comparison between the predictions of the model and the psychophysical findings for the assimilative and non-assimilative effects. The prediction of the

model (A) and the chromatic cancelation data (B) where done for 8 different colors of the OC, similarly as Figure 4 Kimura and Kuroki (2014b). Top row (A,B)

presents the experimental (B) and the predicted (A) results to stimuli with red IC. Bottom row present the experimental (B) and the predicted (A) results to stimuli with

achromatic IC and the 8 different colors for the OC. In the left Column at each subfigure (A,B) the luminance of the IC is higher than the luminance of the OC. In the

right column at each subfigure (A,B) the luminance of the IC is lower than the luminance of the OC as in Kimura and Kuroki (2014b).

FIGURE 7 | The role of the luminance level of the IC and the OC. In both

stimuli (I,II) the hue of the IC is reddish and the hue of the OC is bluish, but with

a different level of luminance intensity. In stimulus I, the IC has a low luminance

level (dark red), while the OC has a high level of intensity. The predicted color is

yellowish (I right), thus the perceived effect is a non-assimilative effect. In

stimulus II, the IC has a high luminance level, while the OC has a low intensity

(dark blue). The predicted color is reddish (II right), thus the perceived result is

due to an assimilative effect.

increasing luminance contrast between the relevant contours.
Our model predicts this effect of luminance contrast between
the IC and OC. Figure 7 presents the model predictions to a
“switching” effect (non-assimilative: Figure 7I vs. assimilative:
Figure 7II) whereby the luminance contrast determines whether
the perceived effect will be assimilative or non- assimilative
(Kimura and Kuroki, 2014a). Even though the IC color in
both stars is reddish and the OC color blueish, the predicted
colors are different (pale yellowish in the left star and pale
reddish in the right star), Figure 7. It should be noted that
in this case, the model’s prediction is in agreement with
the experimental results of Kimura and Kuroki (2014a) that
showed that the luminance condition suitable for the non-
assimilative color spreading is the reverse (in their Weber

contrast) of the assimilative color spreading. We argue that
these experimental findings (Kimura and Kuroki, 2014a) shed
a new light on the common assumption in the literature
that assimilative and non-assimilative are different effects and
are derived from different mechanisms (Kimura and Kuroki,
2014a,b). This topic will be discussed in more detail in
the Discussion.

An additional important finding relates to the claim that only
the assimilative type of watercolor effect is possible when the IC
and the OC have the same level of luminance (Devinck et al.,
2005). Accordingly, ourmodel predicts that the assimilative effect
should be perceived under such iso-luminance conditions and
also predicts that the effect will be weaker than when the IC and
the OC have different luminance values.

The Role of the Luminance Contrast Between the

Background and the Contour
Several experimental studies that tested the role of background
luminance on the perceived watercolor effect (Devinck et al.,
2005; Cao et al., 2011; Kimura and Kuroki, 2014a) reported that
the luminance contrast between the IC and the background, and
between the OC and the background have a significant influence
on the perceived effect.

Figure 8A presents the model’s predictions for a response to
the same stimuli used by Kimura and Kuroki (2014a), indicating
that when the background is white (high luminance), the
perceived color is yellowish. In contrast, when the background
is darker (low luminance, Figures 8A,B), there is a tendency to
a more greenish perceived color. This is because a change in the
luminance of the background produces a change in the contrast
between the contours (IC and OC) and the background, which in
turn, influences the perceived effect. Importantly, the changes in
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FIGURE 8 | The influences of the background luminance and the luminance

ratio between the IC and the OC on the predicted filling-in colors. The left

column (Stimulus) presents the original stimuli. The right column (Prediction)

presents the model’s predictions. The IC/OC ratio is higher in rows (A) than in

rows (B), because the IC is darker in (B) than in (A). When the IC is darker (B),

the predicted color is greenish (more prominent in the predicted images,

Prediction), while when the IC is lighter (A) the predicted color is yellowish,

when the background luminance is high (A: upper left, Prediction) and

greenish when the background is darker.

perceived color predicted by the model were in accordance with
the experimental results (Kimura and Kuroki, 2014a).

