
ORIGINAL RESEARCH
published: 24 May 2019

doi: 10.3389/fnins.2019.00525

Frontiers in Neuroscience | www.frontiersin.org 1 May 2019 | Volume 13 | Article 525

Edited by:

Arindam Basu,

Nanyang Technological University,

Singapore

Reviewed by:

Timothy P. Lillicrap,

Google, United States

Hesham Mostafa,

University of California, San Diego,

United States

*Correspondence:

Brian Crafton

brian.crafton@gatech.edu

Arijit Raychowdhury

arijit.raychowdhury@ece.gatech.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 29 January 2019

Accepted: 07 May 2019

Published: 24 May 2019

Citation:

Crafton B, Parihar A, Gebhardt E and

Raychowdhury A (2019) Direct

Feedback Alignment With Sparse

Connections for Local Learning.

Front. Neurosci. 13:525.

doi: 10.3389/fnins.2019.00525

Direct Feedback Alignment With
Sparse Connections for Local
Learning
Brian Crafton*, Abhinav Parihar, Evan Gebhardt and Arijit Raychowdhury*

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Recent advances in deep neural networks (DNNs) owe their success to training

algorithms that use backpropagation and gradient-descent. Backpropagation, while

highly effective on von Neumann architectures, becomes inefficient when scaling to

large networks. Commonly referred to as the weight transport problem, each neuron’s

dependence on the weights and errors located deeper in the network require exhaustive

data movement which presents a key problem in enhancing the performance and

energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible

alternative to backpropagation drawing from advances in feedback alignment algorithms

in which the error computation at a single synapse reduces to the product of three

scalar values. Using a sparse feedback matrix, we show that a neuron needs only

a fraction of the information previously used by the feedback alignment algorithms.

Consequently, memory and compute can be partitioned and distributed whichever way

produces the most efficient forward pass so long as a single error can be delivered to

each neuron. We evaluate our algorithm using standard datasets, including ImageNet,

to address the concern of scaling to challenging problems. Our results show orders

of magnitude improvement in data movement and 2× improvement in multiply-and-

accumulate operations over backpropagation. Like previous work, we observe that any

variant of feedback alignment suffers significant losses in classification accuracy on deep

convolutional neural networks. By transferring trained convolutional layers and training

the fully connected layers using direct feedback alignment, we demonstrate that direct

feedback alignment can obtain results competitive with backpropagation. Furthermore,

we observe that using an extremely sparse feedback matrix, rather than a dense one,

results in a small accuracy drop while yielding hardware advantages. All the code and

results are available under https://github.com/bcrafton/ssdfa.

Keywords: bio-plausible algorithms, feedback alignment, local learning, backpropagation, sparse neural

networks, hardware acceleration

1. INTRODUCTION

The demise of Dennard scaling (Dennard et al., 1974) and decline of Moore’s Law (Moore, 1965)
have exposed the fundamental scaling limitations of the von Neumann models of computing. This
transition is accompanied by the realization that in a fast evolving, socially interconnected world,
we are observing a seismic shift in the amount of unstructured data that need to be processed in

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00525
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00525&domain=pdf&date_stamp=2019-05-24
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:brian.crafton@gatech.edu
mailto:arijit.raychowdhury@ece.gatech.edu
https://doi.org/10.3389/fnins.2019.00525
https://www.frontiersin.org/articles/10.3389/fnins.2019.00525/full
http://loop.frontiersin.org/people/675147/overview
http://loop.frontiersin.org/people/471208/overview
http://loop.frontiersin.org/people/737428/overview
http://loop.frontiersin.org/people/513572/overview
https://github.com/bcrafton/ssdfa

Crafton et al. Sparse Feedback Alignment

real-time (Najafabadi et al., 2015) which has heralded the third
wave of Artificial Intelligence and the exponential growth of
Machine Learning in data-analytics, real-time control, computer
vision, robotics, and so on. We expect that intelligent systems of
the future will be limited by the energy growth of data movement
rather than compute. Therefore, we need fundamentally new
approaches to sustain the exponential growth in performance
beyond the end of the current road-map. In particular, we observe
that new computing models that deal with “data analytics” have
compute and storage interleaved in a fine grained manner—
not separated as in the von Neumann world. Moving forward,
computing technology will heavily penalize separation of data
and compute and we need to marry them in better ways to handle
emergent applications.

