
fnins-13-00509 May 31, 2019 Time: 17:10 # 1

ORIGINAL RESEARCH
published: 31 May 2019

doi: 10.3389/fnins.2019.00509

Edited by:
Bradley J. MacIntosh,

Sunnybrook Research Institute (SRI),
Canada

Reviewed by:
Jingyun Chen,

New York University School
of Medicine, United States

Veena A. Nair,
University of Wisconsin–Madison,

United States

*Correspondence:
Xiahai Zhuang

zxh@fudan.edu.cn

†Data used in preparation of this
article were obtained from the

Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database

(adni.loni.usc.edu). As such, the
investigators within the ADNI

contributed to the design and
implementation of ADNI and/or

provided data but did not participate
in analysis or writing of this report.

A complete listing of ADNI
investigators can be found at:

http://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 15 January 2019
Accepted: 02 May 2019
Published: 31 May 2019

Citation:
Huang Y, Xu J, Zhou Y, Tong T,
Zhuang X and the Alzheimer’s

Disease Neuroimaging Initiative (ADNI)
(2019) Diagnosis of Alzheimer’s

Disease via Multi-Modality 3D
Convolutional Neural Network.

Front. Neurosci. 13:509.
doi: 10.3389/fnins.2019.00509

Diagnosis of Alzheimer’s Disease via
Multi-Modality 3D Convolutional
Neural Network
Yechong Huang1, Jiahang Xu1, Yuncheng Zhou1, Tong Tong2, Xiahai Zhuang1* and
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)†

1 School of Data Science, Fudan University, Shanghai, China, 2 Fujian Provincial Key Laboratory of Medical Instrument
and Pharmaceutical Technology, Fuzhou, China

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. In
the last decade, studies on AD diagnosis has attached great significance to artificial
intelligence-based diagnostic algorithms. Among the diverse modalities of imaging data,
T1-weighted MR and FDG-PET are widely used for this task. In this paper, we propose
a convolutional neural network (CNN) to integrate all the multi-modality information
included in both T1-MR and FDG-PET images of the hippocampal area, for the
diagnosis of AD. Different from the traditional machine learning algorithms, this method
does not require manually extracted features, instead, it utilizes 3D image-processing
CNNs to learn features for the diagnosis or prognosis of AD. To test the performance of
the proposed network, we trained the classifier with paired T1-MR and FDG-PET images
in the ADNI datasets, including 731 cognitively unimpaired (labeled as CN) subjects,
647 subjects with AD, 441 subjects with stable mild cognitive impairment (sMCI) and
326 subjects with progressive mild cognitive impairment (pMCI). We obtained higher
accuracies of 90.10% for CN vs. AD task, 87.46% for CN vs. pMCI task, and 76.90%
for sMCI vs. pMCI task. The proposed framework yields a state-of-the-art performance.
Finally, the results have demonstrated that (1) segmentation is not a prerequisite when
using a CNN for the classification, (2) the combination of two modality imaging data
generates better results.

Keywords: Alzheimer’s disease, multi-modality, image classification, CNN, deep learning, hippocampal

INTRODUCTION

Aging of the global population results in an increasing number of people with dementia. Recent
studies indicate that 50 million people are living with dementia (Patterson, 2018), of whom 60–
70% have Alzheimer’s Disease (AD) (World Health Organization, 2012). Known as one of the
most common neurodegenerative diseases, AD can result in severe cognitive impairment and
behavioral issues.

Mild cognitive impairment (MCI) is a neurological disorder, which may occur as a transitional
stage between normal aging and the preclinical phase of dementia. MCI causes cognitive
impairments with a minimal impact on instrumental activities of daily life (Petersen et al., 1999,
2018). MCI is a heterogeneous group and can be classified according to its various clinical outcomes
(Huang et al., 2003). In this work, we partitioned MCI into progressive MCI (pMCI) and stable MCI
(sMCI), which are retrospective diagnostic terms based on the clinical follow-up according to the
DSM-5 criteria (American Psychiatric Association, 2013). The term pMCI, refers to MCI patients
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who develop dementia in a 36-month follow-up, while sMCI
is assigned to MCI patients when they do not convert.
Distinguishing between pMCI and sMCI plays an important role
in the early diagnosis of dementia, which can assist clinicians
in proposing effective therapeutic interventions for the disease
process (Samper-González et al., 2018).