Figure 8B demonstrates that there are three options for
luminance contrast that play a role in the watercolor effect.
The first one is the contrast between the IC and the OC,
the second, the contrast between the IC and the background,
and the third one is the contrast between the OC and the
background. In Figure 8B the luminance of the IC is lower
than in Figure 8A. As a result, the perceived filling-in color
appears greenish in the stimulus with the white background (high
background luminance). In contrast, the perceived filling-in
color in Figure 8A appears yellowish. These perceived coloration
effects were intensified in the model’s simulation (Figure 6 right)
and support the suggestion that both the background and the
luminance ratio between the IC and the OC contribute to the
perceived effect. These predictions are in agreement with the
psychophysical findings of Kimura and Kuroki (2014a).

DISCUSSION

We present here a generic computational model that describes
the mechanisms of the visual system that activate the creation of
chromatic surfaces from chromatic and achromatic edges. Our
hypothesis was that these mechanisms can be revealed through a
study of visual phenomena and illusions, such as the assimilative
and non-assimilative watercolor effect and the Craik–O’Brien–
Cornsweet (COC) illusions. The suggested model can be divided

into two stages (or components). The first component determines
the dominancy of the edges that trigger a diffusive filling-in
process. The second component performs the diffusive filling-in
process, which triggers the diffusion by heat sources. This process
is modeled by the Poisson equation. The diffusion process is
actually the same mechanism described for the afterimage effect
(Cohen-Duwek and Spitzer, 2018).

In order to test the hypothesis, we developed a computational
model that is able to predict both the assimilative and the non-
assimilative watercolor effects. The model predictions, which are
supported by psychophysical experiments (Pinna et al., 2001;
Devinck et al., 2005, 2006; Pinna and Grossberg, 2005; Pinna
and Reeves, 2006; Cao et al., 2011; Coia and Crognale, 2014;
Kimura and Kuroki, 2014a,b), argue that both the assimilative
and non-assimilative watercolor effects are derived from the
same visual mechanism. In addition, the model can successfully
predict quantitatively and qualitatively the psychophysical results
reported by many researchers, such as the influence of the
background luminance, contour intensities, contour saturations,
and the relationship between them (Pinna et al., 2001; Devinck
et al., 2005, 2006; Pinna and Grossberg, 2005; Pinna and Reeves,
2006; Cao et al., 2011; Coia and Crognale, 2014; Kimura and
Kuroki, 2014a,b).

Comparison to Other Models
The only computational model in the literature, that is relevant
to the watercolor effects, is the FACADE model (Pinna and
Grossberg, 2005). In a more recent publication of Pinna and
Grossberg (2005), the FACADE model was challenged by testing
several stimulus parameters acting in the watercolor effect, such
as the role of the contrast between the IC and the OC, the
role of the background luminance, and different shape variations
of the stimulus. While the FACADE model could predict the
results of the stimuli on the assimilative watercolor effect it
was not designed to, and indeed was unable to, predict the
non-assimilative watercolor effect and its properties.

The FACADE model comprises two components. The first
component, the BCS, detects the borders that block the diffusion
process. The second component, the FCS, spreads the color to
all directions until it is blocked by edges. The FACADE model
is unable to predict the non-assimilative effect first because the
spread of color is derived from the chromatic surface itself, and
there is no mechanism that creates complementary colors. A
second reason is that the border, which is detected by the BCS,
prevents the OC color of the watercolor effect from spreading
inside the inner area of the stimulus.

