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Low image sampling rates used in resting state functional magnetic resonance imaging

(rs-fMRI) may cause aliasing of the cardiorespiratory pulsations over the very low

frequency (VLF) BOLD signal fluctuations which reflects to functional connectivity (FC). In

this study, we examine the effect of sampling rate on currently used rs-fMRI FC metrics.

Ultra-fast fMRI magnetic resonance encephalography (MREG) data, sampled with TR

0.1 s, was downsampled to different subsampled repetition times (sTR, range 0.3–3 s) for

comparisons. Echo planar k-space sampling (TR 2.15 s) and interleaved slice collection

schemes were also compared against the 3D single shot trajectory at 2.2 s sTR. The

quantified connectivity metrics included stationary spatial, time, and frequency domains,

as well as dynamic analyses. Time domain methods included analyses of seed-based

functional connectivity, regional homogeneity (ReHo), coefficient of variation, and spatial

domain group level probabilistic independent component analysis (ICA). In frequency

domain analyses, we examined fractional and amplitude of low frequency fluctuations.

Aliasing effects were spatially and spectrally analyzed by comparing VLF (0.01–0.1Hz),

respiratory (0.12–0.35Hz) and cardiac power (0.9–1.3Hz) FFT maps at different sTRs.

Quasi-periodic pattern (QPP) of VLF events were analyzed for effects on dynamic

FC methods. The results in conventional time and spatial domain analyses remained

virtually unchanged by the different sampling rates. In frequency domain, the aliasing

occurred mainly in higher sTR (1–2 s) where cardiac power aliases over respiratory

power. The VLF power maps suffered minimally from increasing sTRs. Interleaved data

reconstruction induced lower ReHo compared to 3D sampling (p < 0.001). Gradient

recalled echo-planar imaging (EPI BOLD) data produced both better and worse metrics.

In QPP analyses, the repeatability of the VLF pulse detection becomes linearly reduced

with increasing sTR. In conclusion, the conventional resting state metrics (e.g., FC, ICA)

were not markedly affected by different TRs (0.1–3 s). However, cardiorespiratory signals

showed strongest aliasing in central brain regions in sTR 1–2 s. Pulsatile QPP and other

dynamic analyses benefit linearly from short TR scanning.
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INTRODUCTION

In 1995 Biswal and co-workers discovered functional
connectivity (FC) in resting state blood oxygen level dependent
(BOLD) signal of motor cortices by their continuous very
low frequency fluctuations (VLF < 0.1Hz) (Biswal et al.,
1995). Initially, the VLF phenomena were linked to existing

literature on low frequency physiological phenomena like

vasomotor waves (Kiviniemi et al., 2000). The current view is
that spontaneous neuronal activity avalanches synchronize brain

activity in functionally connected areas and become visible in
hemodynamic signals after a delay of few seconds (Liu and Duyn,
2013; Palva et al., 2013; Keilholz, 2014; Ma et al., 2016; Liu et al.,
2018). The spread of such avalanches can be depicted by novel
techniques such as inverse imaging (INI) andmagnetic resonance
encephalography (MREG), that sample functional magnetic
resonance imaging (fMRI) data with short repetition times (TR)
(Lin et al., 2012, 2018; Assländer et al., 2013; Rajna et al., 2015).

In addition to neuronal activity that is coupled to
hemodynamics, the BOLD signal reflects multiple other signal
sources, such as motion, physiological pulsations and technical
artifacts. The physiological factors like cardiorespiratory changes
modulate the BOLD signal and can mask the neuronally driven
VLF activity in resting state BOLD signals (Wise et al., 2004; Birn
et al., 2006). As the BOLD signal reflects blood oxygen level, also
direct effects of the cardiorespiratory pulses themselves can be
detected in fMRI data (Shmueli et al., 2007; Chang and Glover,
2009, 2010).

Previously, the research of cardiorespiratory brain pulsations
has not gained as much interest because they have been deemed
as noise. However, there is increasing evidence showing that
these physiological signals or the “noise” it produces in TR
BOLD data with long TR, can be used to measure disease-
specific changes in patient groups (Makedonov et al., 2013;
Tuovinen et al., 2017). This is strongly supported by the recent
discovery of the glymphatic brain tissue clearance mechanism
where the cardiovascular pulsations have been shown to drive the
glymphatic brain clearance (Iliff et al., 2012; Nedergaard, 2013;
Jessen et al., 2015). The short TR in 3D MREG can critically
sample the spread of cardiovascular ∼1Hz and respiratory
∼0.3Hz pulsations and separate them from VLF (<0.1Hz)
quasi-periodic patterns (QPPs) (Kiviniemi et al., 2016).

The extent to which faster physiological pulsations alias over
VLF BOLD signal, has been a prevailing uncertainty in BOLD
fMRI. Since cardiac frequencies can be faster than 2Hz, especially
in animals and children, the critical sampling rate should be
>4Hz according to the Nyquist theorem, i.e., TR < 0.25 s.
However, most often the fMRI TRs are >0.4 s and therefore the
data cannot critically sample faster cardiac signals (Liu, 2016).
Consequently, aliasing between cardiac and the VLFs occur
and may alter FC metrics. Additionally, the cardiorespiratory
rhythms and their pressure modulations and physiological
autonomic nervous system mediated counter-regulations, local
vasomotor waves induce heart rate variability, which differ
between patients and controls (van der Kooy et al., 2006; Thayer
et al., 2010) causing yet another confounding factor in measures
of FC that may require faster sampling.

Early literature on the sampling rate on FC measures usually
utilizes single slice data that suffers from out of plane motion
and other registration problems (Purdon and Weisskoff, 1998;
Peltier et al., 2003; Kiviniemi et al., 2005). Recent studies on
the fMRI sampling rate effects on resting-state FC has shown
surprisingly small effects (Golestani et al., 2017; Demetriou et al.,
2018). However, that and some other recent studies have usually
been limited to <4Hz sampling rates for whole brain coverage
(Cordes et al., 2014; Liu, 2016; Golestani et al., 2017; Chen et al.,
2019) with different type of signal simulations extending below
the critical 4 Hz limit.

