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Synchronized states are marked by large-amplitude low-frequency oscillations in the
cortex. These states can be seen during quiet waking or slow-wave sleep. Within
synchronized states, previous studies have noted a plethora of different types of
activity, including delta oscillations (0.5–4 Hz) and slow oscillations (<1 Hz) in the
neocortex and large- and small- irregular activity in the hippocampus. However, it
is not still fully characterized how neural populations contribute to the synchronized
state. Here we apply independent component analysis to parse which populations
are involved in different kinds of neocortical activity, and find two populations that
alternate throughout synchronized states. One population broadly affects neocortical
deep layers, and is associated with larger amplitude slower neocortical oscillations. The
other population exhibits theta-frequency oscillations that are not easily observed in
raw field potential recordings. These theta oscillations apparently come from below the
neocortex, suggesting hippocampal origin, and are associated with smaller amplitude
faster neocortical oscillations. Relative involvement of these two alternating populations
may indicate different modes of operation within synchronized states.

Keywords: synchronized state, independent component analysis, theta oscillation, non-REM, slow oscillation,
delta oscillation, cortical state

INTRODUCTION

Cortical state can be described along a spectrum from synchronized to desynchronized (Harris
and Thiele, 2011). Desynchronized states are characterized by low amplitude high frequency
activity where local neuronal activity is uncorrelated. Desynchronized activity is seen during
active waking (engaging in a task such as navigating a maze) and rapid-eye movement sleep
(REM). In rats, while the neocortex is desynchronized, the hippocampus exhibits theta oscillations,
sinusoidal oscillations between 4 and 8 Hz (Diekelmann and Born, 2010). Synchronized states are
characterized by high-amplitude, low-frequency oscillations where neuronal populations fluctuate
between UP states marked by frequent neuronal firing, and DOWN states marked by neuronal
silence. Synchronized states are seen during quiet waking (resting or engaging in a routine task such
as eating) as well as non-REM sleep. In rats, while the cortex is synchronized, the hippocampus
exhibits irregular activity featuring sharp waves, quickly depolarizing waves generated in CA3
accompanied by ripple oscillations (>100 Hz) (Diekelmann and Born, 2010). Within non-REM
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sleep, neocortical activity progresses from K-complexes (large
amplitude biphasic waves) to slow-wave activity (SWA) (<1 Hz)
mixed with delta oscillations (1–4 Hz) (Crunelli et al., 2006).
At the same time, the hippocampus can display either low-
or high-amplitude irregular activity (Miyawaki et al., 2017).
While activity during synchronized states has been widely
studied, neural ensemble dynamics within synchronized states
are not still fully characterized (Diekelmann and Born, 2010;
de Andrés et al., 2011; Crunelli et al., 2015; Neske, 2016;
Mizuseki and Miyawaki, 2017).

Previous studies on cortical dynamics primarily analyzed
activity by looking at either spiking activity or the local field
potential (LFP) (Einevoll et al., 2013). Single- or multi-unit
spiking activity gives detailed information about individual
neural interactions. However, because the number of neurons we
can detect is limited, we must infer how cell populations behave as
a whole. On the other hand, LFP recordings reflect activity from
many populations simultaneously, including neurons and non-
spiking glia (Buzsáki et al., 2012). However, signals from different
populations tend to overlap at each recording site, as illustrated
in Figure 1. The fact that signals overlap makes these recordings
difficult to parse, i.e., it isn’t clear which populations are involved
in different kinds of activity (Kajikawa and Schroeder, 2011;
Buzsáki et al., 2012; Kajikawa and Schroeder, 2015). Current
source density (CSD) analysis helps reduce signal spread by
focusing on current sinks and sources, but it may still be
difficult to parse which cell populations are involved, particularly
in the neocortex where neuronal populations are very dense
(Gulyás et al., 2016).

To address the issue of overlapping population signals, we
turned to independent component analysis (ICA) (Brown et al.,
2001). Based on the assumption that the LFP is made up of
summed population signals, and that the relative amplitude
of a single population across the electrode remains fixed over
time, ICA decomposes recordings so that signals from different
populations are separated into different components. ICA works
by finding a matrix that decouples the signals so that they are
as statistically independent as possible. Since ICA decouples
signals by matrix multiplication, the number of extracted
components is the same as the number of recording channels.
If there are more populations than recording channels, then
ICA groups populations with similar spatial profiles together in
the same component. Even with a limited number of channels,
ICA has proven to be very effective for parsing signals from
different types of neural recordings (Jung et al., 2001; Makarov
et al., 2010; Herreras et al., 2015). Moreover, unlike principal
component analysis which focuses on high amplitude signals,
ICA can easily parse low amplitude signals that may be missed
from the raw LFP.

In this study, we applied ICA to neocortical laminar
recordings from unanesthetized and urethane anesthetized rats,
and consistently observed two ICA components that alternate
throughout synchronized states. One component has a high
amplitude signal that broadly covers much of the lower layers
(broad layer 5, BL5); the other component shows intermittent
theta oscillations and has an anatomical profile indicating
it is below the neocortex (THETA) (Herreras et al., 2015).

Furthermore, we found that during synchronized states when
BL5 is active neocortical UP/DOWN states tend to be slower
and have a larger amplitude, while faster small-amplitude
UP/DOWN states are seen when SUB is active. These results
suggest two modes of operation within the brain during cortical
synchronized states.

MATERIALS AND METHODS

Animals
We used twenty-three adult Sprague-Dawley rats (male, 270–
413 g, n = 18 for anesthetized experiments, n = 5 for
unanesthetized experiments). All procedures for anesthetized
experiments were performed in accordance with the UK Animals
(Scientific Procedures) Act of 1986 Home Office regulations and
approved by the Home Office (PPL60/4217 and 70/8883). All
procedures for unanesthetized experiments (Sakata and Harris,
2009, 2012) were approved by the Institutional Animal Care and
Use Committee of Rutgers University.

Electrophysiological Experiments
Detailed experimental procedures are described in previous
studies (Sakata and Harris, 2009, 2012; Sakata, 2016). Briefly,
for anesthetized experiments, we anesthetized animals with 1.5–
1.6 g/kg urethane. We also administered lidocaine (2%, 0.1–
0.3 mg) subcutaneously at the site of incision. After attaching a
head-post in the frontal region with bone screws, one of which
was used as an electrode for cortical electroencephalograms
(EEGs), we placed the animal in a custom head restraint that
left the ears free and clear. Two additional bone screws were
implanted in the cerebellum as ground. Body temperature was
maintained at 37◦C with a feedback temperature controller (40-
90-8C, FHC). After reflecting the left temporalis muscle, we
removed the bone over the left auditory cortex (AC) and carefully
performed a small duratomy for each site.