The idea of computing locally on data finds its inspiration
from the human brain where local processing and updates is
preferred to global movement of data. Hence, neuromorphic
computing seeks to fundamentally improve the power efficiency
of cognitive systems by bringing ideas inspired from biology
to electronic hardware, while maintaining the high accuracy
and performance that statistical methods have provided. In
particular, hardware implementations of deep neural networks
(DNNs) and their many variants, either in complementary
metal oxide semiconductor (CMOS) (Chen et al., 2016) or
emerging technologies (Li et al., 2018), rely on arrays of spatial
processors where near-memory (Merolla et al., 2014; Chen et al.,
2016; Bankman et al., 2019) or in-memory (Chi et al., 2016)
logic computes inference from layers of neurons connected
via dense or sparse synaptic connections. This is schematically
shown in Figure 1. As opposed to a von Neumann architecture
(Figure 1A) where all the synaptic weights for a particular layer
must be loaded in the memory to compute the activations of the
successive layers, in a distributed implementation (Figure 1B)
the weights and logic reside locally and avoid the memory
bottleneck. The data movement is minimized, with each neuron
computing its activation and sending that information to the
next layer. In spite of the success of such spatial processing in
the inference mode, such an architecture fails to deliver high
efficiency when functions that require global information or
weights of multiple layers are implemented. This is particularly
evident during the training of DNNs where back-propagation
(BP) and stochastic gradient-descent (SGD) have found wide-
spread adoption (LeCun et al., 2015). In BP with SGD, the
transpose of the weights of the deeper layers in a network are
needed to compute error gradients and the weight updates of the
shallower layers, thus requiring global movement of data. This
problem is commonly referred to as the weight transport problem
(Grossberg, 1987; Lillicrap et al., 2016). As the networks become
deeper to keep up with the complexity of the applications, the
weight transport problem becomes exacerbated.

While neural networks require many expensive multiply-and-
accumulate (MAC) operations, the cost of data movement is
higher (Chen et al., 2016). To make the problem worse, for
every MAC operation multiple reads and potentially a write are
required. Furthermore, the cost of loading data from off chip
DRAM is orders of magnitude more expensive than loading
from spatially local on chip memories. Kwon et al. (2018) show

through simulation the breakdown of energy consumption in
the different layers of a CNN. The majority of the energy
consumption comes from memory reads and writes, rather
than MAC operations. The strategy these accelerators employ
is data reuse. Because the cost of data movement is so high, it
is important that each word of data is reused as many times
as possible before being flushed from the cache. Optimizing
for data reuse, these accelerators can achieve several times
better efficiency over data flows that do not use local reuse.
Neuromorphic engineering is another research vector which
attempts to minimize data movement by borrowing learning
rules from the human brain. For example, in spiking neural
networks (SNNs), spike timing dependent plasticity (STDP)
has gained popularity because of its local update rule. STDP
uses local information, available at a synapse, and has been
shown to perform well in unsupervised learning (Diehl and
Cook, 2015) and supervised learning using Feedback Alignment
(Neftci et al., 2017; Neftci, 2018). Davies et al. (2018) present
a new SNN implementation with tools to perform supervised
learning. Rather than seeking to optimize current neural network
architectures using data reuse, Davies et al. (2018) uses biological
constraints on data movement and calls for new approaches to
learning. The fundamental constraint is that a weight can only be
accessed and modified by its corresponding destination neuron.
This is further illustrated in Figure 1, where each neuron is its
ownmodule containing compute and memory. To promote local
learning, the weights local to the neuron should not be sent
to or from the neuron, only activations and error signals. This
constraint promotes local learning since the only data movement
that occurs are activation signals between adjacent neurons and
error computed by the system. With this constraint in place, we
define data movement as information a neuron must send or
receive for each weight update.