However, more and more critically sampled 3D whole brain
fMRI data has started to emerge, such as 0.136 sec TR VEPI
(Posse et al., 2013), 100ms MREG (Assländer et al., 2013;
Lee et al., 2013; Kiviniemi et al., 2016; Raitamaa et al., 2018),
50ms GIN (Boyacioglu and Barth, 2013) and currently leading
25ms 3D whole brain scan INI (Chang et al., 2013b). This
critically sampled data shows robust novel phenomena of the
human brain physiology, such as propagating cardiorespiratory
pulsations that both interact andmodulate each other, depending
on their anatomical proximity to pulsation sources (Posse et al.,
2013; Kiviniemi et al., 2016; Raitamaa et al., 2018). Based
on our observations, these novel signal changes cannot be
comprehensively simulated due to their complex spatiotemporal
pattern that is dynamically changing.

Therefore, in this study we used real critically sampled
0.1 s TR 3D single shot MREG data to explore how different
sampling rates affect the results of the most commonly used
resting state fMRI analysis tools. The 0.1 s TR MREG signal was
downsampled to higher TRs ranging from 0.3 to 3 s. The use
of subsampled TR (sTR) removes the confounding factors of
imaging different TR values in separate scans and/or individuals,
enabling identical physiological status and technological noise
structure for comparing different sTRs. The single shot 3D
data sampling scheme was further compared with interleaved
slice sampling (INT) variant of the MREG data, and, with
conventional interleaved gradient recalled echo-planar BOLD
imaging (EPI BOLD).

The hypothesis was that the faster sTR produces both spatially
more accurate brain maps and more accurate time series without
aliasing of physiological pulsations. The quantified connectivity
metrics included stationary spatial, time, and frequency domains,
as well as dynamic analyses. In addition, the effects of aliasing
were evaluated.

MATERIALS AND METHODS

Participants
Ten healthy subjects (8 males, 23.8 ± 2.1 years old) were placed
in the MRI scanner and asked to lay still and keep their eyes
open and fixated on a cross on the screen while thinking of
nothing particular (eyes open, resting state). Ear plugs were
used to reduce scanner noise. Cushions were placed beside
ears to restrict movement and to further reduce scanner noise.
MREG (5min) and EPI BOLD (5min) sequences were scanned
in said order. Written informed consent was obtained from
each subject prior to scanning, in accordance with the Helsinki
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declaration. The study protocol was approved by the regional
Ethical committee of Northern Ostrobothnia Hospital District in
Oulu University Hospital.

Data Acquisition and Preprocessing
Subjects were scanned using Siemens 3T SKYRA scanner
with 32-channel head coil. Additional cardiorespiratory data
were collected using MRI-compatible multimodal neuroimaging
system (Korhonen et al., 2014). MREG is a 3D single shot
stack of spirals (SOS) sequence that under-samples k-space
to reach a sampling rate of 10Hz allowing critical imaging
of physiological pulsations (Assländer et al., 2013). The SOS
gathers k-space in 60ms with spiral in/out repeating in every
other turn continuously in positive z-direction to minimize the
air-sinus off-resonance artifact (for more details, c.f. Assländer
et al., 2013). The point spread function of the SOS-sequence
is 3mm with minimized off-resonance effects compared to
other k-space undersampling strategies like concentric shells
and spokes (Zahneisen et al., 2012; Assländer et al., 2013).
Scanning parameters (TR=100ms, TE=36ms, flip angle=5◦,
3D matrix=643, FOV=192mm) enabled scanning of the whole
brain in 10Hz with voxel size of 3 × 3 × 3 mm3. Conventional
EPI BOLD scans were collected from the same subjects (TR
= 2,150ms, TE = 28ms, flip angle = 15◦, voxel size = 3
× 3 × 3mm, matrix size 64∗64, 45 slices = 47ms in plane
readout). In both methods, we used relatively low flip angles
to minimize specific absorption rate (SAR), spin history effects,
physiological pulsations and radio frequency (RF) artifacts in
EEG in comparison to default flip angles (Gonzalez-Castillo et al.,
2011; Assländer et al., 2013).

A reference image for MREG was acquired with a multi
slice double gradient echo sequence with TR = 593ms, TE =

2.46/4.92ms, flip angle = 50◦, dwell time = 4.9 us, FOV =

192mm. The reference and raw data from the MREG sequence
were transferred offline to a computing grid and reconstructed
using the MATLAB tool provided with the sequence. The tool
allows for a choice between several parameters for regularized
reconstruction (Hugger et al., 2011); we selected L2-norm with
finite difference operator (called “Total Variation” in the tool)
and the regularization parameter was reduced to lambda=0.15
from default 0.2 in order to obtain higher signal-to-noise
ratio (SNR) images. Conjugate gradient optimization was also
performed for 35 iterations for more robust convergence of
images, c.f. Figure 1. Coil sensitivities were estimated from the
reference image with the adaptive method, and dynamic off-
resonance correction in k-space was used tominimize respiration
and other motion related off-resonance artifacts from the data
(Pfeuffer et al., 2002; Zahneisen et al., 2014). Anatomical 3D
MPRAGE (TR = 1,900ms, TE = 2.49ms, TI = 900ms, flip
angle = 9◦, FOV = 240mm, 0.9mm cubic voxel) images were
used to register both MREG and EPI BOLD data into Montreal
Neurological Institute (MNI) space.

Both, EPI BOLD and MREG data were preprocessed with
a typical FSL pipeline (Jenkinson et al., 2012). The data were
high-pass filtered with cut-off frequency of 0.008Hz (125 s).
T1-relaxation effects were minimized using dummy scans (8 s).
Motion correction was performed using FSL MCFLIRT. FSL

BET was used for brain extraction (fractional intensity = 0.25,
threshold gradient= 0.22, neck and bias-field correction). Images
were spatially smoothed with 5mm FWHM Gaussian kernel
using fslmaths. Three-dimensional 3DMPRAGE anatomical
images were used to register both the EPI BOLD and the
MREG data into 4mm MNI space prior to group ICA using
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002).
FILM pre-whitening and data smoothness estimation was
produced automatically by FSLMELODIC (Woolrich et al., 2001;
Beckmann et al., 2006). FILM implements a robust method
of correcting for auto-correlation in fMRI time-series which is
(theoretically) independent of TR duration (Woolrich et al., 2001;
Smith et al., 2004; Demetriou et al., 2018).

The MREG (TR = 0.1 s) data was downsampled to different
sTR settings from TR 0.1 s to 0.3, 0.5, 1.0, 1.5, 1.8, 2.2, and
3.0 s, respectively by taking every nth [n = 3, 5, 10, 15, 18,
22, 30] sample from every voxel timeseries. In addition, an
interleaved variant of the MREG data were computed by taking
every 1,3,5...21; 2,4,6...22th axial slice (hence the INT sTR =

2.2 s) to emulate the interleaved EPI data gathering for comparing
single shot MREG trajectory downsampled at 2.2 s sTR data and
conventional gradient recalled EPI (TR = 2.15 s). MATLAB was
used for MREG data downsampling and interleaving. Total of
100 datasets were obtained after processing (10 sTR settings for
10 subjects).

As one of the focuses was to assess physiological signal aliasing
effects, we retained the physiological pulsations in the data as
much as possible. Therefore, cerebrospinal fluid (CSF) and white
matter were not regressed out from the datasets like they often are
in functional connectivity analyses. Global signal was analyzed
but not regressed, as the benefit of its regression is still under
debate (Murphy and Fox, 2017). Furthermore, the datasets were
not de-spiked, since there is no clear consensus yet what kind
of de-spiking is advisable to apply to ultra-short TR fMRI data,
especially since most aggressive de-spiking (AFNI 3dDespike -
NEW25) removes some of the physiological pulsations from the
data (Raitamaa et al., 2018).

Time and Spatial Domain Analysis (ICA,
CV/tSNR, DPARSF)
Group PICA was computed for all 10 sTR settings. For every
group ICA run, 70 independent components were calculated
using FSL MELODIC in default setting (Kiviniemi et al., 2009).
FSL function fslcc was used to calculate correlation values
between different PICA components calculated for every sTR
and 42 resting state network templates defined earlier (Kiviniemi
et al., 2009; Abou-Elseoud et al., 2010). Default mode network
(DMN) posterior cingulate cortex (PCC), cerebral artery, visual,
auditory, motor and ventral attention network components were
selected as interesting reference components that were visualized
to show the effect of changing sTR (Beckmann et al., 2005;
Kiviniemi et al., 2009; Smith et al., 2009).

CV is a standardized measure used in e.g., engineering and
physics, which describes the variability of a dataset compared
to its mean. CV was used as a metric for the variation of
physiological fluctuations in the signal. Recently, the CV of

Frontiers in Neuroscience | www.frontiersin.org 3 April 2019 | Volume 13 | Article 279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huotari et al. Sampling Rate Effects on fMRI

FIGURE 1 | Raw magnetic resonance encephalography (MREG) data with repetition time (TR = 0.1 s) and the subsampling scheme using an example arterial

signal ([−2 30 16] mm in Montreal Neurological Institutional (MNI) space). (A) Raw spatial MREG image. (B) Raw timeseries of the arterial signal. (C) Processed and

subsampled arterial signal and corresponding frequency amplitude spectra. Please note the aliased cardiac peak in the sTR 1–3 s in the amplitude spectra at ∼0.2Hz.

BOLD signal (CVBOLD) has been shown to be altered by the
disease processes (Makedonov et al., 2016; Tuovinen et al., 2017;
Kananen et al., 2018). CV was calculated for each subject and the
calculation was carried out for every voxel timeseries:

CV =
σ

µ

where µ is the standard deviation, and σ is the mean of the
voxel timeseries. Mean images of the resulting CV maps were
computed. For statistical analyses, PCC region of interest (ROI)
values were computed for every sTR individually and compared

to mean reference (TR = 0.1 s) map. In addition, temporal
signal-to-noise ratio (tSNR) values were computed for each sTR
using white matter (WM) and gray matter (GM) ROIs. The
ROI areas were obtained via FSL atlas tools using a probabilistic
threshold value of 50. Amean value from bothWMandGMwere
calculated from each subject.

DPARSF (FC, ReHo, ALFF/fALFF)
For each FSL pre-processed dataset, seed-based functional
connectivity (FC), regional homogeneity (ReHo), and amplitude
and fractional amplitude of low frequency fluctuations
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(ALFF/fALFF) were calculated using Data Processing Assistant
for Resting-State fMRI (DPARSF) V4.3_171210 MATLAB
software package (Chao-Gan and Yu-Feng, 2010). The
processing steps in DPARSF are described for each analysis
method separately below. Global signal regression or white
matter/CSF signal regressions were not used.

FC calculates seed-based correlation values between mean
timeseries of a selected ROI area and the rest of the brain voxel
timeseries. Six seed areas (5mm spherical ROI) were selected
for the analyses: DMN PCC (0 −53 26mm in MNI), cerebral
artery (0 32 16mm in MNI), visual (2 −86 16mm in MNI),
auditory (50−2−8mm in MNI), motor (2−18 60mm in MNI)
and ventral attention network (-46 18 32mm in MNI). Mean
FC maps for each sTR and ROI were computed to see whether
the changing of sTR influence the connectivity. For statistical
analyses, correlation coefficient values were calculated between
the mean ROIs (TR = 0.1 s) and other sTR settings individually
using FSL function fslcc. Additionally, sTR 2.2 s (INT) and
sTR 2.2 s were compared to test the effect of interleaving in
MREG data.

ReHo measures the degree of regional synchronization
of neighboring areas by calculating Kendall’s coefficient of
concordance (KCC) from the timeseries of every voxel and
compares the neighboring voxels (Kendall and Gibbons, 1990;
Zang et al., 2004). Cluster size of 27 voxels was used. Spatial
smoothing (FWHM: kernel size [4 4 4]) was applied after ReHo
calculations. After individual ReHo computations, mean spatial
maps were calculated. Furthermore, ReHo KCC values were
computed from the mean PCC ROI for all sTR settings.

Frequency Domain Analysis
Fast Fourier transformation (FFT) amplitude spectra from
a single subject arterial region ([−2 30 16] mm in MNI)
(Figure 1) and global image signal, venous (high respiratory
power) and arterial (high cardiac power) amplitude spectra were
analyzed to observe the impact of sTR in different physiological
frequency bands. Additionally, normal distributions curves (bin
size 5) of histogram of demeaned global signal in every sTR
were computed.

To examine, whether the change in sTR affects the VLF
content, ALFF and fALFF were computed. ALFF calculates the
sum of spontaneous low frequency activations of a selected
frequency band (Zang et al., 2007). FALFF was used to estimate
the ratio of amplitude spectrum of VLF in comparison to the
whole FFT spectrum (Zou et al., 2008). Frequency band of
0.01–0.1Hz was selected for the computations.

Furthermore, we studied how the mean FFT power of
VLF (0.01–0.1Hz), respiratory (0.12–0.35Hz) and cardiac (0.9–
1.3Hz) pulsations occur in different sTR settings. The respiratory
and cardiac frequency bands were chosen based on group-
level minimum and maximum frequencies observed from
the physiological recordings and datasets so that the band
is as limited narrow as possible while still encompassing
the cardiorespiratory frequencies of each subject. The same
frequency bands were used for each subject. Each band was
separated by a margin to minimize overlap.

