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Diffusion MRI (dMRI) is a vital source of imaging data for identifying anatomical

connections in the living human brain that form the substrate for information transfer

between brain regions. dMRI can thus play a central role toward our understanding

of brain function. The quantitative modeling and analysis of dMRI data deduces

the features of neural fibers at the voxel level, such as direction and density. The

modeling methods that have been developed range from deterministic to probabilistic

approaches. Currently, the Ball-and-Stick model serves as a widely implemented

probabilistic approach in the tractography toolbox of the popular FSL software package

and FreeSurfer/TRACULA software package. However, estimation of the features of

neural fibers is complex under the scenario of two crossing neural fibers, which occurs

in a sizeable proportion of voxels within the brain. A Bayesian non-linear regression is

adopted, comprised of a mixture of multiple non-linear components. Such models can

pose a difficult statistical estimation problem computationally. To make the approach

of Ball-and-Stick model more feasible and accurate, we propose a simplified version of

Ball-and-Stick model that reduces parameter space dimensionality. This simplified model

is vastly more efficient in the terms of computation time required in estimating parameters

pertaining to two crossing neural fibers through Bayesian simulation approaches.

Moreover, the performance of this new model is comparable or better in terms of bias

and estimation variance as compared to existing models.

Keywords: Ball-and-Stick model, Bayesian, dMRI, crossing fibers, simplified model

INTRODUCTION

Recent advances in neuroscience technologies to study brain connectivity are providing new
techniques to better understand the role of both structural and functional networks in complex
neurological disorders (Bargmann and Newsome, 2014; Baliyan et al., 2016). A fundamental goal
of modern neuroscience is to understand how different cortical regions interact with one another
to produce observed behavior (Behrens et al., 2003; Yang et al., 2016). DiffusionMRI (dMRI) allows
for identifying anatomical connections in the living human brain. These connections form the
substrate for information transfer between remote brain regions and are therefore central to our
understanding of brain function.
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Fiber tractrography, inferred from dMRI, offers the only way
to study brain structural connectivity non-invasively in vivo
to reconstruct nerve fiber tracts. It has become an important
tool in the study of a wide range of diseases affecting the
brain, as it allows us to probe the shape and integrity of
the white-matter pathways that connect the functionally-related
cortical and subcortical regions (Yendiki et al., 2011, 2016). A
lot of research has focused on discovering an approach using
parametrized models for extracting tissue structural information
from dMRI data.

An early, widely accepted model is the diffusion tensor model
(DTI), which derives the orientation of a fiber within a voxel,
the smallest analytic unit (Basser et al., 1994; Mori and van Zijl,
2002). Even though it is a robust model when there is only a single
major diffusion direction in a given voxel, it has the inherent
limitation when voxels contain more than one fiber pathways
with distinct orientations. Voxels with crossing fibers account
for more than 60% of the total voxels across the brain (Jeurissen
et al., 2013). In order to handle the more complex situation of
multiple crossing fibers within a voxel, a number of alternative
models have been suggested, such as multiple tensor fitting (Tuch
et al., 2002), Ball-and-Stick model (Behrens et al., 2003, 2007;
Hosey et al., 2005; Jbabdi et al., 2007), spherical deconvolution
(Tournier et al., 2004; Anderson, 2005) and Q-ball imaging (Hess
et al., 2006). The methods each have their limitations. Spherical
deconvolution attempts to estimate the fiber orientation directly
and assumes a fiber response function. The Ball-and-Stick
method models axons as impermeable cylinders of a single
radius and assumes isotropic diffusion outside the axon in the
extracellular compartments. Although the spatial profiles from
both the Ball-and-Stick method and spherical deconvolution
appear similar, conceptually there is quite a difference. Geometric
features of the signal itself are used to constrain the Ball-and-
Stick model. Extensions to improve the Ball-and-Stick model
have been proposed, such as the ball and racket method described
by Sotiropoulos et al. (2012). This incorporates a Bingham
distribution to model fanning of the tracts, common in the
corona radiatus. An alternative to the Ball-and-Stick method
is the composite hindered and restricted model of diffusion
(CHAMRED) developed by Assaf et al. (2004). It is a hybrid
model that uses diffusion tensors to model the extracellular
diffusion as a hindered space and the intracellular diffusion is
modeled as a restricted cylinder. This method has also been
extended by Zhang et al. (2011) who apply a Watson distribution
(a spherical analog of a Gaussian distribution) to the CHAMRED
methodology to estimate the diameters of axons. The technique
is limited by the assumption that axons are orientated in a
single dominant direction excluding the possibility of detecting
crossing or bending fibers. Here, we study and refine the
Bayesian inference framework for the Ball-and-Stick model,
as it is widely implemented in the tractography toolbox of
the popular FSL software package (University of Oxford) and
FreeSurfer/TRACULA software (Massachusetts General Hospital
and Harvard Medical School).

In the situation of two crossing fibers, we discover from
simulation analyses that the Ball-and-Stick model faces
significant challenges in estimation of the fiber-related

parameters, when we apply the Bayesian framework proposed
by Behrens (Behrens et al., 2007). For example, convergence of
the sampling scheme of Markov Chain Monte Carlo (MCMC)
procedure can be slow in the Ball-and-Stick model, because the
sampling and simulation is conducted in a high-dimensional
parameter space, and within a computationally challenging
non-linear regression modeling context. This can lead to long
sampling chains without convergence. The study of a simplified
version of a Ball-and-Stick model is motivated by the need for
reducing complexity of the non-linear regression model, more
robust estimation of the parameters related to neural fibers, and
improved efficiency in MCMC simulations.

Focus on the two-fiber model has practical justification. It
is difficult for 3 or more fiber directions to be well separated,
except under limited scenarios, and even then, it can be difficult
to distinguish 3 fiber models from isotropy. Hence, accurately
estimating 3-fiber models is not often feasible, especially with a
limited number of gradients.

We propose a simplified version of Ball-and-Stick through
a two-stage approach. First we develop a set of simultaneous
equations for estimating “nuisance” parameters (i.e., those that
are not directly related to the features of neural fibers). Further,
we simplify this non-linear regression model through rotation
by exploiting geometric properties of the surface of the intensity
model shape.

This simplified model is validated by comparing fiber-related
parameter estimation with the full Ball-and-Stick model in an
efficient, adaptive MCMC estimation framework. Simulation
analysis and an in-vivo human data example demonstrate the
improved computational efficiency and estimation accuracy of
the proposed simplified model.

We also explore how to dramatically improve computational
efficiency by applying voxel-specific dynamic stopping rules for
MCMC sampling based on convergence monitoring statistics.
Finally, methods for determining between one- vs. two-fiber
model fit and switching models within a single MCMC run
are studied. Together, our approaches hold the promise for
vast improvements in computational times for generating
probabilistic fiber tracking, which currently is extremely slow.

MATERIALS AND METHODS

Introduction of Ball-and-Stick Model
A local partial volume model for diffusion signal attenuation
(e.g., restriction of water diffusion), the Ball-and-Stick model,
was proposed by Behrens et al. (2003). The model relates
the local fiber structure to the diffusion signal by assuming
different components within each voxel. The diffusion-weighted
MR signal (Si) is split into multiple components for each fiber
orientation, and a single isotropic component.

The Ball-and-Stick model is used to retrieve component-
specific information (free and restricted diffusion) from
the signal decay in diffusion MRI experiments. The fully
parameterized model can be fitted to dMRI data (similar
sampling scheme as for DTI). This model is notably implemented
in BedPostX and available in FSL (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT).