With the progression of MCI and AD, the structure and
metabolic rate of the brain changes accordingly. The phenotypes
include the shrinkage of cerebral cortices and hippocampi,
the enlargement of ventricles, and the change of regional
glucose uptake. These changes could be quantified with the
help of medical imaging techniques such as magnetic resonance
(MR) and positron-emission tomography (PET) (Correa et al.,
2009). For instance, T1-weighted magnetic resonance image
(T1-MRI) provides high-resolution information for the brain
structure, making it possible to accurately measure structural
metrics like thickness, volume and shape. Meanwhile, 18-Fluoro-
DeoxyGlucose PET (18F-FDG-PET or FDG-PET) indicates
the regional cerebral metabolic rate of glucose, making it
possible to evaluate the metabolic activity of the tissues. Other
tracers, such as 11C-PiB and 18F-THK, are also widely used
in AD diagnosis (Jack et al., 2008b; Harada et al., 2013),
as they are sensitive to the pathology of AD as well. By
analyzing these medical images, one can obtain important
references to assist the diagnosis and prediction of AD
(Desikan et al., 2009).

This work aims at distinguishing AD or potential AD patients
from cognitively unimpaired (labeled as CN) subjects accurately
and automatically using medical images of the hippocampal
area and recent techniques in deep learning, as it facilitates a
fast-preclinical diagnosis. The method is further extended for
the classification between sMCI and pMCI so that an early
diagnosis of dementia would be possible. Data of two modalities
were used. i.e., the T1-MRI and 18F-FDG-PET, as they provide
complementary information.

Numerous studies have been published on diagnosing AD
by utilizing these two methods. Using T1-MRI, Sorensen et al.
segmented the brains and extracted features of thickness and
volumetry in the selected regions of interest (ROIs) (Sorensen
et al., 2017). A linear discriminant analysis (LDA) was used
to classify AD, MCI, and CN. David et al. implemented the
kernel metric learning method in the classification (Cárdenas-
Peña et al., 2017). Another popular machine learning method is
the random forest. Lebedeva et al. (2017) extracted the structural
features of MRI and used mini-mental state examination
(MMSE) as a cognitive measure. Ardekani et al. (2017)
took the hippocampal volumetric integrity of MRI and
neuropsychological scores as the selected features. Both studies
used the random forest. As for 18F-FDG-PET, Silveira and
Marques (2010) proposed a boosting learning method that
used a mixture of simple classifiers to perform voxel-wise
feature selections. Cabral and Silveira (2013) used favorite class
ensembles to form ensembled support vector machine (SVM)
and random forest.

In addition to the single modality classifications, taking both
T1-MRI and 18F-FDG-PET into consideration is also a major
concern for research on AD diagnosis. Gray et al. (2013) took

regional MRI volumes, PET intensities, cerebrospinal fluid (CSF)
biomarkers and genetic information as features and implemented
random-forest based classification. Additionally, Zhang et al.
(2011) conducted a classification based on MRI, PET, and
CSF biomarkers . Moreover, other imaging modalities or PET
tracers can be considered, as Rondina et al. (2018) used T1-
MRI, 18F-FDG-PET and rCBF-SPECT as the imaging modalities
while Wang et al. (2016) used 18F-FDG and 18F-florbetapir
as tracers of PET.

The studies mentioned above mostly follow three basic
steps in the diagnosis algorithms, namely segmentation, feature
extraction and classification. During segmentation, data are
manually or automatically partitioned into multiple segments
based on anatomy or physiology. In this way, the ROIs are
well-defined, making it possible to extract features from them.
Finally, these features will be fed to the classification step so
that the classifiers are able to learn useful diagnostic information
and propose predictions for given test subjects. Among them,
segmentation plays an important role as it is used to measure
the structural metrics in the feature extraction step. However, it
is hard to obtain a segmentation automatically and accurately,
which leads to a low efficiency. As a result, we proposed an
end-to-end diagnosis without segmentation in the following
work. What is more, though highly reliable and explainable,
these steps could be integrated weakly, as different platforms
are used in different steps of these algorithms. The above
considerations lead to our attempt to use a neural network
in AD diagnosis.

Benefited by the rapid development of computer science and
the accumulation of clinical data, deep learning has become
a popular and useful method in the field of medical imaging
recently. The general applications of deep learning in medical
imaging are mainly feature extraction, image classification,
object detection, segmentation and registration (Litjens et al.,
2017). Among the deep learning networks, convolutional neural
networks (CNNs) are common choices. Hosseini-Asl et al. (2016)
built a 3D-CNN based on a 3D convolutional auto-encoder,
which takes functional MRI (fMRI) images as input and gives
the prediction for the AD vs. MCI vs. CN task, while Sarraf and
Tofighi (2016) used a CNN structured like LeNet-5 to classify
AD from CN based on fMRI. Liu et al. (2018) conducted a
T1-MRI and FDG-PET based cascaded CNN, which utilized a
3D CNN to extract features and adopted another 2D CNN to
combine multi-modality features for task-specific classification.
Previous studies showed a promising potential of AD diagnosis,
and thus we propose to use a deep learning framework in
our work to complete the feature extraction and classification
steps simultaneously.