For unanesthetized experiments, in initial surgery, we
anesthetized animals with ketamine (100 mg/kg) and xylazine
(10 mg/kg), and placed them in a stereotaxic apparatus (David
Kopf Instruments). We attached a head-post (Thorlabs, Inc.) with
dental cement (3M ESPE, RelyX Luting Cement), removed the
left temporal muscle, and covered the exposed bone over the left
AC with biocompatible glue and dental cement. After a recovery
period, animals were lightly water-deprived, and handling (5–
10 min/day) and head-fixation training began. We trained
the rats for at least five sessions, during which the duration
of restraint was gradually extended. Ten percent sucrose was
frequently given during training and water was freely available
for at least 1 h after daily training. On the day of recording, we
carefully performed a craniotomy and duratomy under isoflurane
anesthesia (5% for induction and 0.8% for maintenance). Neither
skin nor muscle was cut during this surgery. After a short
recovery period (>1 h), recording began.

During recording for both experiments, we covered the brain
with 1% agar/0.1 M phosphate buffered saline (PBS) to keep
the cortical surface moist. We inserted a 32 channel silicon
probe (A1x32-10mm-50-177-A32, NeuroNexus Technologies)
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FIGURE 1 | Example of ICA applied to neural data. Data generated from a single anesthetized experiment used as an example throughout this study. (A) Different
populations generate field potentials across the electrode, resulting in overlapping signals recorded at each channel. For example, the signal from a single cell (1)
may have the highest amplitude in a single channel, while other channels have much lower amplitude. The signal from a larger population (2) may have high
amplitude across multiple channels with a single dipole. A population below the electrode (3) may generate the highest amplitude signal in the channel closest to the
population, which decays with channels further from the population and doesn’t display a dipole (Herreras et al., 2015). (B) Example CSD from 32-channel electrode
along with ICA decomposition. The ICA components are listed in order from largest to smallest amplitude over the entire experiment. In the CSD, the auxiliary
channel 0 indicates a tone is played at time 0, and we see an immediate reaction to the stimulus in channels 11 through 17. This immediate reaction to the tone is
summarized in ICA component 4. Each ICA component is associated with an anatomical map showing the amplitude of that component across the electrode. The
anatomical map for ICA component 4 is consistent with the large population (2) in (A). Similarly, high frequency activity seen in the CSD in channels 20 and 21 is
reflected in ICA component 9, whose anatomical map is consistent with the single cell (1) in (A). Finally, there is a 4 Hz sinusoidal oscillation in ICA component 7 that
is not apparent in the original CSD. The anatomical map gradually increases toward the lowest channel and there is no dipole, indicating that the oscillation was
generated from below the electrode as in population (3) in (A).

where channels are 50 µm apart, either manually or slowly
(2 µm/sec or slower) with a motorized manipulator (DMA-
1511, Narishige) into the AC (1400–1770 µm from the surface).
All electrophysiological experiments were performed in a single-
walled soundproof box (MAC-3, IAC Acoustics) with the interior
covered by 3 inches of acoustic absorption foam. Broadband
signals (0.07–8 kHz) from the silicon probes were amplified (1000
times) (Plexon, HST/32V-G20 and PBX3), digitized at 20 kHz
and stored for offline analysis (PXI, National Instruments).

A typical recording schedule was as follows: after insertion of
the probe and an additional waiting period (at least 30 min), we
started recording with a silent period (at least 5 min), followed
by sound presentations, and ended with another silent period
(at least 5 min).

Acoustic stimuli were generated digitally (sampling rate
97.7 kHz, TDT3, Tucker-Davis Technologies) and delivered in
free-field through a calibrated electrostatic loudspeaker (ES1)
located approximately 10 cm in front of the animal. We calibrated
the tone presentations using a pressure microphone (PS9200KIT-
1/4, ACO Pacific, Inc.) close to the animal’s right ear. Acoustic

stimuli for this study consisted of short pure tones (50 ms long
with 5 ms cosine ramps, 1/6 or 1/8 octave steps, 3–48 kHz,
10 dB steps, 0–80 dB SPL), long pure tones (300 ms with 10 ms
cosine ramps), and unanesthetized experiments also contained
brief click trains.

Histology
After electrophysiological experiments, we perfused rats
transcardially with physiological saline followed by 4%
paraformaldehyde/0.1 M phosphate buffer, pH 7.4. After
overnight post-fixation in the same fixative, we incubated
brains in 30% sucrose solution for cryoprotection, cut into
100 µm coronal sections with a sliding microtome (SM2010R,
Leica), and the sections were collected and placed in 0.1 M
PBS. For verification of silicon probe placement, the free-
floating sections were counterstained with NeuroTrace (1/500,
N-21480, Life Technologies) in PBS with 0.1% Triton X-
100 for 20 min at room temperature. The sections were
mounted on gelatin-coated slides and cover-slipped with
antifade solutions.
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Data Analysis Preprocessing
We performed all analysis using Matlab (R2017a, Mathworks,
Waltham, MA, United States). Since the sample rate of the
original recordings was 20 kHz, we first filtered the data below
650 Hz using the fast Fourier transform (FFT, fft in Matlab)
with a bump function pass band, where the bump function
smoothly transitioned from 0 to 1 over 0.25 Hz. We then
removed 50 Hz line noise by linearly interpolating the Fourier
transform. Finally, we down-sampled the data to 2 kHz, and
high-pass filtered the data over 0.1 Hz using FFT with a bump
function pass band.

We noted three kinds of artifacts to remove from analysis:
line drift, electrode pops, and epochs with low firing rates.
To mark epochs with line drift (large amplitude deviations
in the LFP for a single channel), we calculated the standard
deviation of each channel. We then marked sections that
exceeded 5 standard deviations for that channel. For electrode
pops (large jumps in the LFP), we calculated histograms of
voltage slopes over the entire experiment for each channel.
We marked points where the slope was >2,500 V/s for at
least one channel, or >1,000 V/s for at least 2/3 of the
channels within 1 ms. To determine overall firing rate, we
summed the multi-unit activity (MUA) over all channels, and
then computed the average firing rate of the summed MUA
over 6 s windows shifted by 600 ms. We marked points that
were below 40 Hz for anesthetized experiments and 100 Hz
for unanesthetized experiments, where these thresholds were
set by the distribution of firing rates for anesthetized and
unanesthetized experiments, respectively.

UP State Detection
We used MUA to determine UP and DOWN states. First
we calculated the smoothed MUA (sMUA) by summing the
MUA over all channels. We then smoothed the summed MUA
using a Gaussian filter with standard deviation of 6.25 ms for
anesthetized data and 2.5 ms for unanesthetized data (0.25
divided by minimum firing rate). We then computed UP and
DOWN state transitions based on Sakata and Harris (2009). The
threshold for transitioning from a DOWN to an UP state was
the geometric mean of the sMUA over points where sMUA > 0,
while the threshold for transitioning from an UP to a DOWN
state was 1/5 the UP state threshold. The minimum UP/DOWN
state length was 50 ms for anesthetized data and 25 ms for
unanesthetized data.