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 492

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Yang et al. Simplified Crossing Fiber Estimation in dMRI

Formula and Notation of Ball-and-Stick
Model
The predicted signal for each diffusion-weighted measurement at
each voxel is:

Si = S0

[(
1−

L∑

k=1

fk

)
exp

(
−bid

)

+
L∑

k=1

fk exp(−bidr
T
i RkAR

T
k ri)

]
(1)

where Si is the observed signal intensity along the i-th diffusion-
weighting gradient; S0 is the signal intensity without diffusion
gradients; bi is the diffusion weighting factor for the i-th
gradient; fk is the volume fraction of the k-th fiber; (1-

∑L
k=1 f k)

is the volume fraction for isotropic tissue; d is a diffusivity
constant; ri is the directional unit vector of the i-th diffusion-
weighting gradient; Rkis a rotation matrix depending on (θk ,
φk): the spherical coordinates for elevation angle and azimuth
angle, respectively.

Rk =



cos θk cosϕk − sin θk sin θk cosϕk

cos θk sinϕk cosϕk sin θk sinϕk

sin θk 0 − cos θk




A =



1 0 0
0 0 0
0 0 0




In the model, the noise is modeled separately for each voxel as
independent identically distributed Gaussians with a mean of
zero and standard deviation of σ across acquisitions (Behrens
et al., 2007). Note that the commonly-used noise distribution
for MRI signal will converge to a Gaussian distribution
asymptotically (Gudbjartsson and Patz, 1995) in the context of
high signal to noise ratio.

In Equation 1, the formula consists of two major
components. The first component in the bracket, the “Ball”

component, S0
(
1−

∑L
k=1 f k) exp (−bid

)
, represents the part

of the i-th diffusion signal intensity attributable to the isotropy
(e.g., free water). The second component, the “Stick” component,
S0
∑L

k=1 f k exp(−bidr
T
i RkAR

T
k
rTi ), denotes the contribution

attributable to fiber tracts.
Instead of estimating all the parameters at once with non-

linear regression under an MCMC framework, a proposed
simplified model will reduce the number of parameters
estimated throughMCMC and non-linear regression. Estimation
approaches will be derived for d and fiber-specific parameters
(e.g.,

∑
fk, θ). As is commonly applied, note that a good estimator

for S0 is the average of the diffusion signal values when bi is
equal to 0.

Reformulation of the Ball-and-Stick Model
The reformulation of the Ball-and-Stick model concentrates
on the “Stick” component of diffusion attenuation,
S0
∑L

k=1 f k exp(−bidr
T
i RkAR

T
k
rTi ) (Behrens et al., 2003;

Dell’Acqua et al., 2007). Recall that the parameters that reflect the
k-th neural fiber orientation is (θk, ϕk) in spherical coordinate
system, where θ refers to the elevation angle, which measures the

angular separation between the corresponding directional vector
and XY-plane; ϕ refers to the azimuthal angle, which measures
the angular separation between directional vector and XZ-plane.
It can also be denoted in the Cartesian coordinate system, so that
the notation for the corresponding unit vector direction is tk =[
cosθkcosϕk cosθksinϕk sinθk

]T
or
[
ti,x ti,y ti,z

]T
. Also, let ri be

the unit directional vector of the i-th gradient,
[
ri,x ri,y ri,z

]T =[
cosθicosϕi cosθisinϕi sinθi

]T
.

The dot product ri · tkrepresents the projection of i-th gradient
onto the direction of the k-th neural fiber. Denote 1ik as
the angular separation of these two directions, then ri · tk =
cos(1ik) | ri | | tk | = cos(1ik). Generally, the expression of
exp(−bidr

T
i RkAR

T
k
ri) in Equation (1) can be reformulated as

exp
(
−bidcos

21ik

)
, so that

rTi RkAR
T
k r

T
i = (ri•tk)2 = cos2(1ik) (2)

For example, when the i-th gradient is perpendicular to the k-th
fiber, 1ik is equal to 90◦. This leads to Equation (2) being equal
to 0, and the diffusion signal reaches a maximum with respect to
the fiber.

Simplification of the Two-fiber
Ball-and-Stick Model
In our discussions to follow, we focus on two- and one-fiber
models, and assume that the b-value is constant across directions.
Simplification is in relation to two fiber models.

Derivation of Estimators for Voxel-Specific Diffusivity

and Sum of Volume Fractions
Spherical mean techniques enable us to generate an equation
based on observed diffusion data, that also involves diffusivity
coefficient d and the value of the sum of fiber volume fractions,∑

fk. Importantly, this is achieved while averaging out the effect
due to fiber dispersion (Kaden et al., 2016), so that the equation
should be fairly stable and minimally affected by noise. It is based
on the insight that for a fixed b-value, the spherical mean of the
diffusion signal over the gradient directions does not depend on
the fiber orientation distribution. Specifically, the mean signal
is invariant with respect to the specific fiber orientations within
a voxel, when all other sequence parameters S0, d, f, and the
diffusion weighting factor b ≥ 0, are fixed.

Suppose we have a fixed set of L fibers, and gradient directions
are uniformly spread across the sphere. We then derive the
expected intensity value in this setting, which depends on d and∑

fk, but not the fiber orientations.
Let 1 represent the angular separation value between a

gradient and fiber orientation. In the uniform gradient direction
setting, the distribution function of values across the sphere is of
the form f(1)= 1

2 sin 1, across the range of values in (0, π). Note

exp(−bdrTi RkAR
T
k
ri) can be reformulated as exp

(
−bdcos21ik

)
,

as in Baliyan et al. (2016). By the integration across all possible
gradient directions (i.e., 1 values) for each fiber orientation, we
can derive Equation (3) in the setting of the Ball-and-Stick model
Equation (1) to obtain an average theoretical mean intensity value
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that can be approximately equated with the empirical mean:

Si ∼= S0

[(
1−

L∑

k=1

fk

)
exp

(
−bid

)
+

L∑

k=1

fk

√
πErf

(√
bid
)

2
√
bid

]
(3)

given that

E
[
exp

(
−bidcos

21
)]

=
π∫

1=0

exp
(
−bidcos

21
)
f (1) d1

=
√

πErf
(√

bid
)

2
√
bid

and

Erf (x) = 1√
π

x∫

−x

e−t2dt

Note that the spherical mean of diffusion intensity derived in
Equation (3) does not depend on the fiber orientations. We
will thus use Equation (3) as a basis for estimating parameters,∑

fk and d, in the Ball-Stick model outside of the non-linear
regression framework. For that, we still need a second equation
for estimation.

Estimating the Directionality of the Longitudinal Axis
To simplify the estimation of the Ball-and-Stick model (Equation
1), we rely on a feature of the diffusion intensities that becomes
clear as one visualizes their corresponding surface of intensities,
as in Figure 1. Given a voxel containing two fibers, we define the
longitudinal axis to be the axis perpendicular to the two fibers,
and denote it by rı . The identification of rı is critical for deriving
a second simultaneous equation for estimation. It captures two
major geometric features of the 3D surface of diffusion intensity
values (see Figure 1): (1) The maximum of diffusion-weighted
signal lies in the direction of rı . (2) Knowing its direction can
be used to align the hyperplane of two neural fibers onto the X-Y
plane through rotation, which can further reduce the complexity
of angular parameterization of the orientations of the two fibers.
Use of the first feature allows us to derive a needed second
simultaneous equation for

∑
fk and d.

