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EEG recordings are generally affected by interference from physiological and non-
physiological sources which may obscure underlying brain activity and hinder effective
EEG analysis. In particular, cardiac interference can be caused by the electrical activity
of the heart and/or cardiovascular activity related to blood flow. Successful EEG
application in sports science settings requires a method for artifact removal that is
automatic and flexible enough to be applied in a variety of acquisition conditions
without requiring simultaneous ECG recordings that could restrict movement. We
developed an automatic method for classifying and removing both electrical cardiac
and cardiovascular artifacts (ARCI) that does not require additional ECG recording. Our
method employs independent component analysis (ICA) to isolate data independent
components (ICs) and identifies the artifactual ICs by evaluating specific IC features
in the time and frequency domains. We applied ARCI to EEG datasets with cued
artifacts and acquired during an eyes-closed condition. Data were recorded using a
standard EEG wet cap with either 128 or 64 electrodes and using a novel dry electrode
cap with either 97 or 64 dry electrodes. All data were decomposed into different
numbers of components to evaluate the effect of ICA decomposition level on effective
cardiac artifact detection. ARCI performance was evaluated by comparing automatic ICs
classifications with classifications performed by experienced investigators. Automatic
and investigator classifications were highly consistent resulting in an overall accuracy
greater than 99% in all datasets and decomposition levels, and an average sensitivity
greater than 90%. Best results were attained when data were decomposed into a
fewer number of components where the method achieved perfect sensitivity (100%).
Performance was also evaluated by comparing automatic component classification with
externally recorded ECG. Results showed that ICs automatically classified as artifactual
were significantly correlated with ECG activity whereas the other ICs were not. We
also assessed that the interference affecting EEG signals was reduced by more than
82% after automatic artifact removal. Overall, ARCI represents a significant step in the
detection and removal of cardiac-related EEG artifacts and can be applied in a variety
of acquisition settings making it ideal for sports science applications.
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INTRODUCTION

Electroencephalography (EEG) and magnetoencephalography
(MEG) are widely used non-invasive methods for measuring
brain activity, however, the potential recorded at the scalp is
frequently contaminated by additional external and physiological
noise. As this interference remains a pervasive problem in
EEG and MEG research and clinical applications, there is a
continuing need to develop effective techniques to minimize or
eliminate artifacts (Urigüen and Garcia-Zapirain, 2015; Mannan
et al., 2018). One of the sources of artifactual contamination
frequently encountered in EEG/MEG data is due to cardiac
activity (Haumann et al., 2016).

To date, there have been multiple methods designed to
identify and remove artifacts arising from cardiac sources.
Cardiac-related artifacts possess highly stereotypic frequency and
waveform characteristics, and methods developed to remove
cardiac artifacts exploit these characteristics to identify cardiac
interference and remove it from EEG and MEG data. This
is accomplished either by monitoring cardiac activity directly
during data acquisition (i.e., through electrocardiography, ECG)
and/or by exploring the temporal and spectral features of EEG
data to detect potential artifactual elements (Al-Qazzaz et al.,
2017; Radüntz et al., 2017; Waser et al., 2018). A variety of
techniques has been employed to detect cardiac interference,
including blind source separation methods (e.g., independent
component analysis – ICA) (Barbati et al., 2004), template
matching algorithms (Kumar and Reddy, 2016), and spectral
analyses (Castellanos and Makarov, 2006; Mammone and
Morabito, 2014). However, many contemporary methods utilize a
combination of techniques to improve cardiac artifact detection
(Wang et al., 2013; Dora and Biswal, 2016; Kumar and Reddy,
2016; Patel et al., 2017; Dora and Biswal, 2019).

Several methods have been successful in removing cardiac
interference from EEG and MEG data (Viola et al., 2009;
Sun et al., 2016; Mannan et al., 2018), however, there are
still several outstanding issues which present challenges to the
field. Although some methods work well in specific contexts
(Urrestarazu et al., 2004; Abtahi et al., 2014; Hamaneh et al.,
2014; Navarro et al., 2015), wide-spread application across
multiple acquisition platforms and conditions remains to be
evaluated. Additionally, many methods attempt to model cardiac
interference based on ECG data acquired concurrently with
EEG/MEG data (Zhou and Gotman, 2004; Correa et al., 2007;
Devuyst et al., 2008; Dora and Biswal, 2016; Patel et al., 2017),
however, while the use of concurrently recorded ECG favored
the success of the denoising approach, the need for additional
techniques to estimate cardiac interference in EEG/MEG data
is a limitation to the general application of these denoising
methods. For instance, successful application of methods for
the removal of cardiac artifacts and other physiological and
non-physiological artifacts from EEG datasets recorded in
sports science settings requires that the denoising method is
automatic and flexible enough to be applied in a variety of
acquisition conditions, that it does not require simultaneous
ECG recordings that could restrict movement, and that it
is independent from the subjective evaluation of artifactual

signal components by expert operators (Reis et al., 2014;
Spring et al., 2018).

Another outstanding issue is the presence of cardiovascular
artifacts related to blood flow. Current methods generally focus
solely on the detection of cardiac interference generated by the
electrical activity of the heart, while failing to address additional
pulse-related interference which occurs due to the EEG
electrode placement near cerebral vasculature. Although pulse-
related interference shares the same frequency characteristics
as interference due to electrical cardiac activity, it possesses
unique temporal and waveform characteristics which may not be
captured using current techniques. To our knowledge, there has
been only one attempt to eliminate pulse interference from EEG
recordings (Waser et al., 2017), however, Waser and colleagues
employed concurrently recorded ECG to identify cardio-vascular
contamination, and in particular pulse artifacts were grouped
together with slow-wave interferences.

We recently developed a method of automatic physiological
artifact removal, the Fingerprint Method, which attempted to
address some of these issues (Tamburro et al., 2018). The
Fingerprint Method employs data decomposition, a set of defined
data features optimized to identify multiple artifact types, and a
machine learning technique to automatically detect and remove
major physiological artifacts. Although the Fingerprint Method
proved reliable in the detection and removal of eyeblink, eye-
movement, and myogenic artifacts across multiple acquisition
platforms and settings, the detection and removal of cardiac-
related artifacts met with limited success.

The aim of the present work was to improve upon
the Fingerprint Method and develop a stand-alone cardiac-
related artifact removal technique capable of detecting cardiac
interference across a variety of contexts and settings without
requiring simultaneous ECG recording (ARCI – automatic
removal of cardiac interference). Our new method, ARCI,
defines additional features to better detect and classify cardiac-
related artifacts, including potential pulse-related interferences.
As with the Fingerprint Method, ARCI focuses on automatic
artifact detection and is designed for use in multiple data
acquisition settings.

We tested the performance of ARCI using real EEG data
acquired in different experimental conditions. Results show
that (1) the addition of new features allowed the method
to more effectively classify cardiac-related artifacts, (2) the
algorithm performed well in detecting and removing both
electrical cardiac and pulse-related sources of interference, (3)
the proposed method can be utilized under a variety of data
acquisition conditions.

MATERIALS AND METHODS

EEG Data
ARCI was tested in two different types of EEG datasets:
(1) EEG datasets including externally cued artifacts (cued
EEG datasets) that were used previously for validating our
Fingerprint Method (Tamburro et al., 2018); (2) EEG datasets
recorded during an eyes-closed condition (eyes-closed EEG
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datasets) at the beginning of a cycling endurance task
(Stone et al., 2018).