One such promising recent work is Feedback Alignment
(FA) (Lillicrap et al., 2016), which has shown that we might be
able to bypass the weight transport problem while achieving the
same accuracy that BP achieves. FA uses fixed random feedback
weights to propagate the errors back through the layers of a
DNN rather than using the actual current network weights to
compute the partial error. Consequently, the weights in the
shallow layers of the network no longer need information about
the weights of all the deeper layers. Building on top of this,
Nøkland (2016) proposes Direct Feedback Alignment (DFA),
where it was shown that the feedback to shallow layers need not
be propagated through all the layers. Instead the error signal
can be fed back to the shallower layers through completely
random linear transformations. This further reduces the amount
of information required to update the weights in the network. To
further describe the weight transport problem and its relationship
with local learning, Baldi et al. (2018) describes the concept of a
learning channel. The learning channel is a physical way in which
information about targets and deep weights are transported
in the network. Backpropagation uses the forward channel in
the backward direction. Using the targets and deep weights
we compute partial errors to update the rest of the network.
Feedback Alignment instead uses a separate channel to transmit
the weights and in doing so avoids the weight transport problem.

Frontiers in Neuroscience | www.frontiersin.org 2 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

FIGURE 1 | Hardware implementations of inference. Comparing von Neumann architecture with distributed memory architecture to avoid bottleneck. (A) Inference

constrained by von Neumann architectures. In traditional backpropagation, weight updates not only depend on error but also the other weights. This prevents a

distributed architecture. (B) Unconstrained inference. Using Direct Feedback Alignment, inference can be distributed and parallel because weight updates depend

only on the error and random feedback values.

Other promising algorithms include target propagation (Lee
et al., 2015) and local error learning (Mostafa et al., 2018).
Target propagation bypasses the weight transport problem while
still solving the credit assignment problem like the Feedback
Alignment algorithms. Instead of computing a loss gradient, a
target value is assigned to each feed forward layer using auto
encoders. Local error learning generates local errors at each layer
using linear classifiers with fixed random weights. In doing so,
errors at the output of the network do not need to be sent
back and instead local objective functions are solved rather
than a global one. Local error learning bypasses the weight
transport problem, solves the credit assignment problem, and
also does not even need to send errors to the hidden layers.
All these algorithms have been shown to perform similarly
on benchmarks. While their performance is impressive, they
still suffer the same problems when scaled to larger networks.
Each of the algorithms fails to match the performance of BP
as both the complexity of the network and difficulty of the
benchmark increases. Bartunov et al. (2018) highlighted this
problem showing that when applied to problems like CIFAR100
and ImageNet, the biological algorithms failed to come close
to backpropagation. For a couple benchmarks we do observe
considerable degradation due to fully connected layers, however
we show this problem comes primarily from convolutional layers.
In fact, when trained layers are transferred from backpropagation
and the fully connected layers are trained using feedback
alignment the performance is similar to that of backpropagation.

Although DFA does not require the error signals to be
transformed by the weights of the deeper layers of the network,
each neuron requires feedback weights for each error in the
network. This requires a significant number of computations,
memory, and data movement that compromises the locality of
the algorithm. While shallow weights are no longer dependent
on deep weights, the amount of data movement and memory
required to compute the error at each neuron prohibits a near
memory architecture. In this paper, we show a modified version

of DFA, sparse direct feedback alignment (SDFA), where we
propose that sparse feedback of the error signals can result
in small drop in the network’s performance but significantly
reduces the computational complexity during learning. In an
extreme version of SDFA, we demonstrate that even a single error
feedback signal can enable the network to learn with a small
performance loss. We call this single connection SDFA (SSDFA).
We systematically study, through empirical demonstrations,
the role of sparsity and rank of the feedback matrix on the
network’s performance. Our work demonstrates that SSDFA
inherits the computational advantages of local learning similar
to bio-mimetic networks, while maintaining the high accuracy of
BP with SGD (hitherto simply referred to as BP).