Spectrogram Calculation
All spectrograms were calculated over 6 s windows shifted by
600 ms using Welch’s power spectral density estimate (pwelch
in Matlab). Spectrograms were used to analyze frequency
content of the LFP as well as ICA components. To estimate
synchronized states, we computed the spectrogram of the
LFP for each channel and then took the median over all
channel spectrograms, keeping time and frequency fixed.
The low-frequency LFP power (LFP-Power) is the summed
power from 1 to 5 Hz (Harris and Thiele, 2011) of the
median spectrogram. The threshold for synchronized states

for all experiments was set to the median LFP-Power over
unanesthetized experiments.

ICA Application
We first spatially filtered the data using a Gaussian kernel
with width 50 µm. We then calculated the spline inverse
CSD over the LFP (Pettersen et al., 2006). Since the CSD
partially separates sources, previous work suggests that ICA
separates the CSD more cleanly than the LFP (Lȩski et al.,
2010). For the ICA training data, we randomly selected
100s worth of data points from synchronized data only. We
used the extended infomax algorithm to minimize effects
of kurtosis in the data (Lee et al., 1999) implemented in
EEGLAB (Schwartz Center for Computational Neuroscience,
La Jolla, CA, United States). We applied ICA 10 times,
each on different training data, to yield 10 different sets of
ICA components. We then chose the ICA component set
that had minimal mutual information between components
(Kraskov et al., 2004). To estimate mutual information, we
took samples of 100 to 1,000 s of data points. We then
calculated a mutual information factor (MIF) by estimating
entropy of individual components, using bins with approximately
10 data points per bin. The MIF is the summed entropy of
all individual components, minus ln| W| where W is the ICA
unmixing matrix.

Out of the 32 components generated by ICA, we
selected the THETA component first and then the BL5
component. ICA lists components according to amplitude.
We chose the first component with a narrow band oscillation
between 2–5 Hz in anesthetized experiments and 5–9 Hz
in unanesthetized experiments, reflecting theta ranges in
urethane anesthetized and unanesthetized conditions. The BL5
component is the highest amplitude component, not including
the SUB component.

Independent component analysis component amplitude can
vary based on experiment as well as populations included in
the component. Therefore, we scaled BL5 and SUB according
to their activity levels. We considered BL5 active when its
signal was correlated with the sMUA. We calculated the
correlation over 6 s windows shifted by 600 ms to match
spectrogram data. Since the ICA algorithm guesses the sign
of a component based on the spatial profile, we switched the
sign of BL5 if necessary so that the correlation was negative
overall. Time points with correlation ≥0 were considered
inactive. If there were fewer than 30 points that met this
criterion, then points with correlation ≥−0.1 were considered
inactive. We then centered the signal based on the median
and interquartile range of inactive points. To measure the
activity level of the THETA component, we first determined
the peak frequency between 2–5 Hz for anesthetized data and
5–9 Hz for unanesthetized data. We then smoothed the peak
frequencies using a Gaussian with standard deviation 10 s,
weighting each point according to the amplitude of the peak.
We then found the total amplitude around the peak (width
1 Hz for anesthetized, 2 Hz for unanesthetized), along with the
amplitude of the surrounding frequencies which consisted of
a half width window above and below the peak window. The
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activity level of THETA was defined as the normalized peak
amplitude, where amplitude was centered on the median and
interquartile range of the surrounding frequencies over the entire
experiment for anesthetized data. Because surrounding frequency
amplitude varied a great deal over the course of unanesthetized
experiments, we decided to normalize the peak amplitude based
and median and interquartile range over 6s instead of the
whole experiment.

Sleep Parameter Threshold Estimation
We estimated sleep stage parameters on the LFP median
spectrogram for unanesthetized experiments. We first calculated
the LFP delta (0.5–4 Hz), theta (6–9 Hz), and sigma (10–14 Hz)
power (Benington et al., 1994; Gross et al., 2009). We then
smoothed the power using a Gaussian kernel with width 2.5 s.
As sigma × theta power indexes waking vs. sleeping, we selected
the sigma × theta threshold first based on largest population
density (Benington et al., 1994). We calculated a histogram with
100 bins over the lowest 90% of data points. Then we smoothed
the histogram using a Gaussian with width over 1 bin. We
calculated the max height of the histogram hc and mean height
of the histogram hm. The threshold is the first point above hc
where the histogram falls below (hc+hm)/2 as sigma × theta
increases. The delta/theta threshold, which indicates the border
between REM and non-REM sleep, was based on the non-REM
to REM indicator value (NIV) (Benington et al., 1994). We
calculated candidate transition to REM (NRT) segments where
delta power dropped [delta-DP < 1 in Benington et al. (1994)]
and sigma× theta is above threshold. For each NRT segment, we
calculated the NIV and the minimum delta/theta value over the
entire segment (DT-min). The threshold was set to the median
DT-min over all segments with NIV values in the top 50%.

Laminar Estimation
To display channel data, we estimated the central L4 channel
based on the maximum CSD amplitude evoked by the preferred
tones. The channel with the highest amplitude was labeled as a
thalamic recipient layer (L4).

Statistical Analysis for
Neocortical Activity
To compare neocortical activity across states, we used 2-way
ANOVAs based on conglomerated artifact-free data points across
all anesthetized or unanesthetized experiments with BL5/THETA
index ϕ between −45 and 135 degrees. All 2-way ANOVAs were
performed on the variable of interest as a function of LFP-Power
and ϕ, where LFP-Power was considered continuous and ϕ was
split into BL5 (ϕ ≤ 45) and THETA (ϕ > 45). For UP state
location, we also included the experiment as a random factor.

UP phase amplitude was defined as the largest amplitude
occurrence after Gaussian smoothing over time with a kernel
of 2 ms. Peak frequency was defined as the maximum
frequency after Gaussian smoothing with a kernel of
0.25 Hz. Peak frequency width was determined by the Matlab
function findpeaks.

RESULTS

We used ICA to investigate which cell populations are active
during synchronized states in 18 urethane anesthetized and 5
unanesthetized head-fixed rats. Anesthetized rats exhibited sleep-
like states (Clement et al., 2008; Pagliardini et al., 2013), while
unanesthetized rats could be waking or sleeping. We recorded
from all layers of the AC using 32-channel linear probes (Sakata
and Harris, 2009, 2012). From these recordings, we calculated
the CSD before applying ICA in order to get clearer components
(Lȩski et al., 2010). We applied ICA to the CSD 10 times,
each time with different randomly selected sets of artifact-free
training data, and chose the ICA run with the least estimated
mutual information between components (Kraskov et al., 2004)
to promote as much separation as possible.