These EEG datasets were chosen to (1) compare the
effectiveness of our new method in removing cardiac-related
artifacts with the results obtained using our Fingerprint Method
(cued EEG datasets) and (2) to validate ARCI with EEG
data collected during simultaneous ECG recording (eyes-
closed EEG datasets).

The Ethics Committee of the University “G. d’Annunzio” of
Chieti-Pescara (Italy) approved both studies (Ethical Application
Ref. n. 10-21/05/2015), and all participants provided written
informed consent.

Cued EEG Datasets
Cued EEG datasets were recorded from 12 volunteers (male
only; age: 28.7 ± 2 years) using an EEG system with a
commercial unipolar biosignal amplifier (RefaExt, Advanced
Neuro Technologies B.V., Enschede, Netherlands) and a
common average reference. EEG signals were acquired at a
sampling frequency of 1024 Hz using either a conventional
wet electrode cap or a novel dry electrode cap (Fiedler et al.,
2015). Both cap types had an equidistant electrodes layout. The
commercial wet cap (Waveguard, Advanced Neuro Technologies
B.V., Enschede, Netherlands) included 128 Ag/AgCl electrodes
whereas the novel dry electrode cap included 97 dry multipin
polyurethane electrodes with an Ag/AgCl coating (Fiedler et al.,
2015). For both cap types, conventional ring-shaped Ag/AgCl
electrodes were applied over the right mastoid with electrolyte
gel and served as amplifier ground.

During EEG data acquisition, participants were instructed
via a visual cue (computer generated red fixation cross) to
generate an eyeblink or a left or right horizontal eye movement
with an 8 s inter-trial interval. During acquisition, participants
were seated comfortably with their heads fixed in a chin rest
to restrict potential head movements. Eyeblink recordings had
an average duration of 123 ± 2 s, whereas eye movement
recordings had an average duration of 266 ± 3 s. Cued EEG
datasets did not include externally recorded ECG signals. Further
details of cued EEG datasets acquisitions are provided elsewhere
(Tamburro et al., 2018).

Out of a total of 43 cued EEG datasets, 24 datasets were
selected because they contained clearly identifiable cardiac
artifacts as determined by experienced investigators. Six cued
eyeblink and five cued eye movement datasets from the group of
dry EEG datasets and six cued eyeblink and seven eye movement
datasets from the group of wet EEG datasets were used in
the present study.

Eyes-Closed EEG Datasets
Eyes-closed EEG datasets were recorded from 16 volunteers
(male only; 24.8 ± 3.4 years), who rested with eyes-closed for
approximately 2 min to establish a baseline condition prior
to an endurance cycling task. Eyes-closed EEG signals were
acquired while volunteers remained on the cycle-ergometer
without pedaling. During the endurance task, participants cycled
on the cycle-ergometer and had to maintain a cycling rate around
80 revolutions-per-minute (RPM) for an average duration of

approximately 20 min. The power level was initially set at 50
W and then incrementally increased every 120 s by 25 W
during the entire experiment, which ended when the participants
reported maximal perceived exertion. Please note that the eyes-
closed EEG datasets used in the present study were those
acquired prior to the initiation of the endurance task. Further
details of the endurance cycling task are provided elsewhere
(Stone et al., 2018).

EEG recordings were performed using a unipolar biosignal
amplifier at a sampling frequency of 1024 Hz using either a
conventional wet electrode cap (Waveguard, Advanced Neuro
Technologies B.V., Enschede, Netherlands) or a novel dry
electrode cap (eegoTMsports, Advanced Neuro Technologies
B.V., Enschede, Netherlands; Fiedler et al., 2015). Both caps
included 64 electrodes arranged in either an adapted 10-10
montage (wet electrode cap) or in a quasi-equidistant montage
with an average distance of 30 ± 4 mm between electrode
pairs (dry electrode cap). See Supplementary Figure 1 for a
layout of the electrode montages from both cap types. Two
standard Ag/AgCl electrodes were applied over the left and
right mastoid which served as ground electrode and reference
electrode, respectively. Wet cap and dry cap EEG datasets were
acquired from each subject in separate sessions.

Simultaneous ECG signals were recorded at the same
sampling frequency (1024 Hz) during all eyes-closed EEG
data acquisitions through a bipolar electrode whose leads
were positioned over the left and right fifth intercostal
space of the torso.

Method for Cardiac Interference
Identification and Removal
The new method for the automatic identification and removal
of cardiac-related artifacts includes three stages (Figure 1).
In stage one, data are preprocessed and decomposed using
independent component analysis (ICA). In stage two, the
independent components (ICs) separated from each dataset
are evaluated for the presence of cardiac-related interference
and automatically classified. First, ICs are evaluated and
classified as either hypothetical cardiac-related components
(HCCs) or as non-cardiac-related components (NCCs). Next,
the HCCs are further evaluated and classified as either NCCs
or actual cardiac-related components (CCs). Then, if more
than one actual cardiac-related component is identified in a
given dataset, the set of actual cardiac-related components
are further evaluated and classified as either electrically-
generated cardiac components (ECCs) or pulse-generated
cardiac components (PCCs). In stage three, the ICs classified
as containing cardiac-related interference (i.e., the actual
cardiac-related components, electrically-generated cardiac
components, and pulse-generated cardiac components)
are removed, and the EEG signals are reconstructed from
the remaining NCCs.

Stage 1: EEG Data Preprocessing and Decomposition
With Independent Component Analysis (ICA)
All EEG recordings were high-pass filtered at 0.3 Hz and low-pass
filtered at 100 Hz, then notch filtered at 50 Hz to remove power
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line interference. All data were filtered using the FIR filter from
the EEGLAB plugin (Widmann et al., 2015).

EEG data segments that contained excessive background
noise in more than 50% of the EEG channels, as determined
by visual inspection, were removed from the filtered time
courses. Typically, these segments consisted of sharp amplitude
deflections, probably due to hardware artifacts or a sudden
movement of the volunteer, that appeared only in some datasets.
The average amount of time removed from any given recording
session was 6.81± 5.69 s. Then, each EEG channel was inspected,
and those channels that exhibited isoelectric saturation or were
contaminated by excessive noise during more than the 50% of the
time course were removed.

ICA was then applied to effectively parse cardiac-related
artifacts from the underlying brain activity. ICA is a statistical
blind source separation method that assumes EEG data are a
linear mixture of independent non-Gaussian sources except one
Gaussian component, which is typically white background noise
(Hyvärinen and Oja, 2000; Vigário et al., 2000; Hyvärinen et al.,
2001). Of the numerous ICA algorithms available, we chose to use
Infomax (available in the EEGLAB toolbox, Bell and Sejnowski,
1995; Delorme and Makeig, 2004) because it has shown good
performance in separating artifactual activity from activity
generated by brain sources (Karhunen et al., 1997; Lee et al., 1999;
Jung et al., 2000; Vorobyov and Cichocki, 2002; Delorme et al.,
2007a,b, 2012; Winkler et al., 2011). In particular, we employed
the Extended version of Infomax as it is more suitable to separate
sources which may possess super-Gaussian and sub-Gaussian
distributions (Lee et al., 1999). Prior to ICA decomposition, we
performed Principal Component Analysis (PCA) to reduce data
dimensionality (Delorme and Makeig, 2004).

With ICA, we decomposed cued and eyes-closed EEG
datasets into sets of ICs. To demonstrate the generalizability
of ARCI and compare the results to those obtained with
the Fingerprint Method, we decomposed each EEG dataset
into separate sets of 20 ICs, 50 ICs, and 80 ICs, which
mimic different experimental conditions (Tamburro et al.,
2018). Given that one ICA requirement is that the number
of separated ICs is equal to or less than the number of
available channels, pre-processed cued EEG datasets (which
had either 97 or 128 channels) were decomposed into 20, 50,
and 80 ICs, whereas pre-processed eyes-closed EEG datasets
(which had 64 channels) were decomposed into 20 and 50 ICs
only. All data pre-processing and ICA decompositions were
performed using EEGLAB (release 14.1.1b) operating in the
Matlab environment (release MatlabR2016; Mathworks, Natick,
MA United States).

Stage 2: Evaluation and Classification of Independent
Components
The ICs of each dataset were automatically evaluated and each
IC was classified based on a set of evaluation criteria. Stage 2
proceeded in several steps, as described in the following sub-
sections. At each step, the set of ICs was subdivided into separate
classes where each class was further evaluated and classified to
produce a final set of classified ICs. The procedure of Stage 2 is
outlined in Figure 1.

Step 1: classification of hypothetical cardiac-related
components and non-cardiac-related components
Interference due to cardiac activity (either electrical or pulse
related) generates a periodic waveform at a frequency that
corresponds to the cardiac frequency (expressed in beats per
minute, BPM). To determine if a given IC possessed cardiac
interference, ARCI evaluated its frequency characteristics.
First, a cardiac frequency range which spans the range of
potential cardiac frequencies was defined. Typical at rest cardiac
frequencies vary from 60 to 100 BPM (Opthof, 2000) for healthy
individuals and from 40 to 50 BPM for athletes (Azevedo et al.,
2014). Given that all datasets were acquired during rest or
typical experimental task conditions in the absence of physical
activity, the cardiac frequency range was defined as 0.6–1.7 Hz
for all volunteers, which corresponds to the interval 36–102
BPM. This frequency range can easily be adjusted to account
for conditions where increased heart rates are anticipated, as
during sports performance and endurance tasks. Next, the power
spectral density (PSD) of the IC was calculated, and the maximum
power peak between 0.4 and 99.0 Hz was identified. We excluded
peaks in the 0.3–0.4 Hz and 99.0–100 Hz ranges to avoid
possible edge effects caused by data filtering [see section Stage 1:
EEG Data Preprocessing and Decomposition With Independent
Component Analysis (ICA)]. If the maximum power peak for the
analyzed IC occurred within the defined cardiac frequency range,
this peak was identified as the hypothetical cardiac frequency,
and the IC was classified as a HCC and selected for further
classification. Otherwise, the IC was classified as a NCC and
removed from further classification. If all ICs in an EEG dataset
were classified as NCCs, then the analysis ended and the outcome
for that dataset was “NO CARDIAC COMPONENTS FOUND.”

Step 2: classification of hypothetical cardiac-related
components as actual cardiac-related components or
non-cardiac-related components
All ICs classified as HCCs in the previous step were further
evaluated based on their time courses. Cardiac interferences
typically generate a periodic waveform which includes a high
amplitude segment (an HA-peak) followed by a low amplitude
segment (an LA-peak) of opposite polarity. This waveform
corresponds to ventricular depolarization (HA-peak) followed by
the initial phases of ventricular repolarization (LA-peak). The
time courses of the HCCs from each dataset were evaluated to
identify HA-peak and LA-peak segments. First, the hypothetical
cardiac frequency of each HCC was used to calculate the
inter-beat interval (IBI), corresponding to the period of the
hypothetical cardiac frequency (Equation 1):

IBI =
1

Hypothetical Cardiac Frequency
(1)

Next, all positive peaks which occurred at intervals separated
by at least 75% of the IBI in the time course of the HCC were
selected. We chose to consider the IBIs with a duration greater
than the 75% of the defined IBI in order to account for heart rate
variability, which can lead to IBIs that are shorter or longer than
the calculated IBI. Given that this first selection might include
also peaks that are not related to cardiac activity, we proceed to

Frontiers in Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 441

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00441 May 6, 2019 Time: 15:13 # 5

Tamburro et al. Cardiac Interference Removal From EEG

FIGURE 1 | Flowchart of the complete data processing for the automatic classification of cardiac related interference components. The complete data processing
pipeline includes three sequential stages of data processing and their respective modular processing steps, input and output.

use a second criterion to select only those positive peaks that
(1) are separated by an inter-peak interval that might be an IBI
and (2) have an amplitude that might correspond to one of the
two main waves of the cardiac interference, i.e., the HA-peak or
LA-peak. To this purpose, we calculated the mean amplitude of
all selected positive peaks, and identified a sub-group of peaks
that satisfy both conditions: (1) the peaks occurred at intervals
separated by at least 75% of the IBI; (2) the peaks concurrently
had an amplitude greater than 50% of the mean peak amplitude.
The same procedure was repeated with all negative peaks, so that
we finally had two series of peaks: one of positive peaks and one
of negative peaks, both related to cardiac activity.

Given that the HA-peak/LA-peak waveform can appear in
reversed polarity in the HCC time course, to correctly identify
the HA-peak and LA-peak segments, we calculated the mean
amplitudes of both positive and negative peak series. Then,
the series of peaks with the greatest absolute mean amplitude
was identified as the series of HA-peak segments of the cardiac
interference waveform, whereas the series of peaks with the
lower absolute mean amplitude was identified as the series of
LA-peak segments.

Once the two series of HA-peak and LA-peak segments were
identified in the HCC time course, two measures of cardiac

interference were calculated. The first measure was the Cardiac
Identification Feature (CIF) which was first introduced in the
Fingerprint Method (Tamburro et al., 2018). The CIF was
calculated as the ratio of the actual number of selected HA-peak
segments (Nfcp) to the number of HA-peak segments expected
based on both the HCC hypothetical cardiac frequency and the
HCC time course duration (Necb; Equation 2).

CIF =
Nfcp

Necb
(2)

Next, we calculated a second measure of cardiac interference in
the HCC time courses, the Cardiac Correlation Index (CorrCI),
which is based on the fact that, while some variability can exist in
the timing of the cardiac-related interference waveform, the HA-
peak/LA-peak waveform should remain constant in a given IC.
The CorrCI compares the shape of each selected HA-peak with
an HA-peak template obtained by averaging a series of 200 ms
epochs centered on the identified HA-peak segments in the HCC.
A window of 200 ms was selected based on the typical duration
of the HA-peak which varies between 60 and 100 ms in healthy
individuals (Hnatkova et al., 2016). For each HCC, we calculated
the correlation between each HA-peak segment and the HA-peak
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template. The measure CorrCI was given by the mean correlation
value across all HA-peak segments (Equation 3):

CorrCI =
∑N

i=1 CTi

N
(3)

where CTi is the ith correlation value between the HA-peak
template and the ith HA-peak segment, and N is the total number
of HA-peak segments in the HCC time course.

Each HCC in an EEG dataset was then classified based on
the values of both CIF and CorrCI. If the HCC had a CIF
value >0.95 and a CorrCI value >0.55, then it was retained for
further evaluation. If only one HCC was classified, no further
evaluation was possible, it was considered as a true cardiac-
related component and classified as CC. All other components
were classified as NCCs. If all HCCs in an EEG dataset were
classified as NCCs, then the analysis ended and the outcome for
that dataset was “NO CARDIAC COMPONENTS FOUND.”