2. SPARSE DIRECT FEEDBACK
ALIGNMENT

Direct Feedback Alignment was a remarkable step forward in
training fully connected networks. By replacing the backward
propagation from deeper layers with a single random matrix,
we can avoid the weight transport problem and enable new
hardware for training neural networks. In small networks,
DFA seems feasible since each neuron requires connections to
only a few error signals. However, as the size of the network
increases, the size of the feedback matrix also increases and
in effect, each weight update needs more information. As an
illustrative example, consider a three layered network with 100
hidden neurons which can be trained for classifying the MNIST
handwritten digit dataset. Because each image size is 28 by 28
pixels and there are 10 classes, our network size will be 784
(28×28) − 100 − 10. In this example, each of the 100 hidden
neurons require connections to each of the 10 error signals
at the output. While this may seem plausible for MNIST, for
the AlexNet (Krizhevsky et al., 2012) or VGG16 (Simonyan
and Zisserman, 2014) networks that are used to classify the

Frontiers in Neuroscience | www.frontiersin.org 3 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

ImageNet dataset, (Deng et al., 2009) the number of connections
becomes much larger. The ImageNet dataset classifies 1,000
different classes of images which are re-sized to 224 by 224 pixels
(Simonyan and Zisserman, 2014). In the case of DFA, each of
the 4,096 neurons in the first fully connected layer requires a
connection to each of the 1000 errors. This quadratic increase
in connections prevents DFA from scaling to larger problems
without incurring significant computational penalty compared to
a more local learning rule.

To relax this problem, we introduce SDFA where the error
signal is fed back to all the hidden layer neurons through a
highly sparse feedback matrix. SDFA with a sparse feedback
matrix enables each neuron to compute its error using a fewer
number of error signals. Consequently, as we will demonstrate,
a hardware design that implements SDFA based learning
requires significantly less data movement in the form of error
signals, rendering it more efficient both in terms of throughput
and power. We empirically demonstrate that sparsity plays a
negligible role on the network’s accuracy as long as the feedback
matrix is full-rank or near-full-rank. This leads to SSDFA, which
can enable local learning requiring only a single global error to be
transferred per neuron, while incurring a small loss of accuracy.

We define a feedback as sparse when the values in the feedback
matrix that model the connections between the errors and the
hidden neurons are mostly zero. The implication on hardware
is that most of the connections do not exist, and therefore, do
not require data movement or computation. Biological networks
share similar properties, where each neuron updates its weights
using local values (O’Reilly and Munakata, 2000; Diehl and
Cook, 2015). In this work, we use the percentage of zero valued
connections to quantify sparsity. In Figure 2 we present an
example of a sparse feedback matrix where each of the 25
hidden neurons is connected to one of 10 errors. In this case
the sparsity is 90% because only one of 10 errors are used. We
also demonstrate that even an extremely sparse feedback matrix,
with 99.9% sparsity, can be used to achieve high accuracy on
the ImageNet dataset. In Figure 3, we schematically compare
BP, DFA, and SDFA for a prototypical fully connected network
consisting of four layers of neurons. Figure 3 shows the number
of connections the pre-synaptic neuron in the first hidden layer
needs to compute a weight update. In BP, the neuron is dependent
on each and every neuron it has a direct or indirect connection
to. Hence, the weight update of the synapse is dependent
on all model weights deeper in the network. The number of
connections grows as the network gets deeper, leading to the
weight transport problem. On the other hand, in DFA, the neuron
is dependent only on the number of errors of the network. While
this decouples the forward and backward pass and relieves the
weight transport problem, complex networks with many output
neurons will still have a large number of feedback connections.
In the proposed SDFA, a weight update is dependent only on the
few errors it is connected to. Consequently, even if the network
scales in both depth and complexity, the number of connections
for updating a synaptic weight is low. In the proposed extreme
scenario for SDFA, we name SSDFA, each neuron receives only
one error signal and can successfully update its weights with a
single error signal.

FIGURE 2 | A sparse feedback matrix where each hidden neuron is

connected to a single error. Only one of the 10 connections between a neuron

and error is non-zero.

Using only a single error per neuron, we are able to greatly
reduce the amount of data movement in the backwards pass.
While there will be significant savings in memory accesses and
MAC operations, the key improvement is in data movement.
However, in order to take advantage of this, a von Neumann
architecture is not an ideal choice for bio-mimetic algorithms. In
particular, recent advances in spatial array processors with near-
memory computing can achieve significant advantages in both
performance and energy-efficiency (Hsu, 2014; Chen et al., 2017).
In Figure 4we show a comparison of the different algorithms and
the data movement required in the backwards pass. We illustrate
in Figures 4A–C how the data movement greatly reduces. With
backpropagation on a von Neumann architecture (Figure 4A)
we must read the weights and activations to and from the
main memory. DFA on a neuromorphic architecture (Figure 4B)
relaxes the weight transport problem and keeps the read, write,
and MAC operations local to the neuron itself with the only data
movement occurring when the error is sent backwards. Lastly,
in Figure 4C the error sent backwards is only a single scalar,
reducing data movement in the backwards pass to its minimal
form. InTable 1, we compare the number of reads, writes, MACs,
and data movement across the different algorithms as a function
of the neurons and weights in the network. |A|, |W|, |B|, and |E|
refer to the number of neurons, weights, feedback weights, and
errors, respectively. We also use |b| and |e| to refer to the reduced
number of weights and errors from the sparse feedback matrix.