In this work, we propose a multi-modality AD classifier. It
takes both MR and PET images of the hippocampal area as the
inputs, and provides predictions in the CN vs. AD task, the CN vs.
pMCI task and the sMCI vs. pMCI task. The main contributions
of our work are listed below:

(1) We show that segmentation of the key substructures,
such as hippocampi, is not a prerequisite in CNN-
based classification.
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(2) We show that the high-resolution information in the
hippocampal area can make up the gap between ROIs of
different sizes.

(3) We construct a 3D VGG-variant CNN to implement a
single modality AD diagnosis.

(4) We introduce a new framework to combine
complementary information from multiple modalities in
our proposed network, for the classification tasks of CN vs.
AD, CN vs. pMCI and sMCI vs. pMCI.

MATERIALS AND METHODS

Studies of biomarkers for AD diagnosis are of great interest in
the research fields. Among these bio markers, the shrinkage of
the hippocampi is the best-established MRI biomarker to stage
the progression of AD (Jack et al., 2011a), and by now the only
MRI biomarker qualified for the enrichment of clinical trials (Hill
et al., 2014). Therefore, the hippocampi are the most studied
organs for MRI based AD diagnosis, and the hippocampal area
is chosen to be the ROI of MRI in this work. As for PET images,
published studies indicated that AD may cause the decline of
[18]F-FDG uptake in both hippocampi and cortices (Mosconi
et al., 2006; Mosconi et al., 2008; Jack et al., 2011b). Hence, when
dealing with PET images, we tried different ROIs, i.e., containing
only hippocampi, and containing both hippocampi and cortices.

Image Acquisition
Data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1.
The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD).
In this work, we used the T1-MRI and the FDG-PET from the
baseline and follow-up visit in ADNI, as these two modalities
have the greatest number of images. The details about the data
acquisition are interpreted on the ADNI website (Jack et al.,
2008a). We generated two datasets in this work. The Segmented
dataset, containing MR images and corresponding segmentation
results, was chosen to verify the effect of the segmentation, and
the Paired dataset, containing MR and PET images, to verify the
effect of multi-modality images.

In the Segmented dataset, we picked 2861 T1-MR images,
including AD and cognitively unimpaired subjects. Basic
information of the Segmented dataset is summarized in
Table 1. All images in the Segmented dataset were segmented
using multi-atlas label propagation with the expectation-
maximization (MALP-EM) framework2 (Ledig et al., 2015).
MALP-EM is a framework for the fully automatic segmentation
of MR brain images. The approach is based on multi-atlas
label fusion and intensity-based label refinement, using an

1http://adni.loni.usc.edu
2https://biomedia.doc.ic.ac.uk/software/malp-em/

TABLE 1 | Summary of the studied subjects from Segmented dataset.

Diagnosis Number Age Gender(M/F) MMSE

AD 1355 76.13 ± 7.50 772/583 21.89 ± 4.33

CN 1506 76.04 ± 5.81 776/730 29.04 ± 1.20

TABLE 2 | Summary of the studied subjects from the Paired dataset.

Diagnosis Number Age Gender(M/F) MMSE

AD 647 76.36 ± 7.21 361/287 24.84 ± 2.65

pMCI 326 75.00 ± 7.06 212/114 27.22 ± 1.74

sMCI 441 74.37 ± 7.40 297/144 28.15 ± 1.55

CN 731 76.16 ± 6.02 421/310 28.99 ± 1.20

expectation-maximization (EM) algorithm. Through the MALP-
EM framework, we obtained 138 anatomical regions with fixed
boundaries, including the hippocampi of interest.

As for the Paired dataset, we used the following steps to
generate it. For the same subject, we paired the MRI with the PET
with (a) closest acquisition dates, (b) within 1 year since the MRI
scan, and (c) at the time of the scan with the same diagnosis as the
MRI. Among the acquired data, the MCI subjects were classified
into pMCI and sMCI according to the DSM-5 criteria, that is,
MCI should be defined as pMCI if it develops into AD within
3 years, or be defined as sMCI if it does not. Subjects without
follow-up data for more than 3 years were ignored. Finally, we
acquired 647 AD, 767 MCI (326 pMCI and 441 sMCI) and 731
cognitively unimpaired subjects over 1211 ADNI participants. All
the information for these subjects is summarized in Table 2.

Data Processing
The pre-processing of images was implemented by zxhtools3

(Zhuang et al., 2011). In this work, MR images were re-
oriented and resampled to a resolution of 221 × 257 × 221 and
with a 1 mm isotropic spacing using zxhreg and zxhtransform
from zxhtools. Furthermore, in the Paired dataset, each PET
image was rigid-registered to a respective MR image for the
proceeding process.