Spectral maps of the frequency bands were calculated for
each dataset using AFNI 3dPeriodogram. The function outputs
a power spectrum for each voxel timeseries. The frequency
bins corresponding to VLF, respiratory and cardiac bands were
collected from the periodogram datasets based on individual
physiological monitoring. Furthermore, the collected bins were
summed and finally mean of the sums was computed for each
sTR. The cardiac bins were not calculated for sTRs > 0.5 s, as the
slower sampling rates cannot extract the cardiac frequencies.

The effect of signal aliasing was estimated in two ways: (i)
spatially, by correlating the mean cardiac and respiratory FFT
power maps to individual respiratory and VLF maps for each
sTR setting, respectively, (ii) power spectrally, by calculating the
FFT power change in the respiratory and VLF bands in the right
medial artery ROI ([46−2−8] mm in MNI) with different sTRs.
Mean 0.1 s TR MREG datasets were used as baseline maps and
compared how much the physiological power starts to overlap
per given sTR.

QPP Analysis
All datasets were bandpass filtered to VLF (0.01–0.1Hz)
band using AFNI 3dTproject. We used a modified pattern
finding algorithm to obtain quasi-periodic patterns (QPPs)
and evaluated their changes in signal intensities and pulse
propagations (Kiviniemi et al., 2016; Raitamaa et al., 2018).
Estimation of timing and length of VLF pulse (length: 105–
146 time points) for every subject was obtained from the
VLF filtered global signal from TR 0.1 s. Length and timing
were adjusted to the subsampled datasets. Subject-specific 4D
QPP maps were created for every sTR. For the analyses,
MATLAB circshift was used to ensure that QPP maps were in
same phase.

QPP strength (i.e., how closely it resembled the template) of
VLF wave for each sTR was quantified by correlation between the
average QPP pulse and the VLF pulse at the last iteration of the
QPP algorithm (Thompson et al., 2014). The mean correlation
coefficients of VLF pulses from the last iteration were extracted
from each subject and were compared as a function of sTR.

To measure the repeatability of the detected QPP maps, the
spatial correlation of subject-specific average QPP maps of sTR
> 0.1 s were compared to TR 0.1 s average QPP map using
MATLAB corrcoef. For this, each sTR QPP map was interpolated
to match the reference TR 0.1 s map.

For group mean images and videos, TR 0.1 s QPP maps were
set to length of 150 time points and other sTRs lengths were
adjusted accordingly. For every sTR, average group QPP maps
were created.

Statistical Tests
Paired sample t-tests (MATLAB ttest) were used for all statistical
testing to compare the reference MREG data (TR = 0.1 s) with
sTR results (Figures 3, 6, 7, 9A). Furthermore, sTR 2.2 s (INT)
and sTR 2.2 s were compared to test the effect of interleaving in
MREG data. In QPP repeatability analysis, linear fitting was used
as a measure of statistical significance. Statistical significances are
indicated as ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.
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RESULTS

As an example of the image quality of MREG 0.1 s TR data,
Figure 1A illustrates a raw spatial image of one subject in three
planes. An example of cardiovascular pulse timeseries (ROIMNI:
[-2 30 16] in mm) from the anterior cerebral artery are presented
in Figure 1B. Respective subsampling scheme is presented in
Figure 1C, in which six examples of the sTR time series are shown
to highlight the effect of changing sTR.

Commonly Used Resting State Metrics
(FC, ReHo, CV/tSNR, ICA)
Seed voxel correlation of FC analysis, ReHo and CV produced
nearly identical results as a function of sampling rate. Visually,
only small differences could be detected in the spatial functional
connectivity measures in group level maps as a function of
sampling rate in Figure 2.

Functional connectivity maps (Figure 2) showed nearly
identical spatial results, which were also highly comparable to
conventional 2.15 s TR EPI BOLD data or with interleaved
MREG 2.2 s sTR data. The quantified connectivity measures
presented no significant differences excluding INT (sTR =

2.2 s) which had significantly (p < 0.01) lower correlation
coefficients compared to TR 0.1 s and compared to sTR 2.2 s
(Figure 3A and Supplementary Figure 1). In addition, EPI scans
had marginally elevated correlation coefficients compared to
the MREG (TR= 0.1 s).

Similarly, ReHo were visually identical at different sampling
rates (Figure 2). However, with interleaved sampling of
1,3,5...,2,4,6 of axial MREG slices were collected with a final
2.2 s sampling rate, the ReHo values decreased significantly
(p < 0.001), when compared to both single shot k-space
trajectory with TR 0.1 s and sTR 2.2 s (Figure 3B). Furthermore,
conventional EPI showed significantly (p < 0.001) higher and
sTR 2.2 lower (p < 0.05) values.

CV of the image data were nearly identical with respect to the
altering sTR (Figure 2). The EPI BOLD data had significantly
(p < 0.05) lower CVs compared to MREG (TR = 0.1 s), while
downsampling or interleaved data gathering had no effect on
the CV values. The same effect can be seen from the mean
tSNR values from WM and GM ROIs where downsampling
did not show any significant change but EPI BOLD values
were significantly (p < 0.001) higher compared to MREG
(Supplementary Figure 2).

ICA detected RSNs in all sTR settings, but there was
some variability between the results (ICA in Figure 2). The
conventional EPI BOLD and interleaved data showed similar
results as well. In spatial consistency analysis of the 42 RSN
template correlations, all sTR settings produced very similar
results, except for EPI, which had significantly higher correlation
values (p < 0.01).

Mean Spectral Metrics
The group mean FFT amplitude spectra of global image signal,
respiratory and cardiac signals are presented in Figure 4. In
global signal spectra, the amplitude peaks were relatively higher
in VLF band with increasing sTR. This might occur due to

cardiorespiratory aliasing. The respiratory amplitude peaks from
sagittal sinus and cardiac amplitude peaks from right middle
cerebral artery presents multiple peaks in the spectra due to
normal variations in respiratory and cardiac rates. Please notice,
these peaks were lost as the sTR was increased >0.5 s. The same
effect was observed in the arterial signal on a single subject level
(Figure 1). EPI BOLD presented the lowest VLF amplitudes in
all images.

The global signal distribution curves illustrated the differences
in statistical power between sTR values and revealed an
exponential decay in histogram counts and widening of the
distributions per each sTR. Interestingly the 2.15 EPI BOLD
distributions are highly similar in shape with MREG 0.1 s data
but >5 times smaller.