Two Populations Consistently Revealed
by ICA
We consistently noticed two ICA components. One component
exhibited sinusoidal oscillations in the theta range (Buzsáki, 2002;
Buzsáki and Draguhn, 2004; Lakatos et al., 2005; Montgomery
et al., 2009) that appeared to originate below the neocortex
(THETA). The other was the highest amplitude component
which broadly affected all layers, centered on layer 5 (BL5).

We define the THETA component as the highest-amplitude
component with clock-like sinusoidal oscillations in the theta
range (2–5 Hz anesthetized, 5–9 Hz unanesthetized). We found
a THETA component in 16/18 anesthetized experiments and
5/5 unanesthetized experiments. Figure 2A shows that the
amplitude of the THETA component did not have a clear
dipole and gradually increased toward the lowest channel
in anesthetized experiments, suggesting that signals volume
conducted from below the neocortex (Sirota et al., 2008; Kajikawa
and Schroeder, 2011; Herreras et al., 2015). In unanesthetized
experiments, the amplitude also did not have a dipole and was
even over all channels. These anatomical maps were unique
in that they were the only components without a dipole (see
Supplementary Figure S1). At the same time, we noticed that
signals associated with motion, which affects all channels evenly,
were also separated into the THETA component. (Note that
motion-associated signals may be present outside time intervals
marked as motion artifact, see section “Materials and Methods.”)
Therefore, it is possible that ICA grouped theta oscillations and
motion signals together because of their similar anatomical maps.

We define the BL5 component as the largest amplitude
component, excluding the THETA component. Because BL5
was simply the largest component, each experiment had a BL5
component. Anatomical maps of BL5 consistently had large
amplitude across all lower layers, with the largest amplitude in
L5 and a dipole in L4. These anatomical maps are consistent
with a large population generating the signal across multiple
channels as illustrated in Figure 2A. BL5 and THETA were
active intermittently, as shown in the example anesthetized
experiment in Figures 2B,C. When BL5 was active, it exhibited
large amplitude low frequency oscillations that closely resembled
the CSD. Because of this, we define the BL5 amplitude to
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FIGURE 2 | Properties of BL5 and THETA components. (A) Spatial maps of both components across 32 channels used to record the LFP, along with diagram of
putative population sources. Results for the example anesthetized experiment shown in (C) and unanesthetized experiment in Supplementary Figure 2 are
highlighted in blue throughout this study. Anatomical maps indicate BL5 is made up of a larger population located within the neocortex, while THETA may be
generated by a population below the neocortex. Amplitude in mA/mm3, distance in µm. (B) Segments when BL5 is active (strong low-frequency oscillations) and
when THETA is active (strong sinusoidal oscillation of approximately 4 Hz). Note that the CSD and smoothed multi-unit spiking activity (sMUA) show low-frequency
oscillations in both cases. Scale bar is 85th percentile amplitude of sMUA, CSD in channel 17, and ICA component taken from channel with maximum amplitude in
anatomical map. (C) Spectrograms of the LFP, BL5, and THETA components for an example anesthetized experiment. (D) Average frequency spectra when BL5
and THETA are active (scaled amplitude ≥2). Frequencies used to determine activity level are highlighted in pink. (E) Correlation between BL5 normalized amplitude
with LFP-Power and sMUA low frequency power (1–5 Hz), and THETA normalized amplitude with LFP and sMUA relative theta amplitude. Density plot for example
experiments on the left, histograms of correlation from density data on the right. (F) Correlation between BL5/THETA signal and CSD from L5 (channel 350 µm
below L4) and sMUA. Example experiments on left, histograms of median correlations over points where BL5/THETA are active on the right.

be the amplitude from 0.5–4.5 Hz (anesthetized) or 0.5–7 Hz
(unanesthetized). When THETA was active, it exhibited a sharp
peak frequency between 2–5 Hz (anesthetized) or 5–9 Hz
(unanesthetized). We therefore define the THETA amplitude
based on the peak amplitude within the theta range (see

section “Materials and Methods”). Figure 2D shows the average
frequency spectra of both BL5 and THETA when they are active,
as defined below.

In order to compare activity level across experiments, we
normalized the BL5 and THETA amplitude according to the
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noise level inherent in their signals. We found that BL5 has
a high correlation with the CSD taken from the center of L5
and smoothed Multi-Unit Activity (sMUA) when active, and
was uncorrelated with CSD and sMUA otherwise. Therefore,
we found the median and inter-quartile range of the BL5
amplitude over all time points where BL5 had low correlation
with the sMUA. We then normalized the BL5 component using
this median and inter-quartile range (see section “Materials
and Methods”). Likewise, in the THETA spectrogram in
anesthetized experiments, there was a sharp theta peak which
stood out among other frequencies when THETA was active,
and blended in with surrounding frequencies when it was not.
We therefore found the median and interquartile range of the
summed amplitude from frequencies above and below the theta
range over the entire experiment. We then normalized the
THETA amplitude using the surrounding frequency amplitude
median and inter-quartile range (see section “Materials and
Methods”). In unanesthetized experiments, while the theta
peak stood out during desynchronized states and intermittently
during synchronized states, the surrounding frequencies changed
according to overall low-frequency LFP power (LFP-Power, 1–
5 Hz power of median spectrogram over all channels) (see
Supplementary Figure 2). In order to not overestimate the
THETA amplitude during synchronized states, we normalized
THETA amplitude according to surrounding frequencies within
a 6 s window. Since both BL5 and THETA are normalized
according to the median and interquartile range of their inherent
noise level, we consider BL5 and THETA to be active if their
amplitude is ≥2.

Since anatomical maps indicate that BL5 has neocortical
origin while THETA originates from below the neocortex, we
investigated the relationship between BL5 and THETA and
the local activity. In order to investigate the relationship, we
looked at both the correlation between the amplitudes of BL5
and THETA with LFP-Power as well as the direct correlation
between the component signals and CSD and sMUA. We did
this because, while the amplitude focuses on a relevant frequency
range, the raw signals may also reveal correlations. We found
that the BL5 scaled amplitude is correlated with LFP-Power
(T-TEST, ANESTHETIZED: N = 17, p< 0.0001, UNANESTHETIZED:
N = 5, P < 0.0001) (see Supplementary Table 1 for details
on statistical tests) and sMUA 1–5 Hz amplitude (T-TEST,
ANESTHETIZED: N = 17, P < 0.0001, UNANESTHETIZED: N = 5,
P < 0.0062) as illustrated in Figure 2E. When it is active,
BL5 is also directly correlated with the CSD from L5 (median
correlation over points with BL5 scaled amplitude > 2, T-TEST,
ANESTHETIZED: N = 17, P < 0.0001, UNANESTHETIZED: N = 5,
P < 0.0001) as well as the sMUA (T-TEST, ANESTHETIZED:
N = 17, P < 0.0001, UNANESTHETIZED: N = 5, P = 0.0027) as
shown in Figure 2F, where the correlation is taken over 6 s
windows in the same manner as the amplitude. Both of these
tests confirm that BL5 is correlated with local activity when BL5
is active.