The ability of the FACADE model to predict only the
assimilative effects (Pinna and Grossberg, 2005; Pinna, 2006;
Cao et al., 2011; Kimura and Kuroki, 2014a,b) has contributed
significantly to the general consensus in the literature that
the assimilative and non-assimilative effects are derived from
different mechanisms. In contrast, Kimura and Kuroki (2014a)
found strong psychophysical evidence that assimilative and non-
assimilative effects both share the same Weber contrast rule
under specific psychophysical constraints. However, despite these
Weber rules, they concluded that the effects might still involve
different mechanisms.
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Unlike FACADE, two factors allow our model to predict the
non-assimilative watercolor effect. First, each edge in the stimulus
triggers a diffusion process. Therefore, each edge contributes
to the achromatic areas i.e., the inner area and the outer area.
The color adjacent to the achromatic area contributes its color
i.e., triggers a diffusion process of the same color, to this area;
while the color in the other side of the edge contributes the
complementary color to the same area. In other words, the
color in the outer side of an edge triggers a diffusion process of
its complementary color. The reason why the complementary
color is obtained from the model is explained in the Model
section. The exact colors that will be spread are calculated by
the responses of the double-opponent RFs, Equations (8–10).
The resultant colors, are therefore not necessarily exactly the
“same” or “complementary” to the IC/OC, but rather a linear
combination of the colors of the IC and the OC. In addition, the
model assumes that the main role of the contours is to trigger
the diffusion process as “heat sources,” (Equation 10), and not as
primarily designed to block the diffusion process.

It could be claimed that additional computational models that
have been suggested for edge integration should be regarded here
as competitors, which can explain this filling-in mechanism of
chromatic and achromatic surfaces. Rudd (2014) summarized
and discussed several computational models designed to perform
the edge integration function in the visual system. He argued
against the idea that the filling-in effect results from the activation
of a low visual spatial frequency channel, due to the fact that the
spatial extent of the filling-in effect is far larger than the area or
distance spanned by the lowest spatial frequency filters in human
vision (about 0.5 cycle/degree) (Wilson andGelb, 1984). It should
be noted that the watercolor effect has been shown to spread over
45◦ (Pinna et al., 2001), a spatial range that is not consistent with
a low spatial frequency of the visual system.

Although Rudd (2014) also argued against the diffusive filling-
in mechanism, we believe that his justification was based on
the specific diffusive FACADE model suggested by Grossberg
and his colleagues (Grossberg and Mingolla, 1987; Grossberg,
1997; Pinna and Grossberg, 2005). According to FACADE, the
chromatic edges function as borders to block the diffusive
process. If the watercolor stimulus is open (unclosed boundaries),
the FACADE model predicts that the color would leak from
the open ends, which, in reality, does not occur. In contrast,
our diffusive computational model does not fail in such a case.
Figure 9 demonstrates that our model successfully predicts this
effect, because the edges in our model are used as triggers,
Equation (10), rather than borders for diffusion.

Rudd (2014) suggested a qualitative “Edge integration” model,
through long range receptive fields in area V4 (Roe et al., 2012).
Rudd suggested that lightness and darkness “edge integration”
cells in V4 could integrate the responses of V1 simple receptive
fields with a light or dark direction toward the center of the V4
receptive field. An additional neuron in the higher level of the
visual pathway hierarchy then integrates these receptive fields,
and performs a subtraction operation between the lightness
and the darkness “edge integration” receptive fields. This model
qualitatively predicts specific induction effects [Figures 2, 9 in
Rudd (2014)] but fails to predict classic filling-in effects, such

FIGURE 9 | The watercolor effect with open boundaries. The left column

(Stimulus) presents the original watercolor stimulus with open boundaries

(Pinna et al., 2001). The second column (Prediction) presents the model’s

prediction. Even with open boundaries, the filling-in is perceived (Stimulus), as

correctly predicted by the model (Prediction).

as the watercolor illusion that manifest filling-in in all directions
and over very wide spatial regions.

Since Rudd (2014) related the induction effects to filling-
in phenomena, he supplied an additional argument against
the diffusive filling-in model, which is based on the model
of Grossberg (Grossberg and Mingolla, 1987; Grossberg, 1997;
Pinna and Grossberg, 2005). This argument is related to the
FACADE model’s failure to predict the specific induction effects,
[Figure 2 in Rudd (2014)] and Figure 9.