The hippocampal area was selected to be the region of interest
(ROI) because of its great significance in AD diagnosis. In
addition, due to limited computation ability, we cropped the
ROI centered in the hippocampi. For the Segmented dataset,
which includes the segmentation results, we directly calculated
the center of the hippocampi as it has been shown in the
segmentation results. For the Paired dataset, we acquired the
central points of the MR images as follows. First, we randomly
chose one MR image from the Paired dataset as a template.
Then we registered the images from the Segmented dataset
to the template image by affine-registration, thus calculating
the average indices of the center in the template image. After
that, we registered the template image to other MR images
in the Paired dataset using affine-transformation and used the
corresponding affine matrix to determine the center for each
MR image. Finally, each PET image was rigid-registered to a
respective MR image for the identification of the hippocampi’s

3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/zxhproj/
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center. After the registration, PET images were transformed into
a uniform isotropic spacing of 1 mm.

After the centers of the ROIs were located, we dilated and
cropped the ROIs to a region of size 96 × 96 × 48 in voxels
from the center of hippocampi for MR images (see the red
rectangles in Figures 1A–C). In the experiment on the Segmented
dataset, we processed the cropped ROI and corresponding labels
in three different ways. Three slightly different groups were
obtained: ImageOnly, MaskedImage and Mask. The ImageOnly
group contains MR raw images and maintains all the imaging
information of the hippocampi and surrounding areas. The
MaskedImage group is made up of MR images masked by binary
labels, it considers both the original images and the segmentation
results for the hippocampi as the inputs. The Mask group is made
up of binary hippocampi segmentation labels, only indicating
information about the shape and volume of the hippocampi.

By comparing the classification performance using these three
datasets, it can be judged whether the segmentation results
have an important effect on AD diagnosis. The information
for the three groups from the Segmented dataset is shown in
Figures 1D–F. When it comes to the Paired dataset, we used
two different methods to generate the patches of PET images.
The group generated using the first method is called the Small
Reception Field (SmallRF) group, which has the same reception
field as the ROI of MR images with 1 mm isotropic spacing.
The group generated using the second method is called the Big
Reception Field (BigRF) group, which has the same orientation
and ROI center but has a 2 mm isotropic spacing for each
dimension, thus having a larger reception field but a lower spatial
resolution. The information for the two groups from the Paired
dataset is shown in Figures 1H,I as a sample of the original PET
image is shown in Figure 1G.

FIGURE 1 | Demonstrations of the datasets and ROIs. (A–C) demonstrate the selected ROI of MR images. (A) is an axial slice, (B) is a sagittal slice, and (C) is a
coronal slice. (D–F) are generated from the same MR image to demonstrate the Mask (D), MaskedImage (E), and ImageOnly (F) groups. (D) is a mask image of the
segmentation of hippocampi. (E) is a image masked by hippocampal segmentation. (F) is a cropped image. (G–I) are generated from the same PET image to
demonstrate the images in the SmallRF (H) and BigRF (I) groups, while (G) is the corresponding PET image. Among them, (H) is cropped from (G), and (I) is
downsampled from (G).
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After the data processing, the datasets were randomly split
into training sets, validation sets, and testing sets according to
the patient IDs to ensure that all subjects of the same patient
only appear in one set. Finally, 70% of a dataset was used as the
training set, 10% as the validation set, and 20% as the testing
set by random sampling. Details of these subsets were shown in
Supplementary Tables S1 and S2.

Methodology
Convolutional neural network (LeCun et al., 1995) is a deep
feedforward neural network composed of multi-layer artificial
neurons, with excellent performance in large-scale image
processing. Unlike traditional methods which use manually
extracted features of radiological images, CNNs are used to
learn general features automatically. CNNs are trained with a
back propagation algorithm while it usually consists of multiple
convolutional layers, pooling layers and fully connected layers
and connects to the output units through fully connected layers
or other kinds of layers. Compared to other deep feedforward
networks, CNNs have fewer connections and a smaller number of
parameters, due to the sharing of the convolution kernel among
pixels and are therefore easier to train and more popular.

With CNNs prospering in the field of computer vision, a
number of attempts have been made to improve the original
network structure to achieve better accuracy. VGG (Simonyan
and Zisserman, 2014) is a neural network based on AlexNet
(Krizhevsky et al., 2012) and it achieved a 7.3% error rate in
the 2014 ILSVRC competition (Russakovsky et al., 2015) as one
of the Top-5 winners. VGGs further deepen the network based
on AlexNet by adding more convolutional layers and pooling
layers. Different from traditional CNNs, VGGs evaluate very deep
convolutional networks for large-scale image classification, which
come up with significantly more accurate CNN architectures and
can achieve excellent performance even when used as a part of
relatively simple pipelines. In this work, we built our network
with reference to the structure of VGG.

EXPERIMENTS

In the Section “Data Type Analysis”, we determined the proper
types of data and ROIs through two experiments. In the Section
“Multi-Modality AD Classifier”, we constructed a set of VGG-like
multi-modality AD classifiers, which considers both T1-MRI and
FDG-PET data as inputs and provides predictions. In the Section
“Classification of sMCI vs. pMCI and CN vs. pMCI Tasks”, we
trained and tested our networks with the pMCI and sMCI data.
Finally, in the Section “Comparison With Other Methods” we
compared our proposed method with state-of-the-art methods.