We found that while THETA was correlated with the LFP
(LFP scaled theta amplitude, T-TEST, ANESTHETIZED: N = 15,
P = 0.0260, UNANESTHETIZED: N = 5, P = 0.0532; CSD L5, T-TEST,
ANESTHETIZED: N = 17, P < 0.0001, UNANESTHETIZED: N = 5,
P < 0.0001) as seen in Figure 2E, it was not correlated with the

sMUA (sMUA scaled theta amplitude, T-TEST, ANESTHETIZED:
N = 15, P = 0.4623, UNANESTHETIZED: N = 5, P = 0.5536; sMUA,
T-TEST, ANESTHETIZED: N = 15, P = 0.4033, UNANESTHETIZED:
N = 5, P = 0.1243) where results for individual experiments can be
seen in Figure 2F. Since the THETA component was extracted
from the LFP, we may expect that there is some correlation
between them. However, the fact the THETA is not correlated
with local spiking activity substantiates that THETA doesn’t have
neocortical origin.

THETA Amplitude Alternates With
BL5 Amplitude
Figure 2B appears to show that THETA and BL5 alternate
with each other. To test this possibility, we calculated the
correlation between the BL5 and THETA scaled amplitudes as
illustrated in Figure 3Ai, and found that they were anticorrelated
over all experiments (Figure 3Aii, T-TEST, ANESTHETIZED:
N = 15, P = 0.0002, UNANESTHETIZED: N = 5, P = 0.0054)
(see Supplementary Table 2 for details on statistical tests).
Because BL5 and THETA are anti-correlated, we quantified the
relative BL5-THETA participation in the CSD by calculating
the angle ϕ and radius r for each BL5-THETA data point as
shown in Figure 3Ai. In the conglomerate density plots of
ϕ vs. r over all experiments (Figure 3Aiii), we can see peak
densities where BL5 is dominant (ϕ ≤ 45) and where THETA
is dominant (ϕ > 45). Thus, it makes sense to refer to BL5- and
THETA-dominant states.

We then looked into how long BL5- and THETA-dominant
states last. Figure 3Bi illustrates how ϕ changes over the entire
example anesthetized experiment, where global trends tend
to switch on the order of 100 s of seconds with finer-grained
changes occurring throughout the experiment. Similar switching
can be seen in unanesthetized experiments, as shown in
Supplementary Figure 3. In Figure 3Bii, we see that although
BL5-dominant states tend to last longer, both states can last
on the order of 10–50 s. The amount of time spent in a BL5-
dominant vs. THETA-dominant state was similar (Figure 3Biii,
MEAN ± STANDARD DEVIATION (STD) ANESTHETIZED:
62.83 ± 16.56%, UNANESTHETIZED: 46.59 ± 8.71%).
Furthermore, tones played during experiments do not appear to
affect the length of states (Figure 3Biv, percent difference during
tone vs. spontaneous activity, MEAN ± STD, ANESTHETIZED:
1.65± 18.39%, UNANESTHETIZED:−7.91± 14.72%).

BL5 and THETA Amplitudes Alternate
During Synchronized States
In Figure 2B, we see instances where either BL5 or THETA
are active in the presence of noticeable CSD oscillations as seen
during synchronized states. Synchronized states were previously
characterized by high LFP-Power (Harris and Thiele, 2011). Since
we showed in the above section that BL5 and THETA alternate
within experiments, we further investigated whether BL5 and
THETA alternate within synchronized states as well. Figure 4A
shows the density plot of LFP-Power vs. ϕ for the same example
experiments as Figure 2B and Supplementary Figure 2. Within
this plot, ϕ ranges from 0 to 80 degrees for higher values of
LFP-Power in these experiments. Calculating the range (5–95
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FIGURE 3 | BL5 and THETA alternate within experiments. (A,i) Density plot of BL5 vs. THETA normalized amplitude for an example anesthetized experiment (same
as Figure 1B). Pink and blue marks indicate points that are used for example BL5 and THETA active segments in Figure 1B, respectively. We set ϕ as the angle
from the BL5-axis, while r is the radius. (ii) Correlations of BL5 vs. THETA normalized amplitude for each experiment. (iii) Conglomerate density plots of ϕ vs. radius
for all anesthetized and unanesthetized experiments. (B,i) Time course of ϕ over the same example anesthetized experiment used in Figure 1. (ii) Pie charts
showing the amount of time spent in BL5- vs. THETA-dominant episodes. For example, for anesthetized experiments during THETA-dominant states about 1/3 of
time spent is in an episode of length 10–50 s. (iii) Histogram of the fraction of time spent in BL5- vs. THETA-dominant states. (iv) Histograms of the difference in
fraction of time dedicated to BL5-dominant states during tone presentations vs. spontaneous activity.

percentile) over the density for all experiments reveals a wide
range of ϕ where both BL5- and THETA-dominant states are
included in the same echelons of LFP-Power. In contrast, ϕ often
took high values (>80) when the LFP-Power is low.

We then explored how much time is spent in BL5- vs.
THETA-dominant states when LFP-Power is high vs. when
LFP-Power is low. Since many experiments didn’t have a clear
threshold for LFP-Power, we set the threshold as the median
LFP-Power over all unanesthetized experiments (Figure 4A and
Supplementary Figure 4). With this threshold, virtually all
anesthetized experiments had high LFP-Power, so we focused
on unanesthetized experiments. The length of low vs. high LFP-
Power episodes was fairly even, while THETA-dominant states
were longer for low LFP-Power and BL5-dominant states were
longer for high LFP-Power (see Figure 4B). When LFP-Power
was low most of the time was spent in THETA-dominant states,
while the amount of time spent in BL5- vs. THETA-dominant
states when LFP-Power was high was similar to the ratio found
in anesthetized experiments, with at least 25% of time spent in

THETA-dominant states (Figure 4C, MEAN ± STD, PERCENT
HIGH LPF-POWER: 50.33 ± 9.49%, BL5 AND LOW LFP-POWER:
19.06 ± 11.58%, BL5 AND HIGH LFP-POWER: 73.73 ± 3.34%).
We further investigated the relationship between THETA
amplitude and LFP-Power directly, since theta oscillations were
previously noticed predominantly during desynchronized states,
and not synchronized states (Diekelmann and Born, 2010).
Supplementary Figure 5 reveals a similar relationship between
LFP-Power and THETA oscillations as Figure 4A, with a wide
range of amplitudes when LFP-Power is high. Furthermore, the
length of episodes with significant THETA normalized amplitude
during high LFP-Power is approximately the same as episodes
when THETA is inactive (Supplementary Figure 5b). Likewise,
about 50% of the time spent with high LFP-Power had significant
THETA normalized amplitude (Supplementary Figure 5c,
MEAN ± STD, PERCENT LOW SUB THETA, ANESTHETIZED:
37.16 ± 20.59%, UNANESTHETIZED: 34.86 ± 9.97%; LOW SUB
THETA AND LOW LFP-POWER: 23.31 ± 11.66%, LOW SUB
THETA AND HIGH LFP-POWER: 46.98± 6.53%).