There is currently a disagreement in the literature as to
whether these specific induction effects are the result of a filling-
in mechanism, an adaptation mechanism of the first order
(Spitzer and Barkan, 2005), or a local or (remote) contrast
mechanism (Blakeslee and McCourt, 1999, 2001, 2003, 2008).
We argue that a visual effect may not necessarily be determined
by a single dominant mechanism, and that several mechanisms
could be involved. Different mechanisms could give rise to
contradicting effects on one hand, or alternatively could work
in synergy to enhance the perceived effect. An interesting
question is whether this induction effect can also be predicted
by our proposed model. Figure 10 demonstrates that our filling-
in model can predict the first order variation of the specific
induction effect, [Figure 2 in (Rudd, 2014)]. Since this effect is
predicted by our filling-in model, and also by an adaptation of
the first order model (Spitzer and Barkan, 2005), we believe that
the induction effect can be attributed to both mechanisms.

Experimental results show that the size of the inducer areas
and the size of the induced area play a crucial role in the perceived
induction effect (Shevell and Wei, 1998). The suggested filling-in
model is based on edges that trigger a diffusion process, therefore
the size of the induced area and the size of the inducer area do
not play a role in our filling-in model. However, these two spatial
factors do play a major role in the adaptation of the first order
mechanism (Spitzer and Barkan, 2005).

We believe that there is a certain confusion in the literature
regarding the source and the mechanisms of the induction and
the filling-in effects. Kingdom (2011), for example, argued in
his review that: “. . . ‘filling-in’ of uniform regions is mediated
by neural spreading has been seriously challenged by two sets
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FIGURE 10 | Induction effect and the model’s prediction. (A) The original induction stimulus from Rudd (2014) (Stimulus), and the model’s prediction (Prediction). The

second row (B) presents the luminance of the original image (orange line) and the predicted perceived luminance (at blue line) along the orange and blue axes in (A).

The predicted perceived luminance [demonstrated along the blue line in (A)] is higher than the original luminance [demonstrated along the orange line in (A)] in the left

disk (including the inner circle and the outer ring of the disk), and shows a lower level of luminance than the original value in the right disk.

of findings: 1. That brightness induction is near-instantaneous
and 2. That the Craik–Cornsweet–O’Brien illusion is dependent
on the presence of residual low-frequency information and is
not disrupted by the addition of luminance noise. ‘Filling-in’
should at best therefore be considered as a metaphor for the
representation. . . ”. We argue that these claims are problematic,
based on different psychophysical results (Pinna et al., 2001),
and also query the feasibility of a mechanism, which is based on
spatial filtering.

Kingdom (2011) assumed that these two effects of induction
and other filling-in effects (the COC effect) derive from the
same mechanism. For this reason, he argued against a diffusive
filling-in mechanism, since a diffusive process requires more
time. Kingdom (2011) also based his arguments on the findings
reported by Blakeslee and McCourt (2008) that the temporal
response of the induction effect (simultaneous contrast) lagged
by<1ms. In contrast, Pinna et al. (2001) found that the temporal
response of the watercolor effect is about 100ms. We believe
that there is no contradiction between the two temporal results
(Pinna et al., 2001; Blakeslee and McCourt, 2008), since they are
associated with two different mechanisms, namely induction and
the diffusive filling-in process. The first mechanism (induction
of the first order) (Spitzer and Semo, 2002; Spitzer and Barkan,
2005; Tsofe et al., 2009; Kingdom, 2011) occurs in/at early visual

areas, such as the retina, while the second mechanism (COC
or watercolor, diffusive filling-in) occurs in a higher visual area.
In addition, the spatial filling-in spread of 45◦, reported for
the watercolor illusion cannot be explained by any receptive
field or low-spatial frequency channel of the visual system
(Rudd, 2014).