Implementation Details
All the networks mentioned above were programmed based on
TensorFlow (Abadi et al., 2016). Training procedures of the
networks were conducted on a personal computer with a Nvidia
GTX1080Ti GPU. During the training, batch normalization
(Ioffe and Szegedy, 2015) was deployed in the convolutional
layers and dropout (Hinton et al., 2015) was deployed in fully
connected layers to avoid overfitting. To accelerate the training

process and to avoid local minima, we used an ADAM optimizer
(Kingma and Ba, 2014) to train. The batch size was set to 16
when we trained single modality networks and to eight when we
trained multi-modality networks. The number of epochs was set
to 150, though the loss would generally converge after 30 epochs.
Each training epoch took several minutes. During training, the
parameters of the networks were saved every 10 epochs. The
resulting models were tested using the validation data set. The
accuracies and receiver operating characteristic (ROC) curves
of the classification on the validation data were then calculated,
and the model with the best accuracy was chosen to be the
final classifier.

Data Type Analysis
In order to determine the proper data type for network
training, we designed two experiments and evaluated the
classification performances of models when they were fed with
different data types.

(1) Testing whether segmentation is needed in the MR images.
We used three different groups from the Segmented
Dataset, with or without segmentation, to show that
segmentation is not necessary for a CNN.

(2) Finding a proper PET ROI. Different spacings for PET
images, i.e., the SmallRF and the BigRF groups from
the Paired Dataset, were tested and we found that the
classification model with the SmallRF group is similar to
the model with the BigRF group in performance.

All the models mentioned above were trained in the same
network, as shown in Figure 2. The input resolution is
96 × 96 × 48 in voxels, and the network contains eight
convolutional layers, five max-pooling layers, and three fully
connected layers. The output was given through a softmax layer.

The Influence of Segmentation
As mentioned above, segmentation plays an important role in
traditional classification methods. However, segmentation is also
known to be time-consuming. Additionally, CNN can extract
useful features directly from raw images, as CNNs show a strong
ability to locate key points in object detection tasks for natural
images (Ren et al., 2015; He et al., 2017).

To verify the effect of segmentation, we segmented the AD
and cognitively unimpaired subjects of T1-MR images with
the MALP-EM algorithm (Ledig et al., 2015) and obtained the
Segmented datasets, including 2861 subjects and containing
both MR images and the corresponding segmentation. In our
assumption, segmentation can indicate the shapes, volumes,
textures and relative locations of hippocampal areas. Therefore,
the data obtained from the subjects formed three different groups,
as shown in Figures 1D–F. The ImageOnly group contains
raw MR images only; the Mask group is made up of binary
hippocampal segmentation labels and the MaskedImage group is
made up of MR images masked by the binary labels.

For each model trained from these groups, accuracy and
AUC were evaluated, as listed in Table 3. Among all the three
models, the model trained by the Mask group provided a
favorable prediction, though inferior to those trained by the
ImageOnly and the MaskedImage group. The results indicate
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FIGURE 2 | The architecture of the single modality classifier.

TABLE 3 | Summary of the models trained from the Mask, MaskedImage, and
ImageOnly groups for CN vs. AD task.

MRI ROI ACC1 SEN SPE AUC

Mask 76.57% 83.87% 71.51% 84.24%

Maskedlmage 79.21% 76.61% 81.01% 84.63%

ImageOnly 84.82% 87.90% 82.68% 87.47%

The Segmented dataset was used. 1ACC, SEN, SPE, AUC denotes accuracy,
sensitivity, specificity and area under curve, respectively. When testing, the numbers
of true positive (TP), true negative (TN), false negative (FP), and false negative (FN)
subjects were counted, as ACC = (TP+TN)/(TP+TN+FP+FN), SEN = TP/(TP+FN),
SPE = TN/(TN+FP). AUC is obtained through calculating the area under the
receiver operating characteristic (ROC) curve. For all four metrics, the values are
between 0 and 100%, the higher, the better.

that segmentation results do contain information needed for the
classification, however, it is not necessary for the classification
task since CNN is able to learn useful features without labeling
the voxels. In addition, features from the region out of the
hippocampi also provide further information to separate AD
patients from normal ones.

ROI Determination for PET Images
Due to the limitation of GPU RAM and its computational ability,
it was difficult to consider the entire image as the network
input, as our proposed network only considered a region of
96 × 96 × 48 in voxels, which was still 2.91 times the input size
of the original VGG (224 × 224 pixels × 3 channels). Hence, the
selection of the ROI was of great importance, as only the features
in the ROI were considered. As for the MR images, the selection
of the ROI was of little doubt, because the hippocampal area was
long enough to be the main concern of AD research (Jack et al.,
2011b; Hill et al., 2014). However, the ROIs of PET images varied,

as studies also attached great significance to metabolic changes in
cortices, e.g., temporal lobes (Mosconi et al., 2006, 2008).