Frontiers in Neuroscience | www.frontiersin.org 8 April 2019 | Volume 13 | Article 316

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00316 June 24, 2019 Time: 16:55 # 9

Munro Krull et al. Two Modes Alternate Within Synchronized States

FIGURE 4 | BL5 and THETA alternate within synchronized states. (A) Top plots show density of LFP-Power vs. ϕ for single experiments along with 5–95 percentile
ranges. Bottom plots show ranges for all experiments with results for example experiments highlighted in blue. Anesthetized ranges are plotted against centered
LFP-Power (LFP-Power minus LFP-Power with maximum range). Vertical black lines indicate median LFP-Power over unanesthetized experiments, used as the
threshold between low vs. high LFP-Power. Note, by this measure all anesthetized experiments had high LFP-Power. (B) Distribution of episode lengths as a
percentage of time spent in episodes of that length. (C) Fraction of time spent in each state. The top panel shows the fraction of time spent with high LFP-Power vs.
low LFP-Power. The lower two panels show the fraction of time spent in BL5- vs. THETA-dominant states. Notably, approximately 30% of time in high LFP-Power is
THETA-dominant. (B,C) Shows results for unanesthetized experiments only.

BL5 and THETA Amplitudes Alternate
Within Sleep Parameters
Since synchronized states may occur during both waking and
sleeping, we further characterized the occurrence of BL5- vs.
THETA-dominated states by comparing their amplitudes with
traditional measures of sleep state. In particular, we calculated
the delta (0.5–4 Hz), theta (6–9 Hz), and sigma (10–14 Hz)
power for each unanesthetized experiment. We then compared
ϕ with the measures sigma × theta, used to indicate wake vs.
sleep, and delta/theta, used to indicate non-REM vs. REM sleep
(Benington et al., 1994; Gross et al., 2009). Figure 5A shows
how ϕ changes for a single unanesthetized experiment with
respect to LFP-Power, delta/theta, and sigma × theta. Although
the first few episodes with high LFP-Power and sigma × theta
appear to be BL5-dominated, the last episode appears to have
many points where THETA is dominant. We then compared
BL5-dominated vs. THETA-dominated points directly on the
delta/theta and sigma × theta plane. In Figure 5B, we can see
that the top right quadrant which indicates non-REM sleep has
clear overlap of both BL5 and THETA points. As expected,
we predominantly see THETA-dominant states when delta/theta
or sigma × theta is low. We divided the delta/theta and
sigma × theta plane into regions (see section “Materials and
Methods”) in order to estimate the percentage of time dedicated
to BL5 vs. THETA. We found that, while episodes with BL5-
dominant states tend to be longer within the estimated non-REM
sleep region, a significant amount of time is spent in both BL5-
and THETA-dominant states, with approximately 70 vs. 30%
of time in each state (Supplementary Figure 6, percent BL5,

MEAN ± STD: 5.05 ± 5.35% IN ACTIVE WAKE REGION,
9.76 ± 8.85% IN QUIET WAKE REGION, 30.62 ± 14.47%
IN REM REGION, 68.46 ± 5.40% IN NON-REM REGION).
Remarkably, the percentage of time spent with THETA-dominant
is similar to high LFP-Power states. At the same time,
approximately 50% of time within the estimated non-REM region
has significant THETA amplitude (Supplementary Figure 6,
MEAN ± STD PERCENT LOW SUB THETA: 12.10 ± 10.30%
IN ACTIVE WAKE REGION, 18.32 ± 15.51% IN QUIET WAKE
REGION, 26.23 ± 7.34% IN REM REGION, 46.51 ± 6.79% IN
NON-REM REGION).

One reason for seeing theta during non-REM sleep could
be the transition to REM state, where theta oscillations
become strong just before REM (Benington et al., 1994;
Gottesmann, 1996). To investigate whether THETA oscillations
could represent the transition to REM, we plotted histograms
of BL5- and THETA-dominant points over delta/theta values,
where sigma × theta is above threshold shown in Figure 5C.
We then removed points in the 30 s leading up to the
delta/theta threshold, signifying a transition to REM. The
histograms show that BL5- and THETA-dominated points have
a similar distribution above the delta/theta threshold when
transition points are removed. We furthermore checked the
relationship of THETA amplitude with these sleep parameters
directly. When we removed transitional points from the non-
REM region, we also found similar distributions between high
THETA amplitude vs. low THETA amplitude points. Together,
these figures suggest that THETA-dominant states do not simply
comprise transition-to-REM states.
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FIGURE 5 | BL5 and THETA dominant states alternate within traditional sleep parameters. (A) LFP-Power, delta/theta power, and sigma × theta power compared to
ϕ levels for the same unanesthetized experiment as Supplementary Figure 1. (B) THETA-dominant points (ϕ > 45) mapped on top of BL5-dominant points (ϕ
≤ 45) on the delta/theta vs. sigma × theta plane used to help distinguish sleep stages. The upper part of the plane indicates sleep, while the lower part indicates
waking. High delta/theta indicates synchronized states such as non-REM sleep, while low delta/theta indicates desynchronized states such as REM sleep. Black
boundaries indicate thresholds used for (C). (C) Histograms of BL5- vs. THETA-dominant points on the left, and high THETA vs. low THETA amplitude on the right.
Delta/theta is scaled by the delta/theta threshold for each experiment. Upper plots include all points above the sigma × theta threshold, set to be just above the
peak sigma × theta density. Middle plots include points at least 30 s away from a transition across the delta/theta threshold. Lower plots include points within 30 s of
a delta/theta threshold crossing. Results for example experiment highlighted in bold.

Neocortical Activity Differs Between
BL5- and THETA-Dominant States
Figure 2B shows two versions of slow oscillatory activity in
the L5 CSD and sMUA, one where BL5 is dominant and
one where THETA is dominant. Looking at the CSD and
spiking activity across neocortical layers in Figure 6A, we
also notice qualitative differences in the activity between BL5-
and THETA-dominant states. In particular, we noticed that
BL5 states tended to have larger UP states centered in L5
with a slower frequency. At the same time, THETA states
tended to have smaller UP states focused in L4 with a
higher frequency.