3. MATHEMATICAL FORMULATION

The primary contribution of this work is to show the benefits of
using sparse feedback that can eventually enable local learning

Frontiers in Neuroscience | www.frontiersin.org 4 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

FIGURE 3 | Neuron-level memory dependence of the different algorithms. (A) Backpropagation: the error at the first layer is computed using all the weights in the

deeper layers. This is the weight transport problem. (B) DFA: the error at the first layer is only e · B. This solves weight transport, however it still requires 1,000 FB

weights. (C) SSDFA: the error at the first layer is dependent only on a single error and a single feedback weight.

FIGURE 4 | Data movement through the substrate of different algorithms. (A) Backpropagation: in traditional von Neumann architectures weights and activations from

the forward pass must be accessed from main memory. The majority of data transfer occurs when moving the large weight matrices from main memory to compute.

(B) DFA: in a local learning implementation only the error vector needs to be sent to the neurons. In this case the neuron must receive all N errors and store an

additional N random feedback weights. (C) SSDFA: in the single sparse connection implementation of DFA, only a single error needs to be sent to each neuron and

only a single random feedback constant needs to be stored. This reduces the bandwidth requirement and feedback weight storage by a factor of N.

TABLE 1 | Data movement comparison of error assignment algorithms.

Method Reads Writes MACs Movement

BP |W| + |A| |W| 2|W| |W| + |A| + |Ei+1|

DFA |W| + |B| |W| |W| + |B| |E|

SDFA |W| + |b| |W| |W| + |b| |e|

in neuromorphic hardware implementations. Empirically, we
show on standard networks and datasets that sparsity, even
extreme-sparsity (SSDFA), results in negligible loss of accuracy
while reducing data movement during training by orders
of magnitude.

We investigate BP, DFA, and SDFA for the fully connected
network architecture. The feed forward computation can be
written as

y1 = W1 · x, a1 = f (y1) (1)

y2 = W2 · a1, a2 = f (y2) (2)

yn = Wn · an−1, an = f (yn) (3)

where x is the feature vector and Wi is the weight matrix
connecting layer i − 1 to layer i (y0 = x). The dot product of x
andWi yields yi, and applying the non-linear activation function
f results in the activation at layer i, ai. Each of these algorithms
computes the error at a specific layer. The error at the last layer of
the network, n, is the classification error e. BP computes the error

Frontiers in Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

at each hidden layer l, δal, by transposing the weight matrices W
and multiplying by the gradient of the activation function. These
layerwise computations for BP can be written as

δan = e (4)

δa2 = WT
2 · δa3 ⊙ f

′

(a2) (5)

δa1 = WT
1 · δa2 ⊙ f

′

(a1) (6)

where⊙ is the element-wise multiplication operator. BP requires
all the deeper weights in the network in order to compute
the error at a layer earlier in the network. DFA bypasses this
dependence, only requiring a random matrix B to be multiplied
with the error vector. The layerwise error computations for
DFA are

δan = e (7)

δa2 = B2 · e⊙ f
′

(a2) (8)

δa1 = B1 · e⊙ f
′

(a1) (9)

where we observe that the error at each layer does not depend
on the error at any other layer. In the proposed SDFA, the
error computation is identical to Equations (7–9), except with
an added constraint that B is sparse. At the neuron level this
represents an important detail in the physical implementation
of neuromorphic hardware. In DFA the error computation for
a neuron i in layer l is