To verify the effects of cortices on the classification, we
generated two groups from all PET images from the Paired
dataset, the SmallRF and the BigRF groups, as shown in
Figures 1H,I. The SmallRF group uses exactly the same reception
field with the MRI ROI; the images in the BigRF group are eight
times the volume of the images in the SmallRF group but have a
lower spatial resolution.

Two models were trained using these two groups, and
their performance was evaluated by some metrics, as listed
in Table 4. The result showed that the two models behaved
similarly. This is because although the SmallRF group has a
higher spatial resolution, the BigRF group contains more features.
Furthermore, in terms of multi-modality classification tasks, the
SmallRF group might be better, because PET images in the
SmallRF group were voxel-wisely aligned with paired MR images,
which could help better locate the spatial features. Therefore, we
chose the same ROI for both MR and PET images in the following
experiments (see the red rectangles in Figures 1A–C).

Multi-Modality AD Classifier
The information a classifier can obtain, by using a single
modality, is limited, as one medical imaging method can only
profile one or several aspects of AD pathological changes, which
is far from being complete. For example, T1-MR images provide a
high-resolution brain structure but give little information about
the functional information of the brain. Meanwhile, FDG-PET
images are fuzzy but are better in revealing the metabolic activity
of glucose in the brain. In order to take as much information of
the brain as possible, we introduced a classification framework to
integrate multi-modality information.
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TABLE 4 | Summary of the models trained from the SmallRF and the BigRF
groups for CN vs. AD task.

PET ROI ACC SEN SPE AUC

SmallRF PET 89.11% 90.24% 87.77% 92.69%

BigRF PET 89.44% 87.20% 92.09% 90.35%

The Paired dataset was used.

To prepare the dataset, we first matched MR with PET images
and transformed them into same world coordinates. After that,
paired images of MR and PET were aligned by rigid registration
to ensure that the voxels of the same indices in the paired images
represent the same part of the brain. After the paired images were
cropped with reference to the center point of MR images, the
Paired dataset was obtained.

To implement the multi-modality classifier, we proposed
two different network architectures, as shown in Figure 3. In
Figure 3A, MR and PET images were used as two parallel

channels, in which paired images were stacked into 4D images.
In these 4D images, the first three dimensions represent the three
spatial dimensions, and the fourth one represents the channels.
In Figure 3B, MR and PET images have separate entrances, as
they are convolved, respectively, in two separate VGG-11s, and
the extracted features are concatenated. This network was trained
in two strategies, denoted by B1 and B2. B1 was to train the model
with weights shared for the convolutional layers. Meanwhile, B2
usedwas to update the weights of two VGG-11s separately.

We trained five models based on the Paired dataset, that is,
two single modality models (for MRI and PET respectively), and
three multi-modality models (A, B1, and B2). The results are
shown in Table 5 and Figure 4A. As shown in Table 5, multi-
modality classifiers had better performance than single modality
classifiers. Additionally, among the three multi-modality models,
the model trained with strategy B1 had the highest accuracy and
sensitivity, while the model trained with strategy B2 had the
highest specificity and AUC.

FIGURE 3 | The architecture of the multi-modality network (A,B).
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TABLE 5 | Summary of the models trained from single modality protocols and
three multi-modality protocols for CN vs. AD task.

Method ACC SEN SPE AUC

MRI 81.19% 79.27% 83.45% 83.67%

PET 89.11% 90.24% 87.77% 92.69%

A 87.79% 85.98% 89.93% 89.42%

B1 90.10% 90.85% 89.21% 90.84%

B2 89.44% 89.02% 89.93% 92.01%

The Paired dataset was used. The best results were indicated in bold.

Classification of sMCI vs. pMCI and CN
vs. pMCI Tasks
Simply classifying AD patients from normal controls is relatively
easy but of little significance, as the development of AD can
be observed easily by the behaviors of the patients. In addition,
there are a lot of alternative indicators in clinical diagnosis.
Therefore, the prediction of AD seems to be more meaningful,
as one of the main concerns is telling pMCI from sMCI and
normal individuals. As pMCI would progress to AD while the
other two would not, identifying pMCI could give a prediction
of the development of MCI, and thus have high reference value
and clinical meaning.