If more than one HCC was retained, we could further evaluate
these components and determine whether they were truly related
to cardiac activity. To this end, we performed the following
steps to identify the true cardiac frequency (TCF) and select
the HCCs that were actual cardiac-related components. Given
that the spectrum of a saw-tooth function has peaks only at
the fundamental frequency and its harmonics (as the spectrum
of a true cardiac-related signal), we calculated the correlation
between the PSD spectrum of each retained HCC with the PSD
spectrum of a saw-tooth function having the HCC hypothetical
cardiac frequency as fundamental frequency. Then, the TCF was
identified as the hypothetical cardiac frequency of the HCC that
displayed the highest correlation between its PSD and the PSD of
the corresponding saw-tooth function among all HCCs.

Once TCF was identified, we could check that all retained
HCCs were actual cardiac-related components by verifying
that their hypothetical cardiac frequency was close to TCF.
The similarity of these frequencies was determined on
the basis of the frequency resolution of the PSD spectra
according to Equation (4):

1− 2 ∗ (FR) <
fHCCi

TCF
< 1+ 2 ∗ (FR) (4)

where fHCCi is the hypothetical cardiac frequency of the ith
HCC, TCF is the TCF, and FR is the frequency resolution of the
PSD spectra. Figure 2 provides an example of similar cardiac
frequencies in a cardiac-electrical IC and a pulse IC.

If an HCC met the condition set out in Equation (4), then
it was classified as an actual cardiac-related component (CC),
otherwise it was re-classified as an NCC.

Step 3: classification of actual cardiac-related components as
electrically-generated cardiac components and
pulse-generated cardiac components
In the final step of classification, if more than one CC was
classified in a dataset, our new method attempted to identify the
specific type of cardiac-related interference as either caused by
the electrical activity of the heart (electrical cardiac interference –
ECC) or by vascular displacement due to blood pressure (pulse-
related cardiac interference – PCC). The classification of a

CC as ECC or PCC is based on the evaluation of the delay
between electrical and pulse cardiac interferences. According to
the electrophysiology of the heart and to the blood pressure
dynamics, the electrical cardiac interference typically precedes
the pulse interference by about 200–300 ms (Benbadis et al., 2012;
Kwon et al., 2018; Rajala et al., 2018). Based on this fact, all
possible pairs of CCs in a dataset were evaluated. For each pair of
CCs, we calculated the time delay between the two CCs through
the phase difference of the cross-spectrum between CC1 and CC2
according to Equation (5):

180 ms ≤ |φCC1 − φCC2| ≤ 320 ms (5)

where φCC1 is the phase of the cardiac frequency of the 1st CC in
the pair and φCC2 is the phase of the cardiac frequency of the 2nd
CC in the pair. If the phase difference of the cross-spectrum was
less than 180 ms or greater than 320 ms, then it was not possible
to establish whether one CC preceded or followed the other CC
and both CCs in the pair retained the CC classification. On the
other hand, if φCC2 lagged φCC1, the 1st CC in the pair was re-
classified as an ECC and the 2nd CC was re-classified as a PCC. If
φCC2 led φCC1, then the 1st CC was re-classified as a PCC and
the 2nd CC was re-classified as an ECC.

Stage 3: Removal of Identified Cardiac-Related ICs
and Reconstruction of EEG Signals
Stage 2 of our new method concluded with the classification of
each IC in each EEG dataset as CC, ECC, PCC, or NCC. In
Stage 3, cardiac-related interference components (CCs, ECCs,
and PCCs) were removed from each dataset and the EEG signals
were reconstructed by re-projecting only the non-cardiac-related
interference components (NCCs) back into the sensor space.

Performance Evaluation
Evaluation of CIF and CorrCI Selectivity
The classification of HCCs as CCs and NCCs was based on the
calculation of two features, the CIF and the CorrCI. To assess the
classification power of each feature, the total number of HCCs
classified as CCs by each feature was calculated for all datasets
and all decomposition levels.

Validation of the Method: Comparison With
Experienced Investigator Classifications
To assess the overall performance of ARCI, we compared
all IC classifications obtained from the algorithm with the
IC classifications made by two independent experienced
investigators, who evaluated the spectral and time course
properties of all IC components and classified each IC as
either a cardiac-related component (CC) or a NCC. Given
that the experienced investigators and the automatic method
classified the ICs in a different number of classes, to evaluate
the overall performance of ARCI in effectively removing all
cardiac-related components, all automatically classified cardiac-
related interference components (CCs, ECCs, and PCCs) were
considered as a unique group of removed cardiac components
(RCC). Similarly, the classifications made by the experts, which
were either ECC or PCC for the cardiac- or pulse-generated
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FIGURE 2 | Continued
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FIGURE 2 | Example of similar cardiac frequencies in ICs including electrically-generated cardiac interference (ECC) and pulse-generated cardiac interference (PCC)
from different datasets recorded with the dry cap and the wet cap. In (A,B) the time course and PSD spectrum of an ECC separated from a dry cued dataset
decomposed in 80 ICs are given. In (C,D) the time course and PSD spectrum of a PCC separated from the same dataset are given. Although the two components
were separated from the same dataset, they showed slightly different peak frequencies because of the PSD resolution: 1.469 Hz for the ECC and 1.500 Hz for the
PCC. In (E,F) the time course and PSD spectrum (peak frequency at 0.969 Hz) of an ECC separated from a wet cued dataset decomposed in 50 ICs are given. In
(G,H) the time course and PSD spectrum (peak frequency at 1.031 Hz) of a PCC separated from another wet cued dataset decomposed in 80 ICs are given.

interferences, were merged to form a unique group of RCCs. The
automatically classified removed or retained components groups
were compared with the same groups classified by the experts.

For each IC, the automatic and investigator classifications
were compared and each IC was labeled according to the
following criteria. If the automatic and investigator classifications
for an IC were the same, then the IC was labeled as a true positive
(TP) when both classifications were RCC or as a true negative
(TN) when both classifications were NCC. When the IC was
classified as a RCC by the experienced investigators but as a NCC
by ARCI, the IC was labeled as a false negative (FN). If the IC was
classified as a RCC by ARCI but as a NCC by the investigators,
the IC was labeled as a false positive (FP).

Three statistical measures were used to evaluate the
classification performance of ARCI. First, we calculated
the accuracy of the algorithm classifications as the
proportion of all true IC classifications in all classified ICs
according to Equation (6).

Accuracy =
∑

(TP+ TN)∑
(TP+ TN+ FP+ FN)

(6)

Second, we calculated the false omission rate (FOR) of algorithm
classifications as the proportion of ICs falsely labeled as NCC out
of all NCC classifications according to equation (7):

FOR =
∑

FN∑
(TN+ FN)

(7)

Third, we calculated the sensitivity (p) of the classification
algorithm according to Equation (8) (National Research Council
(US) Committee on Vision, 1985; Tamburro et al., 2018):

p =
HR− FAR
1− FAR

(8)

where HR is the hit rate, defined in Equation (9), and FAR is the
false alarm rate, defined in Equation (10):

HR =
∑

TP∑
(TP+ FN)

(9)

FAR =
∑

FP∑
(FP+ TN)

(10)

When the expert and algorithm classifications were in agreement
for all ICs, p was equal to 1 and FAR was equal to zero.