To see if UP state CSD amplitude systematically changed
with ϕ, we compiled the amplitude of all UP states during
synchronized states (LFP-Power greater than median LFP-
Power over all unanesthetized experiments). We noticed a
down-ward trend in amplitude across ϕ in each experiment
(see Figure 6B). We then tested whether UP state amplitude
decreased with respect to ϕ independently from LFP-Power,
because LFP-Power may also predict amplitude changes in

individual UP states. We found that UP state CSD amplitude
significantly decreased with ϕ beyond LFP-Power (TWO-WAY
ANOVA WITH LFP-POWER AND ϕ CONGLOMERATED OVER
EXPERIMENTS, ANESTHETIZED: P < 0.0001, UNANESTHETIZED:
P < 0.0001) (see Supplementary Table 3 for details on
statistical tests). Since UP states appeared to be stronger in
L5 during BL5-dominant states, we also tested the UP state
amplitude peak neocortical depth. Similarly, we found that UP
state neocortical depth decreased with respect to ϕ beyond
LFP-Power (TWO-WAY ANOVA BETWEEN LFP-POWER ANDϕ

WITH EXPERIMENT AS RANDOM VARIATE, ANESTHETIZED:
P < 0.0001, UNANESTHETIZED: P = 0.0023).

Finally, we investigated how the frequency content of the
LFP changes with respect to ϕ. Figure 6C shows that the peak
frequency tends to increase for anesthetized experiments, and
the peak in the spectrogram narrows indicating that oscillations
become more regular. We found that this trend is significant over
all experiments independent of LFP-Power (two-way ANOVA
between LFP-Power and ϕ, p = 0 for peak frequency, p = 0.008
for peak frequency width).
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FIGURE 6 | Neocortical activity differs depending on BL5- vs. THETA-dominant states. (A) CSD (color, mA/mm3) and spiking activity (black asterisks) from example
anesthetized and unanesthetized experiments seen in previous figures. UP state onsets are marked by solid black lines, while DOWN state onsets are marked by
dashed lines. (B) Top plot shows density of UP state amplitude and UP state amplitude peak location for individual experiments, along with the mean with respect to
ϕ. Density is normalized for each ϕ bin, and the mean for a ϕ bin is calculated only if there are ≥ 30 points. We only included synchronized data points. Lower plots
show the mean for all experiments, with highlighted results for the average over all experiment means. UP peak location is centered along the mean location for each
experiment (UP location minus UP location mean). (C) Top left plot shows average spectrogram values over ϕ for the same example experiments as above, along
with the mean peak frequency over ϕ. Other plots show means for all experiments, with highlighted results for the example experiment.
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The frequency content of unanesthetized experiments proved
to be richer than anesthetized experiments, with strong low
frequency oscillations throughout synchronized states and an
increasing envelope of delta frequencies. We tested whether the
envelop of delta frequencies increased for all experiments by
measuring the peak frequency above 2.5 Hz. We saw that the
peak frequency increased significantly with ϕ beyond LFP-Power
(TWO-WAY ANOVA WITH LFP-POWER AND ϕ, p < 0.0001).
The peak frequency below 2.5 Hz did not change significantly
with ϕ. However, the peak frequency width appeared to narrow
with ϕ, indicating that oscillations became more regular. We
saw that the peak frequency width decreased significantly over
all unanesthetized experiments both below 2.5 Hz (TWO-WAY
ANOVA WITH LFP-POWER AND ϕ, P < 0.0001) and above 2.5 Hz
(TWO-WAY ANOVA WITH LFP-POWER AND ϕ, P < 0.0001),
indicating that both facets of the frequency spectra became
more regular.

DISCUSSION

We applied ICA to recordings from rat AC and consistently
found two components that alternate within synchronized states.
The BL5 component has a high amplitude and follows the overall
activity. The THETA component generates a theta oscillation
which appears to orginate below the neocortex. Neocortical UP
state activity varies depending on which component is active.
These results indicate that there are two modes of operation
within synchronized states.

Related Studies on Differences
Within Synchronized States and
Application of ICA
There are several other studies that note different modes
within synchronized states. Recently, Miyawaki et al. (2017)
describe low-amplitude synchronized states (LOW) seen in the
hippocampus, which builds on previously noted small-irregular
activity. LOW states may be related to our THETA-dominant
states since UP state CSD amplitude is lower during THETA-
dominant states. Notably, LOW states occur simultaneously in
the hippocampus, entorhinal cortex, neocortex, and thalamus.
Therefore, if there is a correlation between LOW states and
THETA-dominant states, then low-amplitude irregular activity
should be seen in the hippocampus during synchronized
THETA-dominant states. Thus, our study hints that there are
underlying theta oscillations during low-amplitude states in
the hippocampus.

Although rat hippocampal theta oscillations have only
been noted during desynchronized states in most studies,
there are a few studies that look at theta oscillations during
synchronized states. Hippocampal theta is seen in non-REM
sleep during transition-to-REM states shortly before REM
starts (Benington et al., 1994; Robert et al., 1999). However,
transition-to-REM lasts up to 10 s (Gottesmann, 1996), whereas
THETA-dominant states can last significantly longer and do
not necessarily lead to REM sleep. Several studies have
noted that theta power in the hippocampus and thalamus

during non-REM sleep can be as strong as theta power
during REM sleep (Gaztelu et al., 1994; Pedemonte et al.,
2005), but these oscillations may be more difficult to observe
because of ongoing irregular activity. Finally, theta oscillations
can be seen with increased tiredness during waking states
(Vyazovskiy and Tobler, 2005).

Independent component analysis is a form of analysis that
separates overlapping signals in a set of recordings (Bell and
Sejnowski, 1995; Amari et al., 1996; Hyvärinen and Oja, 1997;
Hyvärinen and Oja, 2000; Brown et al., 2001; Herreras et al.,
2015). Previously, ICA has been used a great deal in artifact
removal as well as identifying regions of interest in fMRI and
EEG (McKeown et al., 2003; Onton et al., 2006; Eichele et al.,
2009; Esposito and Goebel, 2011; Huster et al., 2015; Calhoun and
de Lacy, 2017). More recently, ICA was used in LFP recordings
to parse population involvement in the hippocampus (Makarov
et al., 2010; Agarwal et al., 2014; Herreras et al., 2015; Benito et al.,
2016). To our knowledge, this is the first study to use ICA to study
synchronized states.

Interpretation of Results With
ICA and Limitations
One reason why ICA has not been used more on LFP recordings
to date may be because LFP recordings have access to relatively
detailed information, so there are more options available for
analysis than fMRI and EEG. At the same time, ICA is limited
in the fact that the number of components it can return is
limited by the number of recordings. Because there are potentially
more populations detected by neural recordings than can possibly
be parsed, it has been unclear how ICA would behave when
faced with real neural data. Recent simulations in Makarov
et al. (2010) and Gła̧bska et al. (2014) show that ICA tends
to group similar populations together, which is consistent with
our results. With more recordings, ICA would be able to pick
out more sources at finer resolution (Agarwal et al., 2014;
Jun et al., 2017).

As ICA groups populations with similar anatomical profiles
together, BL5 and THETA may not stand for single neural
populations. In fact, ICA will parse any signal that affects
recordings, including glia and movement artifacts. ICA
components also may be composed of sets of synapses onto
cells acting synchronously (Herreras et al., 2015). Furthermore,
it is possible that two populations that act independently
at some time points, and synchronously at others, may be
separated into three components: one component for each of
the populations individually and a third for the combination
(Herreras et al., 2015).

Although we consistently found a THETA component
which likely exhibited sub-neocortical theta oscillations, the
theta oscillations were more difficult to see in unanesthetized
experiments compared to anesthetized experiments during
synchronized states. In particular, the theta oscillation was
often mixed with other low-frequency activity in unanesthetized
experiments, while the theta peak was isolated in all anesthetized
experiments. The theta-frequency peak may have been clearer
for anesthetized THETA components because: (1) activity
under anesthesia is simpler than activity without anesthesia
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and so ICA could better isolate the theta oscillations in
anesthetized experiments, or (2) the THETA ICA component in
unanesthetized experiments included movement artifact which
allowed neocortical signal to leak into the component. In the first
case, the THETA component may even isolate theta oscillations
from multiple sources that originate below the cortex. For
instance, the hippocampus, which is directly below the AC and
is known to show mixed frequencies during synchronized states
(Buzsáki, 2002).

Another limitation of our study is that instead of sleep
staging, we compared ICA components to sleep stage parameters.
Thresholds for these parameters are based on the data from
rat recordings lasting 1–1.5 h, which may not include all
sleep stages. This means that sleep regions may not necessarily
line up with sleep stages seen in other experiments. While
our analysis does not provide a direct comparison with sleep
stages, a comparison to the parameters allows us to see how
BL5 and THETA signals relate to each other regardless of
how sleep stages may be decided. Likewise, while there is no
exact threshold for LFP-Power to determine synchronized vs.
desynchronized states, we are still able to compare LFP-Power
with BL5 and THETA signals.

Possible Implications for Synchronized
States and Further Research
Our results show that BL5 UP states have relatively high
amplitude, while THETA UP states have lower amplitude.
Amplitude during sleep has previously been characterized by
SWA, which is high at sleep onset and slowly subsides throughout
the night (Dijk et al., 1990; Aeschbach and Borbély, 1993;
Vassalli and Dijk, 2009; Rodriguez et al., 2016). Because of
this change, we hypothesize that BL5-dominant states may be
emphasized during early sleep, while THETA-dominant states
may be emphasized later, consistent with LOW states (Miyawaki
et al., 2017). According to the two-process model of sleep, early
sleep is associated with homeostatic processes along with SWA
(Borbély, 1982; Achermann et al., 1993; Borbély et al., 2016).
At the same time, sleep is hypothesized to serve two functions:
synaptic homeostasis and memory consolidation (Vassalli and
Dijk, 2009; Diekelmann and Born, 2010; Rasch and Born, 2013).
In particular, late sleep and lower amplitude stage 2 sleep has
been shown to benefit certain types of memory consolidation
(Diekelmann and Born, 2010; Rasch and Born, 2013; Hutchison
and Rathore, 2015).

If BL5 and THETA reflect different modes within
synchronized states, then what populations could they represent?
BL5 encompasses much of the cortex, is relatively high
amplitude, and mimics the CSD. This means that BL5 could
comprise a large population within the cortex, a high amplitude
population, or both. Early work shows that glial recordings
have relatively high amplitude and follow the LFP (Amzica
and Steriade, 1998). Glia are also known to be involved in
homeostatic processes during sleep (Clinton et al., 2011; de
Andrés et al., 2011; Poskanzer and Yuste, 2011; Fellin et al., 2012;
Bjorness et al., 2016). Furthermore, recent work with calcium
imaging shows heavy glial involvement prior to neuronal

involvement during SWA (Szabó et al., 2017). Therefore, BL5
may include glia.

THETA represents a population exhibiting sub-neocortical
theta oscillations. Theta oscillations are clock-like sinusoidal
oscillations previously reported in the hippocampus along with
other limbic structures (Buzsáki, 2002). Since the hippocampus
lies directly below the rat auditory neocortex, then THETA
may originate from the hippocampus or possibly deeper
limbic structures (Sirota et al., 2008; Kajikawa and Schroeder,
2011). At the same time, the theta oscillations we observed
had a lower frequency, matching type 2 theta oscillations
previously associated with sensory processing and emotionally
salient stimuli during waking states (Bland and Oddie, 2001;
Tendler and Wagner, 2015). If type 2 theta oscillations are
associated with emotionally relevant memory processing,
then they could also be linked to hippocampal-amygdala co-
activation (Pelletier and Paré, 2004; Hutchison and Rathore,
2015). It has also been hypothesized that theta oscillations
correspond to information coming in to the hippocampus,
while sharp waves indicate information transferred out of
the hippocampus (Hasselmo, 1999). THETA oscillations
during synchronized states may mean that there are low-
amplitude theta oscillations within the hippocampus at the
same time as sharp waves, where the theta oscillations stand
for information coming in from another structure such as
the amygdala, while information is begin transferred out
via sharp waves.

Further research would involve verification of the roles
of various populations in BL5- and THETA-dominant states.
Being able to focus on one state within synchronized states
may also help to shed light on not only mechanisms for
oscillatory activity, but functional roles for activity. For instance,
memory processing has been shown to be hampered from
sleep deprivation for the latter half of the night (Rasch
and Born, 2013). Previously, this was tied to a lack of
REM sleep which plays a larger role later in the night.
However, stage 2 non-REM sleep frequently alternates with
REM in the latter half of the night and further study
may elucidate a unique role for this stage in memory
processing (Diekelmann and Born, 2010; Rasch and Born, 2013;
Hutchison and Rathore, 2015).

We may also use this analysis to find different modes of
operation, and specifically theta oscillations, in other species. For
example, while rat hippocampal theta is easy to pick out, theta
oscillations tend to be more difficult to identify and study in other
species, such as humans and bats (Jacobs, 2013).

CONCLUSION

Independent component analysis reveals that theta oscillations
exist within synchronized states, and that they alternate with a
high-amplitude population in the neocortex. These populations
are associated with different neocortical activity. Therefore,
these data indicate that synchronized states are not uniform,
but may be separated according to at least two distinct
functional roles.
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