First, we identify the direction associated with the maximum
of the diffusion-weighted signal, the orientation of rı . Since
rı is perpendicular to both fibers simultaneously, the angular
separation between rı and the two fibers, denoted as 1ı1 and
1ı2, are 90

◦, so that cos(1ı1)= cos(1ı2)= 0. Recall in Equation
1 that R1 is the rotation matrix of the orientation of the first
neural fiber, and R2 is that of the second fiber. Then we have
rT
l
R1AR

T
1 r

T
l

= cos2(1ı1) = 0, rT
l
R2AR

T
2 r

T
l

= cos2(1ı2) = 0

based on Equation (2), where rT
l
R1AR

T
1 r

T
l
and rT

l
R2AR

T
2 r

T
l
reach

their minimum simultaneously. The minimum of this expression
further leads to the maximum possible intensity value on the
surface, when it is substituted into Equation (1). Given b ≥ 0,
we thus have:

max (S) = S0

[(
1−

2∑

k=1

fk

)
exp

(
−bid

)
+

2∑

k=1

fk

]
(4)

By solving the set of Equations (3–4), we can obtain
estimators for d and 6 f k outside of the non-linear
regression framework.

Secondly, the plane of two neural fibers can be mapped onto
the X-Y plane, by rotating rı onto the Z-axis. The rotation
of rı onto the Z-axis maps the gradient directions onto a
new coordinate system. Given a known direction of rı , the
alignment of rı onto the Z-axis can be achieved by two steps:
(1) Clockwise rotate Z-axis with angle ϕı , such that the rotated
longitudinal axis is on the X-Z plane, with an angular separation
of θı relative to the X-Y plane; (2) Clockwise rotate Y-axis
by (π/2- θı ), such that the previously rotated longitudinal
axis will be mapped to the Z-axis. This procedure, a two-step
matrix multiplication, results in a rotation matrix Rrot. Note
that we use the prime sign (′) to denote the mapping objects
in the new coordinate system. For example, the directional
vector of i-th gradient in the new coordinate system is denoted

as r′i =
[
cosθ′icosϕ′

i cosθ′isinϕ′
i sinθ′i

]T
or

[
r′i,x r′i,y r′i,z

]T
.

Similarly, the directional vector of the k-th neural fiber in
the original coordinate system, tk is mapped to the vector t′k
=
[
cosθ′kcosϕ′

k cosθ′ksinϕ′
k sinθ′k

]T
or
[
r′k,x r′k,y r′k,z

]T
. The

mapping into the new coordinate system is through the rotation
matrix Rrot:

Rrot =



cos

(
π
2 − θl

)
0 − sin

(
π
2 − θl

)

0 1 0
sin
(

π
2 − θl

)
0 cos

(
π
2 − θl

)







cosϕl sinϕl 0
−sinϕl cosϕl 0

0 0 1




=



sinθlcosϕl sinθlsinϕl −cosθl
−sinφl cosϕl 0

cosθlcosϕl cosθlsinϕl sinθl




where rı = [cosθlcosϕl cosθlsinϕl sinθl]. Also note that we can
map the vector in new coordinate system back to the original
coordinate system:

ri = R−1
rot r

′
i , ti = R− 1

rot t
′
i

With the hyperplane of two neural fibers being rotated onto the
X-Y plane, the elevation angle θ′k relative to the X-Y plane is

equal to 0. In this case, t′k =
[
cosϕ′

k sinϕ′
k 0
]T
, so that the

orientation of the k-th fiber can be denoted by one parameter,
ϕ′

k. Thus, the complexity of denoting the orientation of two fibers
can be reduced from four parameters (θ1, ϕ1, θ2, ϕ2) to two
parameters (ϕ′

1, ϕ′
2). After the acquisition of estimated values

of (ϕ′
1, ϕ

′
2) in Equation 5, we can convert angles back into the

original coordinate space.

Formula of Simplified Model
In the new coordinate system, the relative angular separation
between two fibers will remain the same as that in the original
coordinate system. For example, the angular separation between
the i-th gradient and the k-th neural fiber in the original
coordinate system, 1ik, will be the same as 1′

ik in the
new system, such that cos2(1ik) = cos2(1′

ik), which derives
(ri · tk)2 = (r′ · t′k)2 based on Equation (2). Furthermore, we
can reformulate the “Stick” component of diffusion intensity
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FIGURE 1 | True diffusion signal shape with the longitudinal axis aligning with Z-axis. Note: The hyperplane containing two fibers are on the X-Y plane. The largest

diffusion signal is always in the direction of longitudinal axis.

attributable to the fiber tracts,
∑2

k=1 f k exp(−bdrTi RkAR
T
k
rTi ),

proportional to the baseline intensity S0, as

2∑

k=1

fk exp
(
−bdrTi RkAR

T
k ri

)

= f1 exp(−bd(ri · t1)2)+f 2 exp(−bd(ri · t2)2)
= f1 exp(−bd(ri

′ · t1′)2)+f 2 exp(−bd(ri
′ · t2′)2)

= f1 exp(−bd(r′i,xcosϕ1
′ + r′i,ysinϕ1

′)2)

+f 2 exp(−bd(r′i,xcosϕ2
′ + r′i,ysinϕ2

′)2)

Thus, in the new coordinate system, we obtain the simplified
model by reformulating Equation 1 as

Si = Ŝ0




1−

2̂∑

k=1

fk


 exp

(
−bid̂

)

+ f1 exp
(
−bd̂

(
r′i,xcosϕ

′
1 + r′i,y sinϕ′

1
)2) (5)

+




2̂∑

k=1

fk − f1


 exp

(
−bid̂

(
r′i,x cosϕ

′
2 + r′i,y sinϕ′

2
)2)



In the simplified model (Equation 5), we have demonstrated
below that the nuisance parameters that are not directly related
to the features of neural fibers, S0, d, 6 f k, rl, can be estimated
outside the framework of MCMC estimation. We apply the “hat”
sign to denote the estimators of parameters (e.g., Ŝ0, d̂, 6̂ f k,
r̂l). Thus, the number of parameters can be reduced from 9 in
the full Ball-and-Stick model (Equation 1) to 4 in the simplified
model (Equation 5). As we will establish, the simplification of
the non-linear regression model has important ramifications for
computational efficiency and can also lead to improved statistical
accuracy in fiber-related parameter estimation.

Estimation of the Simplified Model
Use of Spatially Smoothed Data
The purpose of spatial smoothing is to eliminate the effect
of noise in the intensity values through spatially weighted
averaging. Similar to the notation in the Ball-and-Stick model
(Equation 1), Si denotes the signal intensity along the i-th
gradient direction in Equation (6). For illustration, we assume
64 observed gradient directions. Note that the estimation of
nuisance parameters is prone to the effect of noise from the
diffusion intensity measurement. To have a robust estimator
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of nuisance parameters, we propose smoothing each data
point through a von-Mises smoothing kernel, centered on the
respective gradient direction. von-Mises distributions are used in
directional data applications (see Equation 6) and are analogous
to wrapped normal distributions for angular data. Let xij denote
the angular distance between directions i and j. Sj,smooth is
the smoothed signal intensity for the gradient direction j. The
denominator is to assure that the weights applied to the Si sum
to 1.

Sj,smooth =
∑64

i=1 fvonMises(xij, κ)Si∑64
i=1 fvonMises(xij, κ)

(6)

where

fvonMises

(
xij, κ

)
= eκcos xij

2πI0(κ)
,

and I0(κ) is the modified Bessel function of order 0.
In our simulation analysis, the gradient directions are 64

evenly distributed directions, as in Jones et al. (2002). We
will demonstrate that spatially smoothing the diffusion data
derived from noisy observed data can improve estimation of the
nuisance parameters, if a proper smoothing kernel is applied.
The concentration or “spread” of a von-Mises distribution is
determined by a kappa (κ) parameter. It is thus of interest
to identify appropriate κ values, which control the extent of
smoothing, that ultimately improve estimation.