In this context, we contend that positive and negative
aftereffects (such as in “color dove illusion” and the “stars”
illusion) (van Lier et al., 2009; Barkan and Spitzer, 2017), are
perceived as a result of a diffusive filling-in process that cannot
be explained by any spatial filtering mechanism. The reasons for
this are: (1) The perceived color is obtained in an area that has
not been stimulated by any color, at the time that the color is
perceived [aftereffect with filling-in as in the “color dove illusion”
and Van Lier “stars” (van Lier et al., 2009; Barkan and Spitzer,
2017)]. (2) The location of the achromatic reminder contour
determines and triggers the perceived color. The filling-in model
proposed here shares the same diffusion component, Equation
(10), as suggested for the positive and the negative aftereffects
(Cohen-Duwek and Spitzer, 2018). Although Kingdom (2011)
supported the description of the filling-in and induction events
by the filter models of Blakeslee and McCourt (2008), their
model cannot predict the assimilative and the non-assimilative
watercolor effects, or the aftereffects.
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Predictions for Watercolor Properties
Having discussed the options of various alternative models for
the “filling-in” phenomena, we were interested to test our model’s
predictions with studies that define general properties and rules
for the watercolor effect, although without a computational
model (Kimura and Kuroki, 2014a). We have already described
the success of our model in correctly predicting experimental
results (Kimura and Kuroki, 2014a) demonstrating crucial
properties regarding the strength of the watercolor effect and
its relation to the assimilative and non-assimilative effects.
We explain below how the basic structure of the suggested
model can explain these findings, without requiring any
additional components.

Complementary colors: Several studies have demonstrated
that a maximal filling-in response is perceived when the IC
and the OC have complementary colors (Pinna et al., 2001;
Devinck et al., 2006) and it should be noted that the model
correctly predicts this trend, Figure 6. This can be explained
by the model equations (Equations 3–10), through solving the
Poisson equation. The IC triggers an assimilative filling-in (of
the same color as the IC) toward the inner area, while the OC
triggers a non-assimilative filling-in, with the opposite color to
the IC contour (Figure 2, i.e., its complementary color), toward
the inner area. According to the model, if the color of the OC is
complementary to the color of the IC, the combination of colors
that diffuse to the inner area will be the same as the color of the
IC (assimilative color) and complementary to the color of the OC,
which makes it the same color as the IC again. Consequently, the
perceived color is enhanced.

Luminance contrast: Several studies have reported that the
magnitude of the filling-in effect increases with increasing
luminance contrast between the IC and OC contours (Pinna
et al., 2001; Devinck et al., 2005; Devinck and Knoblauch, 2012).
This property of the luminance contrast is treated similarly to
the chromatic channels. The weights of the modified gradients
calculation, Equations (7–8), gives greater dominancy to the
gradients between the IC and the OC. It is therefore not
surprising that the model correctly predicts the importance of
the luminance contrast, between the IC and the OC, in the
watercolor effect.

Saturation: Devinck et al. (2006) showed that increasing the
saturation of the outer and inner contours increases the shift in
chromaticity of the filling-in effect. This information is included
in the model through the chromatic opponent channel, Equation
(3). Higher color saturation is expressed as a higher response in
the chromatic opponent channels. This property has been tested
and the model predictions show good agreement with the results
of experimental studies.

Weber rule – IC contrast/OC contrast: Kimura and Kuroki
(2014a) reported that the ratio between the IC luminance
contrast and the OC luminance contrast determines the
perceived filling-in effect, Figure 8. The IC contrast is the Weber
contrast of the chromatic IC luminance and the background
luminance, while the OC contrast is the Weber contrast of
the chromatic OC luminance and the background luminance,
Equation (21). Note that since the background is achromatic, this
Weber contrast is related only to the luminance domain. Kimura

and Kuroki (2014a) argued that if the IC contrast is smaller than
the OC contrast, an assimilative effect is perceived, Equation (21).
In contrast, if the IC contrast is larger than the OC contrast, a
non-assimilative effect is perceived, Equation (21).