BOLD Signal Frequency Amplitude and
Power Mapping
ALFF results indicated that the increasing sTR raised the VLF
power of the images (Figure 5). Conventional EPI data showed
lower ALFF values than MREG data, but the interleaving had
no effect. FALFF results were most clearly affected by the
increasing sTR (Figure 5). FALFF showed an increase over the
sTR values which is due to the proportional increase of the lowest
frequencies due to the reduction of the spectral coverage in higher
sTR values.

Group mean FFT amplitude and power encoding maps
(Figure 5) revealed how the cardiac, respiratory and VLF
frequency intensities changed in different sTR settings. The
cardiac power started to fade away in sTR >0.3 s and
respiratory power above 2.2 s sTR. Furthermore, the cardiac
power distributions started to overlap on top of respiratory
frequency maps as the sTR is increased>0.5 s indicating aliasing,
c.f. Figures 5–7. The conventional 2.15 s TR EPI measurement
had notably lower power (please notice different scaling for EPI
BOLD in Figure 5). Interleaved 2.2 s sTR power was also lower
compared to 2.2 s sTR single shot trajectory in VLF power images,
which agrees with ReHo and mean global signal amplitude
spectral changes.

The aliasing was quantified both spatially and in frequency
power analyses. This was evaluated by measuring how much
different frequency maps start to resemble each other spatially as
a function of sTR (Figure 6). In critically sampled 0.1 s TRMREG
data the cardiac, respiratory and VLF frequencies had a low∼0.4
mean spatial correlation. For example, the major arteries seen in
cardiac frequency maps were lacking from the respiratory maps,
while the respiratory band dominated in posterior CSF spaces
(Figure 5). However, the spatial correlation between cardiac and
respiratory power maps became increasingly more similar (p <

0.001) and started to increase as a function of the sTR until
1.0 s, after which the similarity plateaus at 0.65 level until sTR
3.0 s (Figure 6A). Furthermore, the spatial correlation between
cardiac (p < 0.001) and respiratory (p < 0.01) vs. VLF increased
steadily until sTR 1.8 s.

In frequency power analysis of a right medial artery ROI ([46
−2 −8] mm in MNI) near insula, the image signal power from
the arterial ROI started to increase significantly (p < 0.001) both
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FIGURE 2 | Different group-level resting state metrics with changing subsampled repetition times (sTR) including functional connectivity (FC), regional homogeneity

(ReHo), coefficient of variation (CV) and independent component analysis (ICA). FC and ICA analyses comprise default mode network (DMN), artery (Art), visual (Vis),

auditory (Aud), motor (Mot) and ventral attention network (VAN). For comparison, echo-planar imaging (EPI) maps below tends to show spatially more widespread FC

maps and relatively similar ICA maps depending in the RSN.

in the respiratory and VLF power band in sTR >0.3 s as a sign of
aliasing (Figure 7A). The results indicate that once the cardiac
pulsation is no longer critically sampled, the power starts to
become aliased as a “respiratory” and “VLF” power as a function
of sTR increase. When correlating the mean respiratory maps to
individual VLFmaps, the aliasing effect could also be seen in VLF
range as the correlation values increased significantly (p < 0.01)
after 0.1 s TR and almost linearly as the sTR increased. However,
the influence of the sTR had a clearly less steep effect by the
increasing sTR in the VLF. The conventional 2.15 s BOLD images
showed low spatial correlation since the cardiac power is very low
to begin with and so the spatial correlation is also low.

QPP Analysis of Spreading BOLD Waves
The power of cardiac pulsation could not be critically detected
in sampling rates >0.3 s (Figures 3–5) and therefore we did

not quantify differences in the detection of cardiac pulse
propagation like we did earlier (Raitamaa et al., 2018). Also, the
respiratory power suffered from marked aliasing in sTRs above
0.5 s (Figures 5–7). Therefore, we quantified the performance of
different sTR in detecting VLF (0.01–0.1Hz) propagating QPP
BOLD waves.

Figure 8 illustrates 15 s QPP waves captured with different
sTR and how the spatiotemporal illustration of each wave
changed as a function of sTR. The lowest sTR 0.1–0.5 s were
down-sampled from 150, 50 and 30 to 15 images for illustration
of the QPP wave spreading in axial plane. Videos of QPPs
in TR of 0.1 s and 0.5, 1.0, 2.2 and 3.0 s are shown in
Supplementary Material. As expected, much of the dynamics
were lost as a function of increasing sTR.

We also quantified the QPP strength within each subject of the
QPP VLF waves as a function of sTR (Figure 9A). The analysis
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FIGURE 3 | Resting state metrics in different subsampled repetition times (sTR) compared to reference maps (TR = 0.1 s). (A) Individual functional connectivity (FC)

values from default mode network (DMN), posterior cingulate cortex (PCC ROI) correlated to reference FC map. (B) Regional homogeneity (ReHo) Kendall’s coefficient

of concordance (KCC) values from PCC ROI compared to mean reference map (TR = 0.1 s). (C) Coefficient of variation (CV) values from PCC ROI compared to mean

reference map. (D) Correlation values between group probabilistic independent component analysis (PICA) components in different sTR settings and previously

acquired 42 resting state network ICA templates. Significant differences between TR 0.1 and other sTR settings are marked with *p < 0.05, **p < 0.01, and

***p < 0.001. Outliers are marked with �.

revealed that 0.1 s TR data had highest spatial correlation of the
detected VLF waves on average despite the largest number of
brain volumes (i.e., 150 vs. 5 volumes between highest and lowest
TR). There is a linear trend where the intra-individual detection
accuracy of the detected VLF QPP waves gave lower (0.01 < p <

0.05) values as a function in sTR > 0.3 s excluding EPI.
When comparing how similar QPP waves were detected

between subjects, the 0.1 s MREG data was used as a reference
due to highest VLF wave detection accuracy. Each sTR QPP
map was interpolated to correspond the 0.1 s MREG time
points. On average, the detected QPP waves became linearly less
correlated as a function of sTR (Figure 9B). Conventional EPI
had less robustly detected QPP waves. Interleaved timing of data
acquisition showed no effect on the wave detection accuracy nor
on repeatability of the detected QPPs.

DISCUSSION

The study analyzed the effect of 3D image sampling rate on most
popular fMRI metrics used. The time and spatial resting state

fMRI metrics (FC, CV/tSNR, spatial ICA) were not markedly
affected by sTR. In frequency domain analysis, the aliasing of
the cardiorespiratory power seemed to increase signal power as

a function of the sTR (sTR > 0.3 s). Importantly, aliasing effects

occur mostly between cardiac and respiratory power. The VLF
power increased also significantly as a function of sTR due to
aliasing but the power of aliasing was smaller. In dynamic QPP
analyses, shorter sTRs seemed to produce more stable results.