One facet of estimation that can be improved with smoothing
is the identification of the longitudinal axis, which involves
selecting the gradient direction with the largest (smoothed)
intensity value. To improve estimation bias that could result from
the limited granularity of the observable gradient directions, we
add hypothetical gradient directions from which observed data
is not actually acquired but estimated through smoothing of
observed values. In our cases, this involved 64 “extra” directions,
although another number of discrete directions could have been
added as well (see Figure 2). The hypothetical directions are
generated by the rotation of the whole set of observed gradients,
and guided by the principle of maximization of the minimum
distance between hypothetical and observed directions. We
found for our simulations that the largest angular separation
from a gradient to any neighboring direction was <10◦. These
hypothetical directions thus expand the estimation space of
possible directions for rl, and improve resolution. A smoothed
value is obtained as a weighted linear combination of all the
observed data. The weights vary and depend on the angular
separation between a given (hypothetical) direction, and the
other observed directions around it. This is determined by
the relative density values of the von-Mises distribution, with
a given concentration parameter κ (see Equation 6). As κ

decreases, the spread of the distribution is larger, indicating that
the neighboring signal intensity data are assigned more weight
when smoothing.

By the definition of rı and Equation (4), we can readily
derive Equation (7) as the basis for obtaining r̂l. The estimator
r̂l is determined as the direction of the maximal smoothed

signal value among all the observed and hypothetical gradient
directions. The accuracy of estimator rı does rely on selection of
the smoothing kernel.

r̂l = argmaxrj
(
Sj,smooth

)
(7)

Following Equation (4), it also is of interest to accurately
distinguish the maximum intensity value itself, and not just
the longitudinal axis direction associated with it. Note that the
estimation of diffusivity (d) and sum of fiber volume fraction
(6 f k) depends on the maximum intensity value in Equation
(4). This is a second facet in estimation that can be improved
with smoothing.

To note, the estimators on the magnitude of maximum
signal (max(S)) and the orientation of maximum signal (rı )
appear to, respectively have improved accuracy by choosing
different concentration parameters for smoothing, even though
both estimators are related to the maximum signal value. To
differentiate the smoothing parameters, we denote this second
von-Mises smoothing kernel with kappa parameter κ2.

Guidance on Smoothing Kernel Selection
Extensive simulations have been conducted in Yang (2018) to
assess the effect of smoothing kernel selection on nuisance
parameter estimation, and more importantly, on fiber-related
parameters. These were done assuming 64 gradients and signal
to noise ratio of 20. Other signal to noise ratios were considered
in Yang (2018), and the results give similar conclusions about
relative performance. In summary, a good empirical choice of
kappa value, κ, is between 35 and 70 for estimation of max(S),
which in turn impacts the estimation of d,

∑
f k. In our

simulation analysis, we discover that the error between smoothed
maximum diffusion data value across gradients, max(Sj,smooth),
and the true maximum diffusion data value, max(S), is <5%
[see (Yang, 2018)]. For estimation of rı , a good empirical
choice of κ2 value will be around the range between 10−4 and
0.1. Recall that the estimate of rı determines the rotation of
an estimated hyperplane for two fiber orientations. Accuracy
depends on angular separation of the two fibers. For instance, at
90◦, estimation of rı is highly accurate with κ2 = 0.1, with little to
no bias and standard deviation of the discrepancy from the true
direction of around 1.5◦ across simulations. For instance, even
at 50◦ of separation, bias is around 2.7 with standard deviation
of discrepancy of 5.8. We adopt κ2 = 0.1, and consider it a
reasonable value across different angular separation scenarios.

Adaptive MCMC Estimation of Simplified and Full

Ball-and-Stick Models
We implemented the adaptive MCMC estimation algorithm
(Green, 1995; Haario et al., 2001) in our simplified model
(Equation 5) as follows:

1. Assign a prior distribution for the simplified parameter space
� = (f1, ϕ

′
1, ϕ

′
2, σ). The prior distribution of the noise term

σ is non-informative: σ−2 ∼ Inverse-Gamma (α = 200, β =
1), where α is the shape parameter, β is the scale parameter.
Others are non-informative priors: f1 ∼U(0,1), ϕ′

1 ∼U(0,π),
ϕ′

2 ∼ U(0,π).
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FIGURE 2 | Hypothetical gradient directions. Left: 64 evenly distributed gradient directions; Right: 64 additional hypothetical gradients directions (in red).

2. Iteratively generate parameter values (�1, �2, . . . , �t−1, �t)
by sampling f1, ϕ

′
1, ϕ

′
2 from their proposal distributions, until

convergence to stationary distribution is attained according to
stopping criteria.

3. Update f1, ϕ
′
1, ϕ

′
2 with a Metropolis-Hastings sampling step.

For each of these parameters, a proposal distribution q(Y|
�t−1) (see Equation 8) is used to generate a new candidate
parameter value Y. �t is then set to Y with a probability

α(�t−1, Y) = min(1, π(Y)
π(�t−1)

) (e.g., π (Y) is posterior

likelihood given Y, the other most recent parameter values,
and observed diffusion data). Otherwise, reject the value Y,
and set �t to the previous value.

q(Y|�t−1) =
1√
2πε2

exp(− (Y − �t−1)
2

2ε2
) (8)

4. Update σ−2 with a Gibbs sampling step. The updating of σ−2

posterior distribution is conditional on updated values of f1,
ϕ′

1, ϕ
′
2.

5. The proposal variance ε2 for each parameter is adapted every
50 iterations, according to the acceptance rate among those
iterations (<0.44, then decrease ε by the factor of δ; > 0.44,
increase ε by the factor of δ. Note that δ = min[exp(0.01),
exp(1/c)], where c is the square root of the modulus of t by
50) (Green, 1995).

6. After the MCMC iterations have finished, f2 is derived as 6 f k
minus f1, and (0, ϕ′

k) is reformulated back into (θk, ϕk) by
re-rotating the angular coordinates to the original coordinate
system, guided by the estimate of rı .

With the full Ball-and-Stick model, we implemented the
approach in Behrens et al. (2007) that also fully aligns both
methods. This includes adopting the same prior specifications
across models when applicable, and the same adaptive MCMC
framework. This facilitates comparison between the simplified
and full models in terms of computational performance and
estimation accuracy of the fiber-specific parameters.

We record the ongoing chains of sampled values until
stopping, and the collection of these sampled values can be
reflected in histograms and time-series plots (e.g., seeAppendix).
Estimates of posterior medians and standard deviations are
obtained from sampled values after the burn-in period. These
estimates will be used to describe the posterior distributions of
the parameters of interest (e.g., f1, f2, ϕ

′
1, ϕ

′
2) when evaluating

the accuracy and precision of estimates.

RESULTS

Simulation Results of Fiber-Specific
Parameters
The performance of estimation on the fiber-specific parameters
in two crossing fiber scenarios will now be compared between
the simplified model and the full model. Again, for the simplified
model, the estimated values of the non-fiber-specific parameters
S0, d, 6 f k will be substituted in. To assess the accuracy of
estimation of fiber-specific parameters in a MCMC framework,
we extract every 10th sampled values from the last half of MCMC
chains with 100,000 iterations. For each scenario of parameters
being studied, 100 data sets are simulated. Estimates are derived
from each data set, so that distributions of these estimates can
be generated. Distributions of bias in the posterior median-
based estimates can thus be visualized for comparison with the
corresponding ground-truth parameter values. Again, we set
ground-truth model parameters to be S0 = 400, b = 1500 s/m2,
d = 1/1500 m2/s, f1 = 0.4, f2 = 0.5, θ1 = 0, θ2 = 0, φ1 = 60◦, φ2

= 120◦. We also set κ2 = 0.1. The number of observed gradient
directions is 64, as in Jones et al. (2002).