Accuracy, FOR, and p were evaluated separately for the
cued EEG datasets and the eyes-closed EEG datasets at each
decomposition level.

Although only two classes (RCC and NCC) were applied for
validating the performance of the new method, the percentage of

each type of cardiac-related components automatically classified
by ARCI as ECCs and PCCs was also assessed. By comparing
this classification with the one performed by the experienced
investigators we could check that ARCI included not only
electrical cardiac interference but also pulse related components.

Validation of the Method: Comparison With
Concurrently Recorded ECG
ECG data were simultaneously recorded via an external bipolar
lead during eyes-closed EEG dataset acquisitions, permitting
assessment of the effectiveness of our new classification method
in these datasets. First, the PSD of the ECG signal for each
eyes-closed EEG dataset was calculated from 0.3 to 100 Hz and
compared to the PSD of each IC separated from that dataset
by measuring the correlation between the PSD of the ECG
and the PSD of the IC across the entire frequency spectrum.
Then, the correlation values for all ICs automatically classified
as RCCs were compared to the correlation values for all ICs
automatically classified as NCCs by performing a two-tailed
independent samples t-test. We expected that, if the automatic IC
classification by ARCI was correct, the average correlation value
obtained for the RCCs was significantly higher than the average
correlation value obtained for the NCCs.

Evaluation of EEG Signal Reconstruction Following
Artifact Removal
In Stage 3 of our method, the components classified as CC,
PCC, or ECC were removed and the EEG time courses were
reconstructed by re-projecting only the NCCs back into the
sensor space. To evaluate the quality of the EEG signals
reconstructed after the automatic removal of cardiac interference,
the level of contamination of the signal before and after removal
of the cardiac-related components was compared by calculating
the signal-to-noise ratio (SNR) across data segments containing
electrical and pulse cardiac interferences based on Equation (11)
(Tamburro et al., 2018):

SNR = 10log10
(max signal2)
(max noise2)

(11)

For the analysis, signal was defined as the time segment
containing the electrical or pulse cardiac artifact, and noise
was defined as the 100 ms segment preceding the artifact.
A SNR reduction is therefore indicative of an effective artifact
removal. SNR was computed separately for the electrically-
generated cardiac interference and for the pulse-generated
cardiac interference. The electrical signal was defined as a 300 ms
segment centered on the HA-peak, whereas the pulse signal was
defined as a 400 ms segment centered on the HA-peak. The
longer duration of the pulse signal was chosen to capture its slow
wave characteristics.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 441

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00441 May 6, 2019 Time: 15:13 # 9

Tamburro et al. Cardiac Interference Removal From EEG

RESULTS

Evaluation of CIF and CorrCI Selectivity
The use of the CIF feature alone was less effective in correctly
classifying the HCCs as CCs than the combined use of CIF
and CorrCI. Furthermore, the selectivity of CIF and CorrCI
increased at higher decomposition levels, resulting in fewer FPs
(Figure 3). In fact, in cued EEG datasets the percentage of HCCs
classified as CCs using only the CIF feature was 22.7% for wet
and 25.3% for dry datasets at 20 IC decomposition level, whereas
it decreased to 16.7 and 24.0%, respectively, when using both
features, demonstrating the higher selectivity of the combined use
of CIF and CorrCI. At 50 IC decomposition level, the percentage
of HCCs classified as CCs using only the CIF feature was 19.4%
for wet and 20.0% for dry datasets, compared to 15.3 and 15.0%,
respectively, when using both features. At 80 IC decomposition
level, the percentage of HCCs classified as CCs using only the CIF
feature was 18.1% for wet and 20.0% for dry datasets, compared
to 12.9 and 11.4% using both features.

In eyes-closed EEG datasets the percentage of HCCs classified
as CCs using only the CIF feature was 29.7% for wet and 29.8% for
dry datasets at 20 IC decomposition level, whereas it decreased
to 8.1 and 19.1%, respectively, when using both features. At 50
IC decomposition level, the percentage of HCCs classified as
CCs using only the CIF feature was 23.8% for wet and 24.1%

for dry datasets, compared to 4.6 and 9.2%, respectively, when
using both features.

Validation of the Method: Comparison
With Experienced Investigator
Classifications
The performance of ARCI in classifying the cardiac related-
interferences in the cued and eyes-closed EEG datasets
was statistically assessed according to cap type (wet, dry)
and decomposition level (20, 50, 80 ICs). The results are
summarized in Table 1.

For cued EEG datasets, our method reached an overall
accuracy >0.99, FOR ≤ 0.01, HR > 0.89, FAR ≤ 0.004 and
sensitivity p > 0.89 across cap types and decomposition levels.
Both types of recordings (wet and dry) reached the highest
accuracy at 80 ICs decomposition level, but small differences
can be observed with respect to sensitivity p, with highest values
(p = 1) on wet datasets at lower decomposition levels.

Overall, there were fewer artifactual ICs in the eyes-closed
EEG datasets. On these datasets, the method performance across
cap types and decomposition levels reached an overall accuracy
>0.99, FOR ≤ 0.003, HR > 0.66, FAR ≤ 0.003 and sensitivity
p > 0.66, with the best performance at the 20 IC decomposition
level (accuracy = 0.997, FOR = 0, HR = 1, FAR = 0.003, and p = 1).

FIGURE 3 | Scatterplots illustrating the HCCs classification performed using CIF and CorrCI. HCCs are classified as CCs if CIF > 0.95 and CorrCI > 0.55. Therefore,
only the HCCs included in the upper right quadrant of the scatter plots are classified as CCs. (A,C) Refer to cued wet and dry EEG datasets, respectively. (B,D)
Refer to eyes-closed wet and dry EEG datasets, respectively. The different colors used to identify the HCCs in the scatter plots refer to the decomposition level. The
horizontal and vertical red lines indicate the thresholds for CorrCI and CIF, respectively. The total number of HCCs in the scatterplot related to cued wet EEG
datasets (A) is 345 (i.e., 66 HCCs at 20 ICs decomposition level, 124 HCCs at 50 ICs decomposition level, 155 HCCs at 80 ICs decomposition level). The total
number of HCCs in the scatterplot related to cued dry EEG datasets (C) is 380 (i.e., 75 HCCs at 20 ICs decomposition level, 120 HCCs at 50 ICs decomposition
level, 185 HCCs at 80 ICs decomposition level). The total number of HCCs in the scatterplot related to eyes-closed wet EEG datasets (B) is 146 (i.e., 37 HCCs at 20
ICs decomposition level, and 109 HCCs at 50 ICs decomposition level. The total number of HCCs in the scatterplot related to eyes-closed dry EEG datasets (D) is
134 (i.e., 47 HCCs at 20 ICs decomposition level, and 87 HCCs at 50 ICs decomposition level).

Frontiers in Neuroscience | www.frontiersin.org 9 May 2019 | Volume 13 | Article 441

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00441 May 6, 2019 Time: 15:13 # 10

Tamburro et al. Cardiac Interference Removal From EEG

TA
B

LE
1

|O
ut

co
m

e
of

th
e

va
lid

at
io

n
of

ou
r

ne
w

m
et

ho
d

A
R

C
Ib

y
co

m
pa

rin
g

its
au

to
m

at
ic

cl
as

si
fic

at
io

ns
w

ith
th

os
e

of
th

e
ex

pe
rie

nc
ed

in
ve

st
ig

at
or

s.