Also, to our surprise, the effect of sampling rate on non-
dynamic rs-fMRI measures was not as strong as hypothesized.
Most of the measures stayed stable within the range of sTR.
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FIGURE 4 | Group-level fast Fourier transform (FFT) amplitude and histogram

distribution analyses in different subsampled repetition times (sTRs). (A) FFT

(Continued)

FIGURE 4 | amplitude spectra of global image signal where the 0.1 TR data is

cut to 2Hz from original 5Hz. (B) FFT amplitude spectra of respiratory region

of interest (sinus sagittal, ROI, [2 −98 4] mm in Montreal Neurological Institute

(MNI) space). (C) FFT amplitude spectra of cardiac ROI (right medial artery) [46

−2 −8] mm in MNI. Due to differences in individual cardiorespiratory rates,

several frequency peaks can be detected at the group level. (D) Mean normal

distribution curves from demeaned global signal histograms show lowering

and widening of the distributions as a function of sTR.

FIGURE 5 | Mean fast Fourier transform (FFT) amplitude (ALFF/fALFF) and

power (VLF, Resp, Card) encoding maps for each subsampled repetition times

(sTRs). The cardiac power can be detected until 0.3 s and respiratory until

2.2 s sTR. However, the respiratory and cardiac power images started to

overlap in sTR > 0.5 s, increasing to sTR 1–2 s. Very low frequency (VLF)

power showed a subtle but steady increase with increasing sTR.

Golestani and co-workers found surprisingly minimal effect
on sampling rate on ReHo, ALFF and FC results that are in
full agreement with our results (Golestani et al., 2017). Several
researchers have found that higher sampling rate appears to
be beneficial for resting state fMRI measures, especially for
ICA/dual regression and our results also agree on this (Smith
et al., 2013; Preibisch et al., 2015; Golestani et al., 2017;
Demetriou et al., 2018.

Compared to MREG in general, the interleaved EPI BOLD
had statistically significantly (p < 0.001) increased ReHo
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FIGURE 6 | Spatial aliasing measure using spatial correlation values. (A) The

mean MREG cardiac fast Fourier transform (FFT) power image of repetition

time (TR = 0.1 s) correlated to individual respiratory power images as a

function of sampled TR (sTR) and echo-planar imaging (EPI) scan. (B) Mean

cardiac FFT image correlated to individual very low frequency (VLF) images.

(C) Mean respiratory image correlated to individual VLF images. Significant

differences between TR 0.1 s and other sTR settings are marked with

**p < 0.01 and ***p < 0.001. Outliers are marked with �.

and tSNR. However, the f/ALFF, global signal amplitude
spectrum baseline and signal variance as measured with
CV are reduced in EPI compared to MREG. Interleaved
MREG variant (INT sTR 2.2 s) also induced significantly (p
< 0.001) lower ReHo compared to both TR 0.1 and to
single shot variant (sTR 2.2 s). The conventional interleaving
introduces TR/2 delay and interleaved multislab scanning
introduces TR/2xN delay between subsequent scans, where
N is the number of slabs. This introduces delays between
neighboring voxels in longitudinal z-direction and alters
regional similarity and frequency measures due to discontinuous
sampling of the propagating cardiorespiratory pulses that
traverse the brain repeatedly in addition to VLF pulses
(Kiviniemi et al., 2016).

Aliasing in Cortical Connectivity Analysis
The current data illustrates that while the aliasing of
cardiorespiratory pulsations is a significant factor in
frequency domain, the currently used time and spatial
domain analyses tools perform well in detecting robust
resting state connectivity. In summary, the stationary spatial
and temporal connectivity measures, whether local or long
distance, were not significantly affected by changes in sTR.

FIGURE 7 | Cardiac aliasing measure using fast Fourier transform (FFT) power

intensity values of arterial region of interest (ROI, [46 −2 −8] mm in Montreal

Neurological Institute (MNI) space). (A) Intensity values of individual respiratory

power images. (B) Intensity values of individual very low frequency (VLF) power

images. Significant differences between repetition time (TR = 0.1 s) and other

sampled TR (sTR) settings are marked with *p < 0.05, **p < 0.01, and

***p < 0.001. Outliers are marked with �.

However, interleaved slice acquisition seems to affect some of
these measures.

This study confirms the information from reduced data length
analytics (Bright and Murphy, 2015) and is consistent with
coactivation pattern (CAP) analysis (Liu and Duyn, 2013), where
the information on spatial functional connectivity of regions can
be depicted even in one single brain volume. However, the CAP
analysis for instance, requires individual voxel level thresholding
with the time domain signal mean/std.

ICA performs best with large data distributions and therefore
conventionally spatial ICA is preferred over temporal ICA,
since it offers larger distributions (Calhoun et al., 2001;
Kiviniemi et al., 2003; Beckmann et al., 2005). Spatial ICA
also uses BOLD signal’s temporal variance which induces the
non-Gaussian changes in the signal distributions, by which
the statistical independence is inferred (Calhoun et al., 2001;
Kiviniemi et al., 2003; Beckmann et al., 2005). The clear
advantage of the short TR can be seen in Figure 4, where
0.1 s TR overall signal distribution histogram has almost 5
times higher and substantially larger distribution compared to
other distributions. This is the basis of the statistical power
advantage already depicted by several groups for using short
TR measurements (Smith et al., 2013; Preibisch et al., 2015;
Golestani et al., 2017; Demetriou et al., 2018). Furthermore,
in the case of combined spatiotemporal ICA or temporal
ICA alone approaches, the 0.1 s data most likely outperforms
the slower sTRs simply due to statistically more valid signal
histograms (Figure 4D).

The physiological pulses themselves modulate the BOLD
signal (Birn et al., 2006, 2008; Chang and Glover, 2010; Chang
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FIGURE 8 | Group mean very low frequency (VLF) waves as a function of subsampled repetition time (sTR). Please notice that the first three rows are downsampled

from 150, 50, and 30 to 15 images, respectively to fit the picture.

et al., 2013a). Recently, ultra-fastMREG data was able to illustrate
how the cardiac and respiratory pulsations propagate in repeated
waves over the whole brain, giving rise to physiologically driven
and modulated variance in the data (Kiviniemi et al., 2016;
Raitamaa et al., 2018). However, most of the cardiorespiratory
power is centered within central areas near CSF ventricles
(respiratory) and major arteries and veins (cardiac). The VLF
power dominance in the brain cortex seems to enable robust
connectivity measurement despite imminent cardiorespiratory
aliasing especially in sTRs 1–2 s.

