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1. BACKGROUND

Retinal degenerative diseases such as retinitis pigmentosa (RP) and age-related macular
degeneration (ARMD) are among the leading causes of blindness in the world. These diseases
are characterized by a progressive loss of photoreceptors and/or retinal pigment epithelium (RPE),
leading to severe remodeling of the retinal circuitry (Marc et al., 2003) and a gradual loss of vision.
However, cells in the inner retina that connect to the brain may remain functional throughout the
disease (Santos et al., 1997). Therefore, if the diseased cells could be bypassed or replaced with
new cells that connect to the functional part of the retina, it might be possible to restore vision in
affected individuals.

Several treatment options are currently in development, such as micronutrient supplementation
(Lavail, 2005) and gene therapy (Liu et al., 2011), including more controversial interventions, such
as hyperbaric oxygen therapy (Vingolo et al., 1998, 2008). However, these interventions have to
happen in early stages of the disease, before photoreceptors are irreversibly degenerated. In severe
cases of RP and ARMD, the only FDA-approved treatment option are retinal prostheses (also
known as “bionic eye” or “artificial retina”; see Weiland et al., 2016 for a recent review), which
aim to evoke neuronal responses in surviving cells through electrical microstimulation—but their
success has been limited to date.

Another approach is to replace diseased cells with healthy cells through transplantation. A
reliable option for transplantation in several animal models is human fetal tissue, which is best
transplanted in sheet form that contains the RPE (Seiler and Aramant, 2012). Although retinal
sheet transplants (RSTs) can restore responses to flashes of light in the superior colliculus, neuronal
responses at the level of visual cortex remain poorly understood.
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2. RETINAL SHEET TRANSPLANTS

RESTORE VISION IN RATS

To address this issue, Foik et al. (2018) investigated the capability
of RSTs to restore vision in pigmented transgenic line-3 rats.
Following successful transplantation in the subretinal space
between host degenerated retina and RPE (their Figure 1), the
authors measured visually evoked responses in primary visual
cortex (V1). Cells were first tested for visual responsiveness using
flashes of light; then receptive fields were located using drifting
gratings. Neuronal tuning curves were then compared to those of
control degenerated animals that did not receive transplants, as
well as to non-degenerated NIH and Long-Evans rats.

Foik et al. (2018) found that the number of visually responsive
cells in V1 improved from 9% in control degenerated rats to 56%
in transplanted rats, as compared to 87% in non-degenerated
rats (their Figure 4). Moreover, visual sensitivity in transplanted
rats had improved to the point where orientation, size, and
spatial frequency tuning (but not temporal frequency tuning and
contrast sensitivity) were statistically indifferent from V1 cells
in sighted animals (their Figure 5). Feedforward input from the
lateral geniculate nucleus, connectivity within V1, and feedback
from higher visual areas were shown to be present in degenerated
rats, but overall to a lesser extent than in transplanted and normal
rats. Interestingly, long-range connectivity within V1 (beyond
300 µm) was reduced the most, whereas local connections
remained largely unaffected. Furthermore, transplantation was
able to restore the circuitry back to a level comparable to
normal rats.

These findings suggest the presence of an activity-dependent
plasticity mechanism that may lead to a reduction of cortical
connections in the absence of visual input, but can be recruited
to restore connectivity even months after vision loss. However,
without further analysis it is unclear whether this plasticity could
lead to functional cortical reorganization, or whether it mainly
resembles the sort of corruptive retinal remodeling that occurs
in later stages of photoreceptor disease (for a recent discussion
on the subject, see Beyeler et al., 2017). Improved cortical
responses could have also been due to neuroprotection of the
remaining host photoreceptors, as the reactive change of Müller
glial cells is a well-known obstacle for transplant integration
(Hippert et al., 2016).

3. RETINAL SHEET TRANSPLANTS IN

HUMANS

An important open question is whether these findings will
apply to transplantation in humans. Several clinical trials with

RSTs have been underway since the late 1990s, but results

have been mixed. Early clinical trials reported no adverse
effects, but also no lasting vision improvement (Humayun et al.,
2000). The best results were achieved in a Phase II clinical
trial conducted in a group of ten patients (six RP and four
ARMD) where the transplanted sheet included the RPE (Radtke
et al., 2008): seven patients showed visual improvements after
1 year, with vision remaining the same in one RP patient,
and vision decreasing in two others. In one subject, vision
improved from 20/800 pre-operative to 20/160 at the 1-year
mark, and remained stable at 20/200 over 5 years. Future research
will have to show if these results can be repeated in a larger
study sample.

The use of a transplant that includes the RPE is an
attractive strategy, as healthy RPE cells should theoretically
be able to restore all functions of the degenerated host
RPE. However, the success of this strategy strongly depends
on proper cell delivery and maintenance. Dissection of
donor tissue has to be done very carefully, with minimal
touching of the retina (Seiler and Aramant, 2012). Another
drawback is the limited availability of fetal donor tissue. In
the future, it may be possible to differentiate retinal and
photoreceptor progenitors directly from embryonic stem cells—
without the need for fetal tissue. To this end, a Phase I
trial involving a stem cell-derived RPE patch just recently
showed significant vision improvement in two ARMD patients
(da Cruz et al., 2018).

In conclusion, this study represents an essential step toward
determining the suitability of RSTs as a treatment option for
severe retinal degeneration. However, much work remains to
be done until this is a viable treatment option in humans.
Although availability of fetal tissue will likely remain limited,
much could be learned about the cellular mechanisms of sight
restoration through this line of research, thus giving hope that
the blinding effects of incurable eye disease could one day
be reversed.
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