∣

∣LIC − LBkg
∣

∣

LBkg
<

∣

∣LOC − LBkg
∣

∣

LBkg
→ assimilative effect (21)

∣

∣LIC − LBkg
∣

∣

LBkg
>

∣

∣LOC − LBkg
∣

∣

LBkg
→ non− assimilative effect

Where LIC, LOC, and LBkg are the luminances of the IC, OC, and
the background, respectively.

Our model was tested with a variety of stimuli with
different luminance backgrounds, different chromatic
contours (Figures 8A,B), and different Weber ratios. Figure 8
demonstrates the predictions of the Weber contrast rule with
non-assimilative effect. Additional stimuli were tested, but
showed a smaller perceived effect. Interestingly, the Weber
contrast rule and the predictions of our model do not necessarily
always yield the exact assimilative or non-assimilative colors,
but rather a different color as found experimentally (Kimura
and Kuroki, 2014a). For example, the stimuli in Figures 8A,B

have the same colors (red and magenta), but because the IC in
Figure 8A has a higher luminance than the IC in Figure 8B,
this gives rise to a yellowish color in Figure 8A but a greenish
color in Figure 8B. Note that despite the difference in luminance
levels, both effects share the same trend of Weber contrast rule,
and thus both appear as non-assimilative effects. The model’s
predictions are in agreement with the Weber contrast rules
(Kimura and Kuroki, 2014a), Figure 8. This demonstrates that
both the model and the Weber contrast rule can predict in
which contrast configuration the perceived effect is assimilative
or non-assimilative.

Let us explain how our model can predict this Weber contrast
rule. If an IC has a high value of Weber contrast, the “heat
source” located on the edge between the IC and the background
has the highest value and the diffusion process from this edge
has a strong influence on the perceived color. Accordingly, the
color spreading from this “heat source” (the edge between the
IC and the background) to the inner area has the same color
as the color of the background (white Figure 8A), and the
complementary color of the IC (cyan—the complementary color
of the red IC), Figure 8A. The cyan color, which is a combination
of green and blue, contributes to this bluish-greenish perceived
effect (Figure 8B).

We were interested in whether the Weber contrast rule is
applicable to the achromatic watercolor stimuli. Cao et al. (2011)
conducted a psychophysical study in order to investigate the
influence of the luminances of the IC, OC, and the background
on the perceived achromatic watercolor effect. They found that
the filling-in effect disappeared when the luminance of the OC
was between the luminances of the IC and the background.
Kimura and Kuroki (2014a) reported that the findings of Cao
et al. (2011) are consistent with their psychophysical findings,
and also with their suggestion for the role of the Weber contrast
rule. The prediction of ourmodel (Figure 11) is also in agreement
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FIGURE 11 | The model’s predictions for chromatic watercolor stimuli. In the

left column (Stimulus I), the luminance of the OC (gray) lies between that of the

IC (black) and the background (white). On the right side, (Stimulus II) the

luminance of the IC lies between that of the OC and the background. The

predicted filling-in luminance inside the left stimulus (Prediction I) is lower than

the predicted filling-in luminance inside the right stimulus (Prediction II). Note

that the Weber contrast of the OC is smaller than the Weber contrast of the IC

in the left stimulus (I), and larger than the Weber contrast of the IC in the right

stimulus (II). The topic is discussed in the Discussion section of the text.

with the Kimura and Kuroki (2014a) findings. In Figure 11,
the luminance of the OC lies between that of the IC and the
background. In terms of the Weber contrast rule, the Weber
contrast of the OC is smaller than that of the IC. Therefore,
such a configuration should lead to a non-assimilative perceived
effect. However, since the perceived color inside the star is darker
than the background (Figure 8I); this might be seen as a diffusive
effect of the IC color (“assimilative” effect), which is black.
According to our model, the perceived color is a combination
of the same color as the IC (black) and the complementary
color of the OC (gray, which is the complementary of gray),
therefore, the model correctly predicts this effect. Accordingly,
the terms “assimilative” and “non-assimilative” watercolor effects
are not the precise terms regarding the perceived colors of the
achromatic watercolor stimuli. It should be noted that there
might be a dependency of the perceived effect on the stimulus
size. This property should be further investigated experimentally.