The physiological signal sources need to be separated from
the functional signals before any realistic interpretations of the
neurovascular task or connectivity data can be drawn. Through
the years, source separation tools such as the ICA have been
developed to offer robust detection of functionally connected
regions or constellations of regions, such as resting state networks
(Calhoun et al., 2001; Kiviniemi et al., 2003; Beckmann et al.,
2005; Griffanti et al., 2015; Vidaurre et al., 2017). However, in
this respect also other measures, such as FC and CV are highly
reproducible over a range of sTRs. Therefore, even though there

is significant aliasing, especially in areas near medial cerebral
artery and sagittal sinus neighborhood, the dominance in VLF
induces robust functional connectivity in the cortex.

BOLD signal stability is often measured as tSNR or CV which
is the inverse of tSNR. In this study, we calculated both. In terms
of signal observations of hemodynamically convolved neuronal
activation response, in our sampling scheme the CV or tSNR do
not change as we only downsample the MREG data instead of
scanning using different TRs. However, compared to EPI BOLD
the CV values were significantly higher (Figures 2, 3) and tSNR
values significantly lower (Supplementary Figure 2) which could
be partially caused by higher flip angle and slightly shorter TE in
EPI BOLD. In spite of all, both sequences have relatively long TEs,
which makes them T2∗ -weighted.

Recent studies indicate how the CV reflects also physiological
pulsation changes, rather than neuronally driven alterations.
Furthermore, the CV has recently been shown to have high
sensitivity to pathological condition even at individual level
(Makedonov et al., 2016; Tuovinen et al., 2017, 2018). Our
preliminary experience on disease related BOLD signal noise
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FIGURE 9 | Very low frequency (VLF) quasi-periodic pattern (QPP) stability

measurements. (A) Intra-individual QPP strength as a function of subsampled

repetition time (sTR). Significant differences between repetition time TR 0.1 s

and other sTR settings are marked with *p < 0.05 and **p < 0.01. (B)

Inter-individual correlation coefficients of QPP wave repeatability as a function

of sTR. Correlation coefficients decreased statistically significantly (p < 0.001)

by decreasing slope of sTR. Outliers are marked with �.

metrics suggests that at 1.8 s TR the BOLD signal CV can also
be highly sensitive to pathological conditions (Tuovinen et al.,
2018). Data from 0.1 s MREG CV measures seem to be at least
as sensitive in intractable epileptic patient data (Kananen et al.,
2018). This is in line with the CV results that do not alter as a
function of TR but can be sensitive to differences in sequence
parameters and k-space trajectory and other technical issues,
c.f. Figure 2.

Aliasing of Physiological Pulsations in
Central Areas
The FFT frequency power maps illustrate that the cardiac
1Hz power is mainly detectable in sTR < 0.3 s. In the most
critically sampled data, the 1Hz cardiovascular signal pulses
most prominently in the paravascular space in areas near
major cerebral arteries and somewhat in the major venous
sinuses. From the periarterial areas the cardiovascular pulses are
convected into the CSF ventricles, centerline parasagittal CSF
spaces, c.f. Figure 5. The respiratory power is nearly absent from
the periarterial spaces and dominates more on the posterior and
cortical perivenous structures and is relatively stronger in the
posterior central CSF spaces. The VLF power tends to align
mostly along the cortical gray matter without strong overlap with
the midline parasagittal area.

Above 0.3 s sTR, the cardiac power became mostly
aliased over respiratory power in central brain bordering

CSF spaces. Thus, all critical analysis of respiratory power
changes needs to be performed with data < 0.5 s TR. The
most prominent aliasing occurred in sTRs between 1 and
2 s, where the respiration is still sampled critically but the
cardiac is aliased over it; they become strongly mixed into
sTR 1–2 s signal. This type of cardiorespiratory aliasing
however seems to affect the measuring of FC on cortical
structures minimally (Figures 2–3), since the connectivity
occurs dominantly in VLF frequencies (<0.1Hz) that
dominate in the cortex to begin with. Also, the effects of
aliasing as a function of sTR on the VLF FFT power are
less severe around sTR 1–2 s but increase further in sTRs
>2.0 s (Figures 2, 5, 6).

The power of FFT amplitude spectra increased in VLF range
as a function of sTR, which is a sign of cardiorespiratory
aliasing (Kiviniemi et al., 2005; De Luca et al., 2006). The effect
was highest in sTR 3.0 s. This reduces sensitivity to changes
in physiological pulsations and furthermore does no longer
have the capability to differentiate neither cardiorespiratory
nor even different VLF fluctuation peaks as different sources.
Furthermore, physiological pulsations seen in 0.1 s TR could not
be detected on a group level global or individual voxel signal
above 0.3 s sampling rate. Also, VLF power peak features became
undetectable with vanishing power of the increased sTR.

Importantly, the f −α FFT amplitude spectrum curve became
affected by the highest sTRs (Figure 4). This has an inevitable
effect on measures of signal stationary metrics like Hurst
exponent (H) (Bullmore et al., 2001; Wink et al., 2008), fractal
dimension (Df) (Kiviniemi et al., 2005; Kiviniemi, 2008) since
the power spectral intensity f(I) = f −α, where Df = (3-α)/2 and
Df = 2-H. The f/ALFF as well as f −α metrics may then also
be sensitive to physiological pulsations. In other words, results
based on comparing patients with controls may suffer from
cardiorespiratory differences between groups. To avoid these
factors, physiological signals should be measured and FFT power
spectral analyses should be performed on as short TR data as
possible. This is our recommendation for future studies.

Dynamic Connectivity and Effect of TR
The recent discoveries of dynamic functional connectivity
analytics of fMRI data show that there are marked changes
over time (Hutchinson et al., 2012). Wavelet analyses and time
windowed approaches have suggested that the connectivity of
regions varies markedly over time (Chang and Glover, 2010;
Kiviniemi et al., 2011; Smith et al., 2012; Liu and Duyn, 2013).
Targeted averaging algorithms can detect quasi-periodic very low
frequency BOLD signal pulses that travel over the RSN and
connectivity gradient patterns (Majeed et al., 2011; Pan et al.,
2013; Keilholz, 2014; Thompson et al., 2014).