Results for Volume Fractions of Individual Fibers
In Figures 3A,B, the violin plot (Hintze and Nelson, 1998)
displays the accuracy level of f1 and f2 under different model
settings. Violin plots are a combination of a box plot and a kernel
density plot. Specifically, it starts with a box plot, where the thick
bar represents the IQR of the bias with the white point “median”
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FIGURE 3 | Estimation bias and posterior precision of f1 and f2 in the violin plot across 100 simulations. (A) bias of f1, (B) bias of f2, (C) posterior sd of f1, and (D)

posterior sd of f2. Note: S0 = 400, b = 1500 s/m2, d = 1/1500 m2/s, f1 = 0.4, f2 = 0.5, θ1 = 0, θ2 = 0, φ1 = 60◦, φ2 = 120◦.

in the middle, and the thin bar “whiskers” are drawn to 1.5 ×
IQR below the 1st quartile or above the 3rd quartile. It then adds
a rotated kernel density plot to each side of the box plot.

Generally, the distribution of bias that is centered around 0
and with relatively small variance has a higher accuracy level.
The violin plots in yellow and red display the distribution of bias
of parameter estimates (medians) of f1 and f2 in the simplified
models, based on estimates of6 f k that are derived from different
smoothing kernels (i.e., different κ values). The plot in green
shows the related distributed bias in the full model. When
the κ value is in the range of ≥20, the bias and variance of
estimation error appear smaller in the simplified model than the
full model. In Table 1, the estimation bias (mean± sd) for f1 and
f2 demonstrates a more accurate estimate in the simplified model
0.0026± 0.0719 and 0.0054± 0.0788, respectively (κ = 50), while
the corresponding bias is−0.053± 0.1344 and−0.0842± 0.1496
in the full model.

In Figures 3C,D, the violin plot displays the precision level
of f1 and f2 under different model settings. Posterior standard
deviation in the simplified model (κ ≥ 20) is smaller compared
with that in the full model. In Table 1, the posterior distributions
of f1 and f2 demonstrate a more precise estimate in the simplified
model 0.0252 ± 0.0094 (κ = 50), while the corresponding

estimation bias is 0.054 ± 0.0835 and 0.0585 ± 0.0833,
respectively in the full model.

Among the simplified models, we noticed that the
performance in estimation of f1 (Figure 4A) and f2 (Figure 4B)
is closely related to the performance of estimator of 6 f k, in that
a more biased estimate of6 f k will lead to a more biased estimate
of f1 and f2. Across varying κ values, the estimates of volume
fractions with respect to κ equal to 50 obtain the smallest bias
and variance, which is consistent with the empirical suggestions
for κ value selection in the estimation of max(S), d, and

∑
f k.

Similarly, beyond 60 degree fiber angular separation, we also
found the estimation of f1 and f2 with κ equal to 50 generally
performs at least as well as those for other κ values. Generally,
when the fiber angular separation is larger, the estimation of
parameters is “easier,” so that the estimates of f1 and f2 are
more accurate and precise. For instance, when the angular
separation between fibers reaches its largest value of 90◦, the
estimation bias of f1 and f2 has smallest mean (relative to 0) and
standard deviation.

Results for Orientations of Individual Fibers
Similarly, in Figure 4, the violin plots in yellow and red display
the distribution of bias from parameter estimates (medians)
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TABLE 1 | Fiber-specific parameters (f1, f2, θ1, φ1, θ2, φ2) and angular separation bias of two fibers in 64 gradient directions across 100 simulations.

Estimation bias (mean ± sd)

Model setting f1 ϕ*
1

θ*
1

Angular bias of fiber 1*

Simplified κ = 1 −0.3639 ± 0.0531 26.8 ± 19.6 0.3 ± 2 32.2 ± 8.1

κ = 5 −0.2534 ± 0.2521 28.9 ± 9.9 0.1 ± 1.1 29.5 ± 7.9

κ = 10 −0.0874 ± 0.0817 6.3 ± 10.8 0.1 ± 2 10.5 ± 7

κ = 20 −0.0411 ± 0.078 2.4 ± 9.9 −0.1 ± 3.2 8.2 ± 6.8

κ = 35 −0.0038 ± 0.0872 0.8 ± 11 0.3 ± 2.9 8.7 ± 7.4

κ = 50 0.0026 ± 0.0719 −2.3 ± 12 0.4 ± 3.3 9.4 ± 8.5

κ = 70 0.0202 ± 0.0691 −2.1 ± 9.1 0.8 ± 2.9 7.3 ± 6.5

Without smoothing 0.0265 ± 0.0682 −4.5 ± 11.2 0.1 ± 1.7 8.7 ± 8.5

Full −0.053 ± 0.1344 1.7 ± 11.3 3.7 ± 4.3 9.6 ± 8.3

Estimation bias (mean ± sd)

Model setting f2 ϕ*
2

θ*
2

Angular bias of fiber 2*

Simplified κ = 1 −0.4231 ± 0.0534 −18.9 ± 12.4 0.1 ± 1.4 21.7 ± 6.4

κ = 5 −0.0292 ± 0.2471 −21 ± 11.6 0.1 ± 0.9 23.5 ± 5

κ = 10 −0.057 ± 0.0852 −6 ± 6.4 0 ± 0.7 7.4 ± 4.8

κ = 20 −0.0248 ± 0.0744 −3.1 ± 7.5 0 ± 1.5 6.2 ± 5.5

κ = 35 −0.0202 ± 0.088 1 ± 9.4 0.1 ± 1.7 7.2 ± 6.4

κ = 50 0.0054 ± 0.0788 −0.5 ± 8 −0.1 ± 2.1 6.5 ± 5.1

κ = 70 0.0156 ± 0.0684 1.2 ± 7.9 −0.1 ± 1.4 5.5 ± 5.9

Without smoothing 0.0351 ± 0.0721 1.1 ± 8 0 ± 0.4 5.9 ± 5.4

Full −0.0842 ± 0.1496 0.6 ± 9.1 2.7 ± 1.6 7.7 ± 5.6

*Angular bias is in degrees.

of θ1, ϕ1, θ2, ϕ2 in the simplified models, derived from
different smoothing kernels (e.g., different κ values). The plot
in green shows the related distribution of bias in the full model
(Figures 4A–D). We define angular bias as the difference in
estimated and true fiber direction in their shared hyperplane.
Note that this measure of bias incorporates information about the
estimation of both θ, ϕ. We assess angular bias of fiber estimates
in Figures 4E–F and Table 1.

In comparison of the results, the simplified and full models
demonstrated a similar accuracy level of performance in
estimating the fiber orientations (Figures 4E,F and Table 2). Bias
in estimated fiber orientations for the simplified model are very
close or slightly better than for the full model, when the κ value
is ≥20. The performance of estimates for angular separation of
two fibers indicates similar results between the simplified model
and the full model (seeTable 1). Similarly, beyond the scenario of
60◦ fiber angular separation, we also found comparable patterns
between some simplified model setting and the full model
under other scenarios (e.g., 90◦, 30◦ fiber angular separation).
The simplified model demonstrates a similar precision level of
performance in estimating the fiber orientations (Figures 4G–J
and Table 2), in that the MCMC posterior standard deviation on
fiber orientations in the simplified model are also very close or
slightly better than the full model, when the κ value is at least 20.