Not all experimental studies agree about the perceived color
in the non-assimilative watercolor effect (Pinna, 2006; Kimura
and Kuroki, 2014b). Kimura and Kuroki (2014b), for example,
claim that if the luminance of the IC is low (very dark
IC), the perceived filling-in effect is predominantly yellow,
regardless of the OC color. Kimura reported this finding
to be inconsistent with previous results reported by Pinna
(2006), which described a complementary color filling-in effect
with black IC and chromatic OC combinations. Additional
experimental study supports the results of Pinna (2006) and the
idea that complementary colors are perceived, when the IC color
is dark (Hazenberg and van Lier, 2013). Themodel results predict
that the perceived colors are predominantly complementary to
the OC colors, when the IC is dark. Even though the predicted
results, Figure 6, are predominantly complementary to the OC
colors, when the IC color is dark red, the predicted colors are
slightly shifted to the red IC color. When the IC is achromatic the
predicted colors, Figure 6, are the complementary colors to the
OC colors.

Our model, thus, supports the findings of Pinna (2006) and
Hazenberg and van Lier (2013), Figure 6, and is not in agreement

with Kimura and Kuroki (2014b) because the chromatic OC
triggers a filling-in effect that is complementary to the inner area,
and therefore the perceived color will be complementary to the
OC (the IC is achromatic and so does not contribute any color
to the effect).

Model’s Predictions for the COC Effect
Although our model is mainly concerned with the predictions of
the watercolor illusions, there are a number of other examples
of filling-in effects, including the COC effect. We believe that
the COC effect is driven solely by a diffusion mechanism,
since the physical stimulus in this effect is only an edge. The
model prediction for the COC effect, which is demonstrated in
Figure 12, uses the same set of parameters as the watercolor
illusions (Figures 3, 5, 7–9, 11). Our suggestion that both
phenomena (watercolor and COC) are related to the same visual
mechanism, is in agreement with (Devinck et al., 2005; Todorovi,
2006; Cao et al., 2011) who showed that the watercolor stimulus
profile is a discrete version of the COC stimulus profile. The
success of the model prediction of the COC effect supports
the suggestion that both effects (which are physically built only
from edges) share the same “heat sources” diffusion mechanism,
which is triggered by edges. The COC effect can actually be
considered as a simpler case of the diffusive filling-in effect than
the watercolor effects.

There are three main classes of computational models that
have been used to investigate the COC effect. The first class is
called the “Diffusive models” (Grossberg and Mingolla, 1987).
Grossberg and Mingolla (1987) showed that the FACADE model
can correctly predict the COC effect. Nevertheless, the FACADE
model, in this case, can predict the COC effect when the stimulus
contains open boundaries, but only through using an additional
component that detects illusory contours, Figure 12. The illusory
contours component will detect the illusory edges around the
COC stimulus (Figure 12), and will prevent the color from
spreading. However, this component is not necessary for the
watercolor illusion, which can contain open boundaries. Figure 9
presents, for example, open boundaries, and it can be seen that
there is no perceived effect of edge completion (illusory contour).
It has to be noted that the suggested model does not include
a component that detects illusory contours, and therefore our
model does not predict filling-in effects that involve illusory
contours e.g., “Neon Color Spreading.” Our model suggests
that the illusory contours components are not necessary for the
watercolor mechanism.