According to Lin et al. (2018), the models that were trained
by the CN vs. AD training set performed better than the models

trained by the sMCI vs. pMCI training set in the sMCI vs. pMCI
task. Therefore, we trained models with the CN vs. AD training
set and tested the models with the CN vs. pMCI testing set and
the sMCI vs. pMCI testing set, with the results shown in Table 6
and Figures 4B,C. Though B1 performed slightly better in CN
vs. AD task, B2 was superior in CN vs. pMCI and sMCI vs.
pMCI tasks. These results indicate that features of MRI and PET
tend to be more consistent when dementia is highly developed,
since convolutional kernels of model B1 shared the weight, while
those of B2 did not.

Comparison With Other Methods
In this part, we compared our method with those that were used
in previous literature. We first compared our method with state-
of-the-art research using 3D CNN-based multi-modality models
as well (Lin et al., 2018). Liu et al. (2015) proposed a multi-
modality cascaded CNN. They used the patch-based information
of a whole brain to train or test their models and they integrated
the information from the two modalities by concatenating the
feature maps(Liu et al., 2015). Table 7 shows the results of the
method in comparison to our work. Note that our models used
the data from multiple facilities and that our models only used
the hippocampal area as the input. These would influence the
behavior of our method.

Moreover, Lin et al. (2018), chose to reduce the amount
of input by slicing the data (in different directions) instead of

FIGURE 4 | ROC curves of different models. (A–C) show the ROC curves for three tasks using different models. (A) shows the ROC curves for CN vs. AD task using
model trained from protocol A, B1, and B2, while (B) shows the ROC curves for CN vs. pMCI task, (C) shows the ROC curves for sMCI vs. pMCI task, respectively.
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TABLE 6 | Summary of the models trained from three multi-modality protocols for CN vs. AD.

Method A B1 B2

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

CN/AD 87.79% 85.98% 89.93% 89.42% 90.10% 90.85% 89.21% 90.84% 89.44% 89.02% 89.93% 92.01%

CN/pMCI 70.49% 73.17% 65.00% 71.63% 79.10% 87.80% 61.25% 76.84% 82.38% 87.20% 72.50% 81.64%

sMCI/pMCI 65.28% 65.63% 65.00% 65.81% 65.28% 54.69% 73.75% 66.82% 72.22% 73.44% 71.25% 77.49%

The best results were indicated in bold.

TABLE 7 | Comparison of our proposed method and Liu’s multi-modality method.

Method Subjects Modality CN vs. AD CN vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Liu et al., 2018 93 AD + 204 MCI + 100 CN MRI 84.97% 82.65% 87.37% 90.63% 77.84% 76.81% 78.59% 82.72%

PET 88.08% 90.70% 85.98% 94.51% 78.41% 77.94% 78.70% 85.96%

Both 93.26% 92.55% 93.94% 95.68% 82.95% 81.08% 84.31% 88.43%

Proposed method 465 AD + 567 MCI + 480 CN MRI 81.19% 79.27% 83.45% 83.67% – – – –

PET 89.11% 90.24% 87.77% 92.69% – – – –

Both 90.10%1 90.85% 89.21% 90.84% 82.38%2 87.20% 72.50% 81.64%

Both – – – – 87.46%3 90.73% 80.61% 87.61%

1Using B1 protocol, the CN vs. AD training set and the CN vs. AD testing set. 2Using B2 protocol, the CN vs. pMCI training set and the CN vs. pMCI testing set. 3Using
B1 protocol, the CN vs. AD training but the CN vs. pMCI testing set. See Table 9 for reference. The best results were indicated in bold.

TABLE 8 | Comparison of our proposed method and published AD diagnosis methods.

Method Subjects CN vs. AD sMCI vs. pMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Lin et al., 2018 93 AD + 204 MCI + 100 CN 88.79% – – – 73.04% – – –

Tong et al., 2017 37 AD + 75 MCI + 35 CN 88.6% – – 94.8% – – – –

Zu et al., 2016 51 AD + 99MCI + 52 CN 95.95% – – – 69.78% – – –

Liu et al., 2015 85 AD + 168 MCI + 77 CN 91.40% 92.32% 90.42% – – – – –

Jie et al., 2015 51 AD + 99 MCI + 52 CN 95.03% – – – 68.94% – – –

Li et al., 2014 93 AD + 204 MCI + 101 CN 92.87% – – 89.82% 72.44% – – 70.14%

Proposed method 465 AD + 567 MCI + 480 CN 90.10%1 90.85% 89.21% 90.84% 72.22%2 73.44% 71.25% 77.49%

– – – – 76.90%3 68.15% 83.93% 79.61%

1Using B1 protocol, the CN vs. AD training set and the CN vs. AD testing set. 2Using B2 protocol, the CN vs. sMCI training set and the CN vs. sMCI testing set. 3Using
B2 protocol, the CN vs. AD training but the CN vs. sMCI testing set. See Table 9 for reference. The best results were indicated in bold.

TABLE 9 | Comparison of the performance of models trained from the CN vs. AD training set and the tasks’ own training set.