Computational Efficiency of MCMC Simulation
The computation of simulation analysis was run on a server
computer with the following: CPU Intel Xeon E5-2699 v5 32

cores, 128 GB RAM, Linux-based CentOS 7 environment. In
terms of the computing efficiency, the simplified model required
an average of approximately 0.65min per 100,000 iterations as
in 3.5.3, when the computation of 20 simulated samples was run
simultaneously over 10 cores. The full model required an average
of approximately 9.5min per 100,000 iterations under the same
conditions. The simplified model thus offers a great reduction in
computing times.

Real Data Examples and Three Fiber
Simulated Scenarios
To obtain an in-vivo human data example, we used freely
available neuroimaging data that was acquired by the MGH
HCP team for the Human Connectome Project (https://db.
humanconnectome.org/data/projects/MGH_DIFF). The study
subject ID is MGH 1001, a female aged between 40–44 years old.
A data analysis was conducted in FSL following their processing
pipeline guide, using BET, EDDY_CORRECT, DTIFIT, and
BEDPOSTX. In order to evaluate the full and simplified models
with real data, we selected an area of 36 contiguous voxels in
the corona radiata region as test samples. The corona radiata is
an area that contains many crossing fibers. See Figure 5, which
indicates location of the region of interest being analyzed.

To assess how our 2-fiber simplified model behaves in such
situations, we also estimated 3-fiber models using BEDPOSTX
for comparison. To indicate the presence of 3 fibers, we examined
the volume fraction of the third fiber (f3) across the entire
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FIGURE 4 | Estimation bias and posterior precision of fiber orientations (in degrees) in the violin plot with 64 gradients across 100 simulations. (A) bias of ϕ1, (B) bias

of ϕ2, (C) bias of θ1, (D) bias of θ2, (E) angular bias of fiber 1, (F) angular bias of fiber 2, (G) posterior sd of ϕ1, (H) posterior sd of ϕ2, (I) posterior of θ1, and (J)

posterior of θ2. Note: S0 = 400, b = 1500 s/m2, d = 1/1500 m2/s, f1 = 0.4, f2 = 0.5, θ1 = 0, θ2 = 0, φ1 = 60◦, φ2 = 120◦.
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TABLE 2 | Posterior standard deviation of the fiber–specific parameters (f1, f2, θ1, φ1, θ2, φ2) in 64 gradient directions across 100 simulations.

Posterior sd (mean ± sd)

Model setting f1 ϕ*
1 θ*1

Simplified κ = 1 0.0375 ± 0.0214 37.7 ± 13.1 0.8 ± 2.2

κ = 5 0.1121 ± 0.1062 37.5 ± 18.4 0.5 ± 2.2

κ = 10 0.0651 ± 0.0312 8 ± 6.3 0.1 ± 0.5

κ = 20 0.0422 ± 0.0256 5.6 ± 6.8 0.2 ± 0.7

κ = 35 0.0282 ± 0.01 3.7 ± 1.6 0.1 ± 0.3

κ = 50 0.0252 ± 0.0094 4.2 ± 7.1 0.1 ± 0.2

κ = 70 0.0231 ± 0.0084 3.2 ± 2.2 0 ± 0.1

Without smoothing 0.0205 ± 0.0054 3.2 ± 2.5 0 ± 0.1

Full 0.054 ± 0.0835 4.1 ± 5.4 2.3 ± 5.8

Posterior sd (mean ± sd)

Model setting f2 ϕ*
2

θ*
2

Simplified κ = 1 0.0375 ± 0.0214 28.9 ± 14.3 0.5 ± 1.6

κ = 5 0.1121 ± 0.1062 11.9 ± 15.3 0.2 ± 1.1

κ = 10 0.0651 ± 0.0312 5.4 ± 3.4 0.1 ± 0.5

κ = 20 0.0422 ± 0.0256 4.2 ± 4.7 0.2 ± 0.7

κ = 35 0.0282 ± 0.01 3.5 ± 5.2 0.1 ± 0.3

κ = 50 0.0252 ± 0.0094 2.7 ± 1.1 0.1 ± 0.2

κ = 70 0.0231 ± 0.0084 3 ± 4.5 0.1 ± 0.2

Without smoothing 0.0205 ± 0.0054 2.4 ± 0.6 0 ± 0.1

Full 0.0585 ± 0.0833 3.5 ± 4.4 2.1 ± 5.8

*Standard deviations are in degrees.

FIGURE 5 | Region of interest in the corona radiata. The orange square indicates the voxels.

brain and selected the 99th percentile value (f3 = 0.1) as the

threshold for indicating the presence of the third fiber. According

to this criterion, 20 of the 36 voxels were likely to contain 3

fibers. As there is no gold standard for real data, we simply

present the results (see Supplementary Table 1, where specific

voxels are identified, and voxel-level estimates are listed). We

also compute respective angular differences between the first two
estimated directions of the 3-fiber BEDPOSTX model and the

two directions estimated by the simplified model. See Figure 6,

where the voxels are in the region of interest of Figure 5. For the
apparent 3-fiber voxels, the median angular and volume fraction

f-value difference in estimates for the first of the directions
are 10.25◦ and 0.014; for the second direction they are 11.30
and 0.033. For the apparent 2-fiber voxels, estimated median
angular and f-value differences are 2.87◦ and 0.0070, and 4.89◦

and 0.0086. Overall, median differences with the first two angles
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FIGURE 6 | Dyadic vectors demonstrating the angular orientations between

estimated θ1, ϕ1, and θ2, ϕ2. from real data. (A) Simplified model estimates,

(B) BEDPOSTX model estimates.

and f-values estimated by the 3-fiber BEDPOSTX model and the
simplified model are generally not large. For the one-fiber voxel

in BEDPOSTX (voxel 52 86 61), the angular difference for the

respective angle estimated with the simplified model is 9.00◦, and
difference in estimated f1 values is 0.01. The simplified model

estimated f1 and f2 as 0.47 and 0.23, so with this model, there

is indication of a second angle. For the no-fiber voxel indicated
by BEDPOSTX (voxel 51 83 61), the simplified model estimates
f1 and f2 as 0.18 and 0.17. Generally, Figure 6 likely reflects the

anterior-posterior alignment of underlying fibers.
We also considered three simulated 3-fiber scenarios, 1,000

replications each with signal-to-noise ratio equal to 5% of
S0 = 400:

1) ϕ1 = 0, θ1 = 0, ϕ2 = 90, θ2 = 0, ϕ3 = 45, θ3 = 45; f1 = 0.3, f2
= 0.25, f3 = 0.2.

2) ϕ1 = 25, θ1 = 25, ϕ2 = 0, θ2 = 0, ϕ3 = 25, θ3 = 0; f1 = 0.4, f2
= 0.25, f3 = 0.1.

3) ϕ1 = 0, θ1 = 0, ϕ2 = 90, θ2 = 0, ϕ3 = 90, θ3 = 90; f1 = f2 = f3
= 0.25.

We used the BEDPOSTX 3-fiber model and simplified 2-fiber
model for estimation. Given estimated directions from each
method, we considered all permutations of pairing the estimated
directions with the true fiber directions in the respective
simulations, and selected the permutation with smallest average
angular difference between paired estimated and true directions.
Angular and f-value differences, as well as the number of
permutations for the simplified model that a true direction is
associated with an estimate, are listed in Table 3. Note that for
both methods, the 3-fiber scenarios that were studied present
difficult estimation problems, and that bias in estimation is
large. An exception is in Scenario 3, where the third direction
is consistently estimated in a fairly accurate manner by the
simplified model.