The second class of models is termed the “Spatial filtering
models,” where these models utilize low-frequencies spatial filters
in order to predict the filling-in effects (Morrone et al., 1986;
Burr, 1987; Morrone and Burr, 1988; Ross et al., 1989; Blakeslee
andMcCourt, 1999, 2001, 2003, 2004, 2005; Dakin and Bex, 2003;
Blakeslee et al., 2005; Kingdom, 2011). We argue that the spatial
filtering approach has limitations in predicting the COC effect
because the filling-in can be spread to sizes which cannot be
explained by the sizes of the receptive fields that exist in the
LGN or V1–V2 cortical areas. In addition, the COC effect can be
obtained from edges that are built only from ODOG (Oriented
Difference of Gaussian) filters (Blakeslee and McCourt, 1999).
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FIGURE 12 | The model’s ability to predict the Craik–O’Brien–Cornsweet (COC) effect. The left image (A) represents the original COC effect (Stimulus, left), and the

model’s prediction (Prediction, right). The lower row (B) presents the luminance of the original stimulus (orange line) and predicted perceived luminance (blue line)

along the orange and blue axes in (A).

The third class of models is termed the “Empirical models.”
These models are designed to estimate the most likely reflectance
values based on the pattern of the luminances observed in the
image, together with learnt image statistics (Purves and Lotto,
2003; Brown and Friston, 2012). Typically, such an Empirical
approach may explain why we perceive these visual effects,
but cannot explain the neuronal mechanisms that lead to the
perceived effects.

Neuronal Sources of the Filling-In Effect
Studies designed to identify the neuronal source of the filling-in
effects that are triggered by edges, e.g., the watercolor and the
COC effects, can shed additional light on the possible neuronal
mechanisms. A recent fMRI study (Hong and Tong, 2017)
compared the responses of the visual areas (V1–V4) to real
colored surfaces and to illusory filled-in surfaces, such as occur
in the afterimage effect of van Lier “stars”(van Lier et al., 2009).
Hong and Tong (2017) found a high correlation between the two
types of stimuli, the real and the illusory, only in areas V3 and V4.
They, therefore concluded that the perception of filled-in surface
color occurs in the higher areas of the visual cortex.

Rudd (2014) suggested an “edge integration” model that
works through long range receptive fields in area V4 (Roe et al.,
2012). Both the qualitative (Rudd, 2014) model and (Hong and
Tong, 2017) experiments support the idea that the source of the
filling-in mechanism is located in V4. It has to be noted that our
computational model can be regarded as this diffusion process
but also does not contradict a mechanism of edge integration that
can be derived from long range receptive fields (Rudd, 2014). This
“edge integration”mechanism can also be symbolic and appear as
a diffusion process.

As already discussed, we argue that both the watercolor
effect and the COC effect share the same visual mechanism;
therefore, we would expect to identify a similar neuronal source
for both effects. A literature survey of experimental studies
that investigated these sources revealed a lack of consensus
regarding the neuronal source of the COC effect. A few studies
reported that the effect occurs in low visual areas: the LGN,
V1 and V2 (MacEvoy and Paradiso, 2001; Roe et al., 2005;
Cornelissen et al., 2006; Huang and Paradiso, 2008), while other
studies showed evidence that the effect occurs in higher areas
of the visual system such as the V3 and caudal intraparietal
sulcus (Perna et al., 2005). It is possible that there is no
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complete overlap between the cortical areas responsible for
the COC effect and the watercolor effect, since the watercolor
effect commonly involves color, while the COC effect involves
achromatic stimuli.

Our model succeeds in predicting apparently conflicting
perceived filling-in triggered-by-edges phenomena, e.g., the
assimilative and the non-assimilative watercolor effects. The
suggested mechanism is a filling-in process which is based on
reconstruction of an image from its modified edges. The diffusion
process, thus, is calculated by solving the heat equation with
heat sources (Poisson equation). The edge of the trigger stimulus
are modified by the model according to rules of dominancy,
and computed as the heat sources in the Poisson equation. We
therefore suggest that this model can predict all the filling-
in-triggered-by-edges effect in both the spatial and temporal
domains (Cohen-Duwek and Spitzer, 2018).

The challenge of “The interaction of the mechanisms
underlying boundary and surface perception is an essential
problem for vision scientists” has been presented previously (Cao
et al., 2011). Here we introduce a new computational model that
describes and predicts how any boundary can “create” surfaces by
a filling-in process.
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