Task Training Set Testing Set B1 B2

ACC SEN SPE AUC ACC SEN SPE AUC

CN/pMCI CN/AD CN/pMCI 87.46% 90.73% 80.61% 87.61% 87.13% 87.80% 85.71% 90.31%

CN/pMCI CN/pMCI CN/pMCI 79.10% 87.80% 61.25% 76.84% 82.38% 87.20% 72.50% 81.64%

sMCI/pMCI CN/AD sMCI/pMCI 73.60% 66.67% 79.17% 75.59% 76.90% 68.15% 83.93% 79.61%

sMCI/pMCI sMCI/pMCI sMCI/pMCI 65.28% 54.69% 73.75% 66.82% 72.22% 73.44% 71.25% 77.49%

The Paired dataset was used.

cropping the hippocampi out as we did. Tong et al. (2017)
used non-linear graph fusion to join the features of different
modalities. In Zu et al.’s (2016) study, the feature selection from
multiple modalities were treated as different learning tasks. Liu

et al. (2015) used stacked autoencoders (SAE) with a masking
training strategy. Jie et al. (2015) used a manifold regularized
multitask feature learning method to preserve both the relations
among modalities of data and the distribution in each modality.
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Li et al. (2014) used a deep learning framework to predict the
missing data. Table 8 compares the previous multi-modality
models with our proposed models. Among all the results listed
below, our results are favorable in the CN vs. AD task and are the
best in the sMCI vs. pMCI task.

DISCUSSION

In this work, we proposed a VGG-like framework, with several
instances, to implement a T1-MRI and FDG-PET based multi-
modality AD diagnosing system. The ROI of MRI was selected
to be the hippocampal area, as it is the most frequently studied
and is thought to be of the highest clinical value. Through
the experiments, we proved that segmentation is not necessary
for a CNN-based diagnosing system, which is different from
the traditional machine learning based methods. However,
registration is still needed, as the images we used were taken from
different facilities and had different spacings and orientations.
Although models obtained from the SmallRF and BigRF groups
had similar performances, the ROI of PET was chosen to be
the same as the MRI’s, because the ROI of SmallRF was voxel-
wisely aligned with the ROI of the paired MRI. In short, only
hippocampal areas were used as ROIs in our proposed methods,
which is the main difference between our study and previous
studies. Thus, we constructed a deeper neural network and fed
it with medical images of higher resolution, as we supposed that
the hippocampal area itself can serve as a favorable reference
in AD diagnosis.

”Since the ROI was selected, we introduced a multi-modality
method to the classifier. Two networks and three types of
models were proposed as listed in Table 6. Among these three
types of models, the model trained using strategy B1, which
means that the MR and PET images were separately input for
the convolutional layers, but with their convolutional kernels
shared, performed the best in the CN vs. AD task. One possible
explanation is that MR and PET images have some common
features, and sharing weight helped the model to extract these
features during the training process. Furthermore, we used
proposed networks to train CN vs. pMCI and sMCI vs. pMCI
classifiers, both of them indicated the potential of preclinical
diagnosis using our proposed methods.

We also followed Lin et al.’s (2018) lead and used the model
trained by CN vs. AD subjects to distinguish sMCI and pMCI.
The results were better than that of the model trained by sMCI
and pMCI themselves, as shown in Table 9. This is reasonable
because the features of sMCI and pMCI are close to each other
in the feature space and are difficult to differentiate, while those
of CN and AD are widely spread making the classification a lot
easier. The same conclusion can be obtained by testing the CN vs.
AD model on the CN vs. pMCI dataset. Specifically, when the CN
vs. AD model was used, the accuracy reached 76.90% for sMCI vs.
pMCI and 87.46% for CN vs. pMCI, which was about 5% higher
than the accuracy obtained using their own models. These results
are also better than those of Lin et al.’s (2018).

As for the future work, we only used two modalities (T1-MRI
and FDG-PET) as inputs for this work. However, new modalities

can easily be implemented based on the proposed networks. The
interested new imaging modalities include T2-MRI (Rombouts
et al., 2005), 11C-PIB-PET (Zhang et al., 2014), and other
PET agents such as amyloid protein imaging (Glenner and
Wong, 1984). Also, the features extracted by CNN are hard for
human beings to comprehend, while some methods like attention
mechanisms (Jetley et al., 2018) are able to visualize and analyze
the activation maps of the model, in which future work could be
done to improve the classification performance and to discover
new medical imaging biomarkers.

CONCLUSION

To conclude, we have proposed a multi-modality CNN-based
classifier for AD diagnosis and prognosis. VGG backbone,
which is deeper than most similar studies, has been used
and explored. The accuracy of models reached 90.10% for
the CN vs. AD task, 87.46% for the CN vs. pMCI task
and 76.90% for the sMCI vs. pMCI task. Our work also
indicates that the hippocampal area with no segmentation can be
chosen as the input.
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