Impact of Increased Gradient Directions
(64 vs. 128 Gradients)
A simulation study was implemented to demonstrate how the
increase in the number of observations from gradient directions
impacts the estimation results. This has practical importance,
as it is expected in the near future for standard clinical
DWI acquisitions to have increased number of gradients. We
simulated a set of 128 evenly distributed gradient directions
and followed the same estimation procedures and parameter
settings to obtain the parameter estimates as we did previously
with simulations with 64 gradient directions. The performance of
estimation on the fiber-specific parameters is compared between
128 vs. 64 gradient directions, respectively between the simplified
model and the full model.

Given 128 gradients, the bias and variance of fiber-related
estimates are smaller in the simplified model than the full model,
when the κ value or estimating is in the range of 20 or higher
(see Figure 7). Within the results from the simplified model,
the estimates of volume fractions with respect to κ between 35
and 70 is likely to obtain the smallest bias across varying κ

values. When the value of κ was chosen as 20, 35, 50, 70 or even
without smoothing, the estimation error on volume fractions in
the simplified model was generally closer to 0 than that in the
full model.

In terms of fiber orientation, the simplified model
demonstrates a similar level of performance in estimation.
The biases of estimates of fiber orientations in the simplified
model are very close and slightly improved relative to the full
model when the κ value was 20 or higher. Similarly, as with the
trend with volume fraction estimation error, the estimates of
fiber orientations with respect to κ between 35 and 70 obtain the
smallest bias across varying κ values.

Comparing estimation bias with 128 vs. 64 gradients (Table 4
vs. Table 1), biases tend to decrease with 128 directions across
different model settings. To note, in terms of angular bias
estimation on fiber 1, a decreased mean by 4◦ and a decreased
standard deviation by 4◦ in the simplified model (κ = 50)
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TABLE 3 | Summary of simulation results, with angular distance and volume fraction differences across 1000 simulations.

Angle 1 distance Angle 2 distance Angle 3 distance f1 difference f2 difference f3 difference

SCENARIO 1-SIMPLIFIED

Median 73.2◦ 75.4◦ 44.7◦ 0.045 0.109 0.106

Inter-quartile range (IQR) 5.5◦ 6.6◦ 3.3◦ 0.045 0.055 0.055

Number of Permutations/1000 159 841 1000

SCENARIO 1—BEDPOSTX

Median 78.6◦ 86.9◦ 85.0◦ −0.023 0.035 0.040

IQR 54.9◦ 50.1◦ 79.8◦ 0.174 0.330 0.317

Number/1000 1,000 1,000 1,000

SCENARIO 2—SIMPLIFIED

Median 69.3◦ 62.2◦ 78.8◦ −0.126 0.325 0.397

IQR 28.1◦ 24.1◦ 23.9◦ 0.339 0.246 0.357

Number/1000 1,000 80 920

SCENARIO 2—BEDPOSTX

Median 38.1◦ 107.7◦ 99.0◦ −0.400 −0.241 −0.099

IQR 93.4◦ 86.2◦ 91.3◦ 0.415 0.665 0.651

Number/1000 1,000 1,000 1,000

SCENARIO 3—SIMPLIFIED

Median 70.1◦ 63.7◦ 6.5◦ −0.015 −0.010 −0.016

IQR 39.0◦ 38.5◦ 10.9◦ 0.045 0.050 0.046

Number/1000 458 542 1,000

SCENARIO 3-BEDPOSTX

Median 71.8◦ 70.8◦ 43.2◦ −0.249 −0.249 −0.249

IQR 43.0◦ 44.4◦ 60.9◦ 0.064 0.062 0.061

Number/1000 1,000 1,000 1,000

indicates a more accurate and precise estimate. While bias also
is smaller in estimating the full model with more observations
from added gradients, the magnitude of improvement was not as
great as with the simplified model (κ = 50). Within the results
of the simplified model, an empirical suggestion on the choice
of κ value is between 35 and 70 to obtain smaller bias and
standard deviation of estimation error, no matter if the number
of gradients is 128 or 64 (Tables 1, 4).

As we investigate other challenging estimation scenarios with
two crossing fibers (e.g., fiber angular separation of 40◦), we have
seen that the MCMC chains in the simplified model have a much
higher likelihood of accurate convergence with 128 gradients.
The simplified model is clearly more stable in such scenarios.

Dynamic Stopping Rule in MCMC
Estimation
The MCMC algorithm has served as a powerful approach for
Bayesian estimation of DWI modeling. This method involves
simulating from a complex and generally multivariate target
distribution with respect to the parameters in themodels.Markov
chains are generated and stationary distributions of sampled
parameter values are targeted (Cowles and Carlin, 1996). In
application of MCMC algorithms, a default number of iterations
can be overly large to guarantee a sufficient length for burn-
in period, and to attain stationary convergence. However, this
can result in an unnecessary computation load. This issue is

compounded due to the large number of voxels. We thus suggest
applying convergence criteria such as the Geweke diagnostic
(Green, 1995) to dynamically detect the stationary convergence
along Markov chains, which provides guidance on when to
stop sampling at the voxel level. Further technical discussion
and an example that illustrates great computational savings
through reduced number of iterations for MCMC are given
in the Appendix. An important practical implication is that
the simplified model not only requires less computation for a
given set of iterations, as was seen earlier, but also requires a
lesser number of iterations. In conjunction, these computational
savings are multiplicative.

Model Selection: 1-Fiber vs. 2-Fiber
Simplified Model
We also have considered how to identify 1-fiber vs. 2-fiber
model fit within a voxel during a same MCMC run. This is
similar in purpose as the Automatic Relevance Determination
(ARD) sparsity prior in Behrens et al. (2007), which identifies
whether to continue to include fiber components within a
same MCMC run. An advantage of these approaches is that
model fit can be conducted without having to conduct MCMC
separately per model. We can efficiently identify sampling chain
behaviors that indicate over-fitting of a 2-fiber model with 1-
fiber data without the need to add to model complexity, as
ARD priors do. One-fiber models converge inMCMC estimation
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FIGURE 7 | Estimation bias of fiber volume fractions and orientations of two fibers in the violin plot (128 gradient directions) across 100 simulations. (A) bias of f1, (B)

bias of f2, (C) bias of ϕ1, (D) bias of ϕ2, (E) bias of θ1, (F) bias of θ2, (G) angular bias of fiber 1, and (H) angular bias of fiber 2. Note: S0 = 400, b = 1500 s/m2, d =
1/1500 m2/s, f1 = 0.4, f2 = 0.5, θ1 = 0, θ2 = 0, φ1 = 60◦, φ2 = 120◦.
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TABLE 4 | Estimation bias of the fiber-specific parameters (f1, f2, θ1, ϕ1, θ2, ϕ2) and angular bias of two fibers in 128 gradient directions across 100 simulations.