In this study we evaluated the VLF QPP maps to quantify
effects of sTR on dynamic BOLD connectivity metrics. First,
the FFT analysis indicated that the faster cardiorespiratory
pulsations could not be even evaluated as a function of sTR: the
cardiac power is not visible above 0.5 s sTR and furthermore
the cardiac power aliases over respiratory power. Secondly,
the VLF pulse analysis indicated that compared to the most
critically sampled 0.1 s TR data, both the QPP strength (i.e.,
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spatial similarity of waves) and inter-individual repeatability
of the QPPs become linearly reduced with increasing sTR. In
other words, the QPP analysis significantly lost its accuracy as
a function of sTR. Taken together, the analysis of dynamic and
physiological pulsations benefits when performed on data with
TRs < 0.3 s.

As with most of the dynamic connectivity metrics, the
problem has been the reducing statistical power of the
analysis when shorter and shorter connectivity epochs have
been attempted to be analyzed. Reducing dynamic analysis
window length reduces also the number of samples and
degrees of freedom for statistical inferences. Our results
support the use of short TR in the evaluation of dynamic
connectivity metrics as (a) for mathematical procedures, short
TR gives more time points per analyzed time window, (b) it
enables critical sampling and differentiation of physiological
pulsations, (c) it avoids aliasing of the physiological signal
over the targeted phenomena, (d) enables mapping of
modulations of the pulsations, and e) it offers markedly
more accurate signal distributions for statistical inferences,
c.f. Figure 4D.

LIMITATIONS AND STRENGTHS OF
THE STUDY

The results may not be directly comparable due to multiple
technical differences between interleaved EPI vs. MREG.
However, despite the technical differences, the results in
stationary connectivity are highly similar in a wide range
of frequencies and RSNs. This study aimed to minimize
confounding factors like intra-subject status changes
(cardiorespiratory status, vigilance, mood, etc.) as well as
technical factors (SNR, sequence parameters, sampling
trajectory, scanner model, field strength) issues by using
data from the same subjects scanned once with fast TR
that was downsampled to higher sTRs. This enables the
direct comparison of the effects of sampling rate only.
EPI data was scanned for comparing the results to a more
conventional technique.

However, the interleaved vs. single shot k-space sampling
technique is not the only difference when comparing MREG
and EPI data. As mentioned accurately by Golestani and co-
workers, comparisons of long vs. short TR measurements
need to be taken with a grain of physics, i.e., the EPI vs.
MREG also have several other technical differences. In order
to be fast, TR is very short in MREG which sensitizes the
signal more to T1 inflow and steady state precession effects
compared to conventional EPI BOLD (Liu, 2016). On the other
hand, TE is relatively long in MREG which makes it T2∗ -
weighted as is EPI BOLD. The low flip angles 5◦ vs. 15◦ in
MREG and EPI BOLD, respectively, reduces the sensitivity to
physiological pulsations on both methods as well (Gonzalez-
Castillo et al., 2011). Furthermore, the system noise changes
linearly or even quadratically with the TR due to imperfections
as the sequence is repeatedly run. All these effects need to
be considered while discerning the differences between EPI vs.

MREG results and again the direct comparison between them is
rather difficult.

According to (Glover, 2012), the spiral readout has
reduced sensitivity to motion, shortened readout times,
improved signal recovery in most frontal and parietal brain
regions, and exhibited blurring artifacts instead of ghosts
or geometric distortion. MREG combines Spiral-in/out
trajectory which further has diminished susceptibility-
induced signal dropout and increased BOLD signal. The
EPI readout trajectory is subject to ghosts from off-resonance
and gradient imperfections and is intrinsically sensitive to
cardiac-induced pulsatile motion from substantial first- and
higher order moments of the gradient waveform near the
k-space origin (Glover, 2012). So, the artifact and BOLD
sensitivity profiles are also different between EPI and MREG.
In summary, looking at the similarity of the resting state
connectivity measures with different techniques, it seems that
human brain connectivity is quite a stable phenomenon that
can be measured robustly with technically quite different
scanning approaches.

Earlier, the use of two different sampling rates scanned at
subsequent scanning sessions have been used to exclude aliasing
as a source of very low frequency fluctuations as a source of
resting state functional connectivity (Beckmann et al., 2005;
Kiviniemi et al., 2005). Theoretically, the previous data that used
different scan sessions and so the physiological pulses were not
identical between the TRs and therefore not directly comparable.
However, in studies with different sampling rate in different scan,
also there the results seem to be highly similar to our data (Smith
et al., 2013; Golestani et al., 2017).

While attempting to quantify aliasing and dynamic metrics,
we used the original 0.1 s TR MREG data as a reference.
This may in theory involve a bias since the original MREG
data can also detect modulations of cardiorespiratory pulse
amplitudes and timing variations, as seen in Figure 1. The
slower sTRs have no way of depicting these modulations
and therefore a comparison of spatial connectivity and signal
stability may be somewhat biased toward undermining the
accuracy of the fast data, since it is also sensitivity to
modulation effects.

CONCLUSION

The overall the effect of sampling rate on most commonly
used stationary rs-fMRI metrics is minimal. The dominance
of the VLF power in gray matter overpowers aliasing effects
and enables highly reproducible stationary connectivity
results. The aliasing is most dominant between cardiac
and respiratory pulsations in central structures near or
within CSF spaces. Different technical imaging approaches
(e.g., interleaved EPI vs. SOS MREG) yield differential
connectivity metrics stemming from multiple spin acquisition
differences. Despite these differences, the results from different
techniques give fairly good spatial agreement of human brain
connectivity. Interleaved scanning of slices seems to introduce
inaccuracies in some analyses due to discontinuous sampling

Frontiers in Neuroscience | www.frontiersin.org 13 April 2019 | Volume 13 | Article 279

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Huotari et al. Sampling Rate Effects on fMRI

of physiological signals. The analysis of dynamic connectivity
and frequency based physiological pulsation benefits most from
faster scanning.
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Video 1 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

repetition time (TR = 0.1 s).

Video 2 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=0.3 s).

Video 3 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR = 0.5 s).

Video 4 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.0 s).

Video 5 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.5 s).

Video 6 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=1.8 s).

Video 7 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=2.2 s).

Video 8 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

subsampled repetition time (sTR=3.0 s).

Video 9 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

conventional echo-planar imaging (EPI) acquisition with repetition time

(TR=2.15 s).

Video 10 | Mean very low frequency quasi-periodic patterns (VLF QPPs) for

interleaved variant with subsampled repetition time (sTR=2.2 s).
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