D
at

as
et

ty
p

e
N

o
.o

f
IC

s
p

er
d

at
as

et
E

le
ct

ro
d

e
ty

p
e

N
o

.o
f

d
at

as
et

s
To

ta
lN

o
.

o
f

IC
s

To
ta

lN
o

.o
f

ar
ti

fa
ct

ua
lI

C
s

Tr
ue

p
o

si
ti

ve
Tr

ue
ne

g
at

iv
e

Fa
ls

e
p

o
si

ti
ve

Fa
ls

e
ne

g
at

iv
e

A
cc

ur
ac

y
FO

R
H

R
FA

R
S

en
si

ti
vi

ty
p

C
ue

d
E

E
G

da
ta

se
ts

20
W

E
T

13
26

0
10

10
24

9
1

0
0.

99
6

0
1

0.
00

4
1

(1
0

C
C

)
(1

C
C

)

D
R

Y
11

22
0

19
17

20
1

0
2

0.
99

1
0.

01
0

0.
89

5
0

0.
89

5

(5
E

C
C

,4
P

C
C

,
8

C
C

)

50
W

E
T

13
65

0
14

14
63

4
2

0
0.

99
7

0
1

0.
00

3
1

(1
E

C
C

,1
P

C
C

,
12

C
C

)
(2

C
C

)

D
R

Y
11

55
0

18
17

53
1

1
1

0.
99

6
0.

00
2

0.
94

4
0.

00
2

0.
94

4

(7
E

C
C

,6
P

C
C

,
5

C
C

)
(1

E
C

C
)

80
W

E
T

13
10

40
16

15
10

24
0

1
0.

99
9

0.
00

1
0.

93
8

0
0.

93
8

(1
5

C
C

)

D
R

Y
11

88
0

20
19

86
0

0
1

0.
99

9
0.

00
1

0.
95

0
0

0.
95

0

(6
E

C
C

,5
P

C
C

,
8

C
C

)

E
ye

s-
cl

os
ed

E
E

G
da

ta
se

ts

20
W

E
T

16
32

0
2

2
31

7
1

0
0.

99
7

0
1

0.
00

3
1

(2
C

C
)

(1
C

C
)

D
R

Y
16

32
0

7
7

31
2

1
0

0.
99

7
0

1
0.

00
3

1

(1
E

C
C

,1
P

C
C

,
5

C
C

)
(1

C
C

)

50
W

E
T

16
80

0
3

2
79

4
3

1
0.

99
5

0.
00

1
0.

66
7

0.
00

4
0.

66
5

(2
C

C
)

(3
C

C
)

D
R

Y
16

80
0

7
5

79
1

2
2

0.
99

5
0.

00
3

0.
71

4
0.

00
3

0.
71

4

(1
E

C
C

,1
P

C
C

,
3

C
C

)
(2

C
C

)

R
es

ul
ts

gi
ve

n
in

th
e

fir
st

th
re

e
ro

w
s

re
fe

r
to

cu
ed

EE
G

da
ta

se
ts

at
ea

ch
de

co
m

po
si

tio
n

le
ve

l(
20

,5
0,

an
d

80
IC

s)
an

d
fo

r
ea

ch
ca

p
ty

pe
(w

et
an

d
dr

y)
.T

he
la

st
tw

o
ro

w
s

in
cl

ud
e

th
e

re
su

lts
in

ey
es

-c
lo

se
d

EE
G

da
ta

se
ts

at
ea

ch
de

co
m

po
si

tio
n

le
ve

l(
20

an
d

50
IC

s)
an

d
fo

r
ea

ch
ca

p
ty

pe
(w

et
an

d
dr

y)
.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2019 | Volume 13 | Article 441

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00441 May 6, 2019 Time: 15:13 # 11

Tamburro et al. Cardiac Interference Removal From EEG

Comparison With Experienced Investigator
Classifications: Differentiating ECCs and PCCs
Table 2 displays the total number of cardiac-related ICs
classified by type (ECC or PCC) across all cap types and
decomposition levels. Note that the experienced investigators
classified all cardiac-related components as either ECC or PCC,
while ARCI retained an additional classification of artifactual
components undifferentiated by type (the CC classification).
In cued EEG datasets, the experienced investigators identified
a total of 97 cardiac-related components, of which 69 (i.e.,
71.1%) were ECCs and 28 (i.e., 28.9%) were PCCs. Since
in the automatic classification, where a total of 96 cardiac-
related ICs were detected, there were 4 FPs and 5 FNs, the
algorithm correctly classified 27.5% of the investigator classified
ECCs (i.e., 19 ECCs) and 57.1% of the investigator classified
PCCs (i.e., 16 PCCs). Given that, out of the 97 identified
cardiac-related components, 16 were correctly classified as
PCCs by the algorithm (see Table 1), 19.8% more cardiac-
related components were removed due to the PCC classification
performed by ARCI. The remaining 61 cardiac components
classified as CCs by the algorithm may refer to either electrical
or pulse interference.

In eyes-closed EEG datasets, the investigators identified a total
of 19 cardiac-related components, of which 6 (i.e., 31.6%) were
ECCs and 13 (i.e., 68.4%) were PCCs. Given that the automatic
method identified a total of 23 artifactual components, and
that there were 7 FPs and 3 FNs in the overall classification,
ARCI correctly classified 33.3% of the investigator classified
ECCs (i.e., 2 ECCS) and 15.4% of the investigator classified
PCCs (i.e., 2 PCCS). As with the cued EEG datasets, out of
the 19 identified cardiac-related components, 2 were correctly
classified as PCCs by ARCI (see Table 1), corresponding to

11.8% more cardiac-related components that were removed due
to the PCC classification. The remaining 19 cardiac components
classified as CCs by the algorithm may refer to either electrical or
pulse interference.

Validation of the Method: Comparison
With Concurrently Recorded ECG
To compare the classification performance of ARCI with
externally recorded ECG, for each eyes-closed EEG dataset we
computed the correlation between the PSD of the ECG signal and
the PSD of each automatically classified RCC or NCC (see section
Step 2: classification of hypothetical cardiac-related components
as actual cardiac-related components or non-cardiac-related
components). Correlations in the two groups (RCCs and NCCS)
were compared by examining mean differences using a two-tailed
independent samples t-test (Table 3). Correlations between the
PSDs of the ECGs and the RCCs were significantly greater than
the correlations between the PSDs of the ECGs and the NCCs
[t(22.16) = 7.87, p < 0.001].

Evaluation of EEG Signal Reconstruction
Following Artifact Removal
To show how signal quality changes due to the removal of
cardiac artifacts, we selected 10 exemplary time segments from
one cued wet EEG dataset where cardiac electrical interference
could be observed by visual inspection (Figure 4A). Only the
ICs classified as ECCs by ARCI were removed, and the EEG
signals were reconstructed from the remaining ICs. SNR was
calculated for the three decomposition levels (20 ICs, 50 ICs, and
80 ICs) for each time segment before and after ECCs removal. On
average, the relative reduction in SNR following ECCs removal

TABLE 2 | Comparison between the ECC and PCC classifications performed by ARCI and by the experienced investigators in the two types of datasets.

Dataset type Classifier Total No. of ICs ECCs PCCs CCs Total No. of RCCs NCCs

Cued EEG datasets Experienced investigators 3600 69 28 – 97 3504

1.92% 0.78% 2.69% 97.33%

Algorithm 3600 19 16 61 96 3503

0.53% 0.44% 1.69% 2.67% 97.31%

Eyes-closed EEG datasets Experienced investigators 2240 6 13 – 19 2221

0.27% 0.58% 0.85% 99.15%

Algorithm 2240 2 2 19 23 2217

0.09% 0.09% 0.85% 1.03% 98.97%

The percentage values were calculated with respect to the total number of classified ICs. Differences in the percentages may be due to rounding.

TABLE 3 | Validation of ARCI classification performance in eyes-closed EEG datasets with concurrently recorded ECG.

Descriptive statistics of PSD correlation values

Type of ICs Total N. of ICs Mean SD Median Interquartile 95◦ percentile p(t-test; two tails)

CCs 23 0.67 0.26 0.79 0.31 0.92

(2 ECCs, 2PCCs, 19 CCs) <0.001

NCCs 2067 0.24 0.15 0.20 0.17 0.55

The descriptive statistics of the correlation values between the PSDs of the ECG signals and the PSDs of the classified ICs (as either CCs or NCCs) refers to both cap
types and all decomposition levels (20 and 50 ICs). The result of t-test between the mean values of the two correlation value groups is given in the last column.
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FIGURE 4 | Examples of 10 sec from the time course of EEG signals containing cardiac related artifacts. (A,C) Refer to the signal recorded by electrode LE4 of a
wet cued EEG dataset before (A) and after (C) removal of the automatically classified ECCs. (B,D) Refer to the signal recorded by electrode 2R of a dry eyes-closed
EEG dataset before (B) and after (D) removal of the automatically classified PCCs.

TABLE 4 | Average SNR values of exemplary EEG signals before and after removal of the cardiac-related artifacts.

Artifact type Dataset type SNR in filtered EEG (dB) SNR in artifact-free EEG (dB) Relative SNR reduction (%)

20 ICs 50 ICs 80 ICs 20 ICs 50 ICs 80 ICs

Electrically-generated Cued EEG (wet cap) 11.9 ± 2.1 1.6 ± 1.1 1.5 ± 1.2 1.4 ± 1.1 86.9 ± 8.8 87.2 ± 9.5 88.0 ± 9.1

Pulse-generated eyes-closed EEG (dry cap) 13.3 ± 2.0 1.8 ± 0.9 2.4 ± 1.4 – 82.3 ± 9.7 84.2 ± 11.0 –

Electrically-generated cardiac interference: the SNR was calculated for the EEG signal recorded by electrode LE4 of a cued wet EEG dataset before and after removal of
all automatically classified ECCs for the three decomposition levels (20, 50, and 80 ICs). Pulse-generated cardiac interference: the SNR was calculated for the EEG signal
recorded by electrode 2R of a eyes-closed dry EEG dataset before and after removal of all automatically classified PCCs for the two decomposition levels (20 and 50 ICs).

was greater than 87%, indicating an effective reduction of cardiac
interference (i.e., the signal) in the EEG recordings (Table 4).
Figure 4C shows the exemplary EEG trace containing electrical
cardiac interference after ECCs removal.

Similarly for pulse artifacts, 10 time segments from a eyes-
closed EEG dataset where pulse interference could be observed
by visual inspection (Figure 4B) were selected. Only PCCs
automatically classified by ARCI were removed, and the EEG

signals were reconstructed from the remaining ICs. SNR was
calculated for the two decomposition levels (20 ICs and 50
ICs) before and after PCCs removal. On average, the relative
reduction in SNR following PCCs removal was greater than 82%,
indicating, as for the cardiac electrical interference, that the pulse
artifacts (i.e., the signal) were effectively removed from the EEG
recordings (Table 4). Figure 4D shows the exemplary EEG trace
containing pulse interference after ECCs removal.
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DISCUSSION

Cardiac interference is one of the most difficult artifacts to
remove from EEG and MEG data. In particular when applying
EEG in sports science, it is crucial that the cardiac artifact removal
approach adopted is flexible to permit EEG application in a
variety of acquisition conditions, does not require simultaneous
ECG recording, and is automatic in order to be independent from
the subjective evaluation of expert operators (Reis et al., 2014;
Spring et al., 2018). In this study, we developed a new ICA-based
method for the automatic removal of cardiac-related interference
(ARCI) from EEG recordings without the need for simultaneous
ECG. Our new method used features calculated in the time and
frequency domains to classify ICs of likely cardiac origin, which
include artifacts due to the electrical activity of the heart and to
cardiovascular dynamics.

Results indicate that ARCI performed well in classifying
cardiac-related artifacts when compared to classifications made
by experienced investigators. Indeed, the overall accuracy of
the algorithm in artifact classification was greater than 99%
in all datasets evaluated (varying from 99.1 to 99.9% as a
function of the type of electrodes and decomposition level),
while the average sensitivity was greater than 0.90 (varying
from 0.895 to 0.950, as a function of the type of electrodes
and decomposition level). In our previous work, we developed
an algorithm for the automatic classification of multiple types
of physiological artifacts, including cardiac-related artifacts
(the Fingerprint Method; Tamburro et al., 2018). While the
Fingerprint Method performed well in classifying eyeblink, eye
movement, and muscle artifacts, performance during cardiac
artifact classification was generally poor, resulting in an average
accuracy of 97.2% and an average sensitivity of only 0.19. In the
present study, we evaluated a subset of the same datasets that
were used for the Fingerprint Method evaluation. These datasets
were selected because they possessed clearly identifiable cardiac-
related artifacts and provided direct comparison between the
original Fingerprint Method and our new method. The superior
performance of ARCI, particularly the superior sensitivity
compared to the Fingerprint Method, was likely due to several
factors. In the Fingerprint Method, 14 different spatial, spectral,
statistical, and temporal features were evaluated to classify
physiological artifacts. Among these 14 features, a CIF, the CIF,
was developed to specifically capture the spectral properties of
cardiac-related interferences. In the present study, the CIF was
retained, and an additional feature was added which exploited
the temporal and waveform characteristics of cardiac artifacts,
the CorrCI. The present results indicate that the elimination of
features which do not disentangle cardiac interference combined
with the addition of this new feature, CorrCI, resulted in greater
discrimination of cardiac and non-cardiac ICs. Specifically, the
combined use of the CIF and CorrCI features led to fewer false
cardiac artifact classifications (false positives), which may have
contributed to the greater sensitivity, hence reliability, of ARCI.

An additional advantage of including the CorrCI feature is
its ability to classify not only electrical cardiac artifactual activity
but also pulse-related artifacts. While electrical cardiac and pulse-
related interference share common spectral properties (i.e., the

same cardiac frequency and IBI), pulse-related artifacts have a
unique waveform characterized by a higher amplitude and slower
temporal progression than typical electrical cardiac waveforms.
Furthermore, pulse-related interference typically affects one or
a few EEG channels located near blood vessels. The CorrCI
feature exploits the stereotypical waveform characteristics of
each hypothetical cardiac IC and is therefore able to capture
these unique pulse features. When we specifically examined
artifactual ICs of pulse-related origin, we determined that ARCI
was able to correctly classify between 10 and 20% more cardiac-
related artifactual ICs. This resulted in a greater percentage of
true positive classifications compared to the original Fingerprint
Method, thereby further contributing to the increased sensitivity
of ARCI. To our knowledge, no other studies have reported
the effectiveness of their algorithms in removing cardiac-related
artifacts of pulse origin. For example, in a recent report by
Waser et al. (2017), the authors developed a method based on
temporal and spectral variations in EEG time courses to detect
several physiological and non-physiological artifacts, including
the cardiac one. Their method can detect interference in single
EEG channels with an average accuracy of 89.0 ± 2.1, which
may be beneficial in the detection of pulse-related activity;
however, the authors do not report on pulse artifact identification
specifically, and the applicability of their method is reduced by
the need for concurrently recorded ECG.

A third factor that may have contributed to the more
successful performance of ARCI is the use of the Extended
Informax algorithm for the decomposition of EEG signals. The
Fingerprint Method used the Infomax algorithm which has
been proven effective in isolating noise components related
to artifactual activity (Bell and Sejnowski, 1995; Delorme
and Makeig, 2004). However, because pulse-related cardiac
interference are generally sub-Gaussian, the Extended Infomax
algorithm may be more effective at detecting this activity (Vigário
et al., 2000). In fact, Extended Infomax has been proven to be
better at separating signal sources that have super-Gaussian or
sub-Gaussian distributions (Lee et al., 1999; Greco et al., 2008).
A variety of ICA algorithms have been utilized to separate cardiac
and non-cardiac sources including wavelet-based methods
(Castellanos and Makarov, 2006), fastICA (Hamaneh et al.,
2014), Infomax (Radüntz et al., 2017; Jafarifarmand and
Badamchizadeh, 2018), and Extended Infomax (Mammone and
Morabito, 2008; Viola et al., 2009; Frølich et al., 2015). Most
of these ICA approaches, combined with other techniques,
have been successful in identifying cardiac-related interferences,
although it is difficult to assess whether they were more effective
than ARCI because the denoised signals were often evaluated
by simple visual inspection or by means of correlation-based
approaches. Only Frølich et al. (2015) statistically evaluated the
effectiveness of their method in detecting cardiac interference.
They estimated the balanced accuracy – equal to the mean of
specificity and sensitivity in the binary case – which, for groups of
testing datasets including more than one dataset, ranged between
0 and 0.85. However, it remains an outstanding question whether
successful cardiac artifact identification depends on the number
of ICs that are decomposed by a given ICA algorithm. One of our
aims in developing ARCI was to ensure that our approach could
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be applied across a variety of clinical and experimental settings.
As such, we sought to determine if ARCI could successfully
classify cardiac ICs when data were decomposed into 20 ICs
(as typically occurs in clinical applications) or into a greater
number of ICs (50 or 80 ICs as occurs in experimental and
high-density EEG settings). Results indicate that our method
was able to successfully identify cardiac-related interference
regardless of the number of ICs and represents an advantage
over other approaches where different ICA decompositions
were not evaluated.

To provide an additional assessment of the performance of
ARCI, we evaluated automatic cardiac artifact classification in
eyes-closed EEG datasets where concurrently recorded ECG
data were available. When we compared the spectral density
properties of the ECG signals with the spectral densities of
the automatically classified cardiac ICs, we determined that the
classified cardiac ICs were strongly correlated with the true
cardiac signal, resulting in an average correlation greater than
0.65. Furthermore, the correlation between ECG and cardiac
classified ICs was significantly greater than the correlation with
non-cardiac classified ICs, suggesting that ARCI was able to
successfully discriminate cardiac and non-cardiac ICs. A number
of methods used to classify and remove cardiac interference
from EEG signals rely on simultaneously recorded ECG. One
common method is ensemble average subtraction (EAS) where
an average template waveform is created using the ECG signal
and subsequently subtracted from the EEG traces (Nakamura and
Shibasaki, 1987; Sahul et al., 1995; Abtahi et al., 2014). Another
common method is adaptive filtering, which likewise depends
on the ECG signal. In this approach, the ECG trace is used as
a reference channel and adaptive filters are applied to cancel
the artifact from EEG (Correa et al., 2007; Jafarifarmand and
Badamchizadeh, 2013; Navarro et al., 2015). There are several
additional variations, including a method developed by Devuyst
et al. (2008) that uses an ICA-based method combined with a
filtering approach, and a method recently developed by Waser
et al. (2018) that identifies electro-cardiogram components using
a combination of ICA and autocorrelation. While these methods
have generally produced favorable results (e.g., Devuyst and
colleagues obtained a correction rate of 91.0%, while Waser and
colleagues achieved a detection accuracy of 99%), they are clearly
ineffective in situations where concurrent ECG recordings are
prohibitive or cumbersome as can occur in sports applications
(Thompson et al., 2008). One of the advantages of the ARCI
method is that it does not depend on simultaneous ECG
recording while achieving comparable or superior results to
those obtained when external ECG recordings are considered.
One method that does not rely on simultaneous ECG recording
was very recently proposed by Dora and Biswal (2019). It is
based on the use of a time-frequency approach (the modified S
Transform – MST), and successfully detected cardiac electrical
interferences (but no pulse contamination) in polysomnographic
EEG recordings. However, the statistical analysis provided
includes accuracy values that range from 98.61 to 99.05%,
which are lower than the accuracy values that we obtained in
the detection of cardiac interference with ARCI (ranging from
99.1 to 99.9%).

One issue that should be addressed is the presence of
cardiac-related interference in MEG data. Cardiac artifacts
contaminate not only EEG, but also present a serious concern
in MEG data acquisition and processing (Escudero et al., 2007;
Escudero et al., 2011; Breuer et al., 2014a,b; Hasasneh et al., 2018).
Indeed, electrical cardiac activity can create greater interference
in MEG acquisitions where the insulating properties of the scull
do not attenuate the interference (Hämäläinen et al., 1993). On
the other hand, contamination due to cardiovascular interference
is minimal because MEG sensors are fixed and typically are not
in direct contact with the scalp. We hypothesize that ARCI is
generalizable to MEG acquisitions, as well. In the present study
ARCI was tested using only EEG datasets, and its performance
in MEG remains to be demonstrated. In future work, we will
validate ARCI for cardiac artifact removal in MEG data.

To classify cardiac-related interference, we employed features
that modeled the hypothetical cardiac frequency across a broad
spectrum of typical resting cardiac frequencies (Opthof, 2000;
Azevedo et al., 2014). While it is unlikely that this frequency range
would capture higher cardiac frequencies encountered during
sports activity, the frequency range can be easily adjusted to
apply the ARCI method to a wide range of acquisition tasks.
Another issue that may arise is the wide variability in the cardiac
frequencies encountered during acquisitions including periods of
activity and periods of rest. In such situations, it is likely that
more advanced adjustments would have to be made to account
for this wide variability. This can include time segmented ICA
methods that do not violate stationarity assumptions (Onton and
Makeig, 2006), or the epoching of activity and rest intervals to
differentiate suitable frequency ranges that could capture cardiac
interference at different heart rates. We are currently developing
the ARCI method to permit adjustments of hypothetical cardiac
frequencies and applying the ARCI method to EEG data acquired
during sports performance tasks. We will report these results in a
subsequent publication.

Our new method for the automatic classification and removal
of cardiac-related interference from EEG data offers multiple
advantages over existing methods: applicability in both clinical
and experimental settings, including sports science applications,
thanks to insensitivity to IC decomposition level; valid artifact
classification without the need for simultaneous ECG data
collection; the ability to successfully classify interferences
generated not only by the electrical activity of the heart but
also due to cardiovascular dynamics. Overall, ARCI represents
a significant step in the automatic detection and removal of
cardiac-related EEG interferences.
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