Estimation bias (mean ± sd)

Model setting f1 ϕ1 θ1 Angular bias of fiber 1

Simplified κ = 1 −0.3678 ± 0.0507 27.3 ± 15.9 −0.2 ± 1.5 30.5 ± 8.3

κ = 5 −0.2698 ± 0.2343 30.7 ± 5.9 −0.2 ± 0.6 30.8 ± 5.1

κ = 10 −0.09 ± 0.0668 7.2 ± 7.3 −0.5 ± 1.4 8.8 ± 5.4

κ = 20 −0.0435 ± 0.0602 3 ± 7 −0.6 ± 1.7 6.2 ± 4.7

κ = 35 −0.0237 ± 0.0509 0.2 ± 5.8 −0.7 ± 1.9 4.7 ± 3.9

κ = 50 −0.0004 ± 0.0494 0.1 ± 6.9 −0.6 ± 1.7 5.4 ± 4.6

κ = 70 0.0047 ± 0.0506 −1.5 ± 7.1 −0.8 ± 2.5 5.7 ± 5.1

Without smoothing 0.0462 ± 0.0487 −3.9 ± 6.5 −0.6 ± 1.8 6.1 ± 4.8

Full −0.0527 ± 0.1122 0.4 ± 9.1 2.6 ± 1.6 7 ± 6.5

Estimation bias (mean ± sd)

Model setting f2 ϕ2 θ2 Angular bias of fiber 2

Simplified κ = 1 −0.4227 ± 0.0498 −17.9 ± 18.1 0.1 ± 1.1 24.6 ± 6.6

κ = 5 −0.0193 ± 0.2331 −21.7 ± 7.8 −0.1 ± 0.4 22.6 ± 4.8

κ = 10 −0.0614 ± 0.0657 −7 ± 5.2 0.1 ± 0.3 7.7 ± 4.1

κ = 20 −0.0359 ± 0.0598 −2.2 ± 5.7 0.2 ± 0.5 5 ± 3.3

κ = 35 −0.0108 ± 0.0483 −1.8 ± 4.9 0.2 ± 0.6 4.3 ± 3

κ = 50 −0.0081 ± 0.0538 0.2 ± 5.6 0.1 ± 1 4 ± 4

κ = 70 0.0132 ± 0.049 0.2 ± 5 0.4 ± 1.6 4.1 ± 3.2

Without smoothing 0.0397 ± 0.0483 1.9 ± 5.2 0.1 ± 0.9 4.4 ± 3.5

Full −0.0564 ± 0.1253 −1.3 ± 6.6 2.1 ± 2.2 5.5 ± 4.9

quite quickly relative to 2-fiber models, so in conjunction
with dynamic stopping of MCMC sampling at the voxel level,
computation can be reduced even further. Details are given in
the Appendix.

DISCUSSION

The key step for our simplified model is Equation (5),
which allows for focus on fiber-specific parameters that reduce
the parameters in the non-linear regression that are to be
estimated in a MCMC framework. Non-fiber-specific parameters
can be estimated reliably through simultaneous equations
for estimation that mainly take advantage of novel statistics
based on signal shape across gradient acquisitions. Specifically,

the estimated maximum (max(S)) and spherical mean (S)
of signal shape allow for a practical and valid solution for
estimating the parameter d and 6fk, and for estimating the
longitudinal axis (rı ) of the signal surface shape. The latter
is used to guide the rotation of the hyperplane of two
fiber orientations to further reduce angular parameterization.
Spatial smoothing of intensity values improves estimation
performance. After the replacement with the non-fiber-specific
parameter estimators, only three parameters are then to be
estimated in the MCMC framework under the scenarios of two
crossing fibers.

The results of fiber-specific parameter estimation consistently
demonstrate the simplified model approach be more accurate,
precise and efficient. From our extensive simulations across
different data sets, we see that fiber parameter estimation
with the proposed approach is apparently unbiased, or close
to unbiased. Nuisance parameter estimation also is apparently
unbiased with relatively small error (Kaden et al., 2016).
Simulations of the complete two-stage procedure give us a
sense of the variability in estimation, in terms of the resultant
fiber parameter point estimates from Bayesian analysis (e.g.,
Figures 4, 5). Since the proposed estimation process is (close
to) unbiased and can have less variability, it is relatively
attractive. First, the estimates of volume fraction f1 and f2 in
a simplified model setting (e.g., with smoothing parameters κ

= 50, κ2 = 0.1) can always outperform that in the full model
setting regardless of the angular separation 1ϕfibers, in that the
mean bias can be slightly reduced and the precision level can
improve by more than 2-fold (smaller standard deviation of
estimation error). Similarly, the estimates of fiber orientation
can also be more accurate and precise in a proper simplified
model. Importantly, we observed that the computational run
time for the simplified model can approximately be 14–
15 times faster than that in the full model for the same
number of MCMC iterations. This does not even take into
account that the convergence within a single chain is much
faster in the simplified model, in terms of needing a fewer
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number of iterations before convergence is attained. This
simplified model can require up to 10 times less iterations
for stopping. With dynamic stopping of MCMC chains per
voxel, these reductions in computation times are multiplicative.
The issue of computational efficiency is critical as current
probabilistic fiber tracking that relies on voxel-level MCMC
estimation of the full Ball-and-Stick model is extremely slow
and time-consuming.

Since we are conditioning on the estimated nuisance
parameter values, the Bayesian estimation process for the fiber
parameters does not reflect the uncertainty in nuisance parameter
estimation. In terms of using the posterior distributions for
probabilistic fiber tracking, we do note that the median
values of the resultant posterior distributions will often be
close to the associated true value, due to the apparent
lack of bias in point estimation. Smaller posterior variances
will lead to more of the sampled values being close to
the true value as well, and reduced variability in fiber
tracking. So, we think it will be attractive to conduct
probabilistic fiber tracking with the proposed MCMC-generated
posteriors distributions.

The simplified model still inherits the limitation from the
full model in that it cannot reliably estimate two crossing
fibers that are not far apart in terms of angular separation
when the number of gradient directions is limited. For
instance, when two fibers are 40◦ apart (1ϕfibers = 40◦),
the angular bias is around 15 ± 10 (mean and standard
deviation from 100 simulations) given 64 gradients; however,
the bias is 8 ± 7 given 128 gradients. The number of
gradients in an MR diffusion image acquisition thus has an
obvious impact on the accuracy and precision of parameter
estimation, as well as extending the feasibility of estimation
when fiber directions are not as well separated. In the
near future, 128 gradient scans will be standard in clinical
acquisitions. Based on our simulations, fiber direction estimation
based on the simplified model holds promise for even
greater relative precision improvements as the number of
gradients increases.

The proposed approach clearly does not have the capability
to model 3-way crossings, even if it can sometimes estimate
one or two of the directions accurately in such situations.
Still, the proposed approach can be useful if used in
conjunction with 3 fiber models, such as in an adaptive
“step down” model, once 3-way crossings can be ruled out.
We illustrate such an adaptive “step down” approach from
two-fiber to one-fiber models and show computational
savings in that setting. Nonetheless, 3-fiber modeling
can be very difficult even when explicitly acknowledging
3 fibers in a model, as illustrated in the simulations
presented here.

Although not explored here, this approach can be extended
to multi-shell data. One possible approach with multi-shell data
could be to estimate the d and 6 f k parameters in parallel
based on respective samples with a specific b-value, and then
pooling the estimates, such as by respectively, averaging them.

The MCMC estimation algorithms can then be implemented
as in section Adaptive MCMC estimation of simplified and full
Ball-and-Stick models, while recognizing different b-values as
in Equation (1).

CONCLUSION

In summary, a simplified version of the Ball-and-Stick model
is proposed. By reducing the parameter space dimensionality in
the non-linear regression estimation framework, the computing
time in the simplified model can be shortened dramatically.
We believe the overall time savings will be tremendous as we
transition to implementation at the whole brain level. Meanwhile,
the accuracy and precision of estimating the fiber volume
fractions and fiber orientation can also be improved with less
complex and numerically simpler non-linear regressions. Future
consideration will be given to Laplace approximations of the
posterior distributions associated with fiber parameters, which
is more feasible with the reduced dimensionality. We will also
explore whether some of the ideas applied here can be extended
to 3-fiber models, to reduce parameterization of corresponding
non-linear regression models.
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