δal,i = Bl,i · e · f
′

(al,i) (10)

which is the inner product of two vectors multiplied by a
scalar. This is computationally challenging for complex networks.
For example, when we use VGG16 network on the ImageNet
dataset, the number of MAC operations for each neuron is
1,000 corresponding to the number of output classes. On the
other hand, in SDFA, when B is sparse, the number of MACs
required for each update will be significantly less, depending on
the number of non-zero entries in the corresponding row of B.
In an extreme scenario, when each row of B has only 1 non-zero
entry, the error computation reduces to

δal,i = Bl,i,j · ej · f
′

(al,i) (11)

which is the product of three scalars.
The significance of this comes from past work in local learning

and bio-plausible 3-factor learning rules. Locality is a constraint
on the learning rule, and for a learning rule to be local each of the
variables used in the learning rule must also be local. Baldi and
Sadowski (2016) simplifies learning rules to the following forms

δWi,j = f (oi, oj,Wi,j) (12)

δWi,j = f (oi, oj,Wi,j, ti,j) (13)

where oi and oj are the output values of neurons i and j connected
by weight Wi,j. The variable ti,j is the target value computed for
weight Wi,j. An example of Equation (12) is Hebbian learning
(Hebb, 1949) using Oja’s rule (Oja, 1982). In Oja’s rule the synapse
uses only the activations of the neurons that it is connected to,

and its own state variable. Commonly referred to as the three
factor learning rule (Baldi and Sadowski, 2016), Equation (13)
requires a target value. Each of the algorithms discussed in this
work (BP, DFA, SSDFA), can be simplified to Equation (13). In a
supervised learning problem, computing the target value requires
information about the network error. By the definition we gave
earlier, we claim that data movement is information a neuron
must send or receive. Therefore, any information sent or received
by the neuron is non-local, which implies that error information
in the backwards pass is non-local. Furthermore, we realize that
any supervised learning algorithm would be non-local since all
error information is not local to the neuron. As a result, none
of the learning rules discussed in this paper exhibit pure locality,
which would only be possible using a variant of Oja’s rule given
this definition. Although some recent work (Mostafa et al., 2018)
has shown a method of local supervised learning, for practical
problems the learning rule fails to remain local. Local Error
Learning (Mostafa et al., 2018) locally stores the labels at each
layer and computes the prediction error using a random matrix
at that layer. Since the prediction error is computed locally, it
no longer needs to be transported from the end of the network
to the given layer. In theory this prevents data movement, but
for practical problems it is not possible to store data labels in
this way. Two examples of systems where this technique fails
to scale are real time systems and very large datasets. For real
time systems like an autonomous drone, we do not have the
labels to store locally in each layer. These labels would need to
be transported from main memory, which is more expensive
than moving errors from the last layer of the network. A similar
problem arises for very large datasets. For very large datasets like
ImageNet, we would need to store over one million labels locally
in each layer or neuron. Storing this amount of information is not
possible to do while maintaining locality.

The algorithms discussed in this paper have different levels of
locality, which depend on the amount of non-local information
required to compute the target value. To compute the target
value for BP, we require all the downstream weights and errors.
By computing the errors layer by layer, we are able to avoid
redundant computation. However, this still requires the most
data movement. In the case of DFA, we can store the random
feedback weights local to the neurons themselves so the only
data movement required are the downstream errors. As we
scale DFA to larger datasets with more errors and therefore
larger feedback matrices, we further compromise the locality of
the algorithm because we cannot store large feedback matrices
and route hundreds of errors to a single neuron. When the
feedback matrix is made sparse (SDFA), we can scale the size
of the network without requiring dense feedback connections.
When only a single feedback connection is used (SSDFA), the
target value is a function of only a single error and a single
feedback weight. Although SSDFA uses non-local information, it
is minimal in the sense that each neuron needs to receive only a
single error.

4. RESULTS

To evaluate the performance of SDFA and SSDFA, we benchmark
the proposed algorithms on standard vision datasets vis-a-vis BP

Frontiers in Neuroscience | www.frontiersin.org 6 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

and DFA. We empirically evaluate the accuracy of the models
with respect to the desired characteristics of the feedback matrix.

4.1. Benchmarks and Network
Architectures
In our simulations we use four standard benchmarks of
varying complexity that have been used in prior work. These
benchmarks are MNIST (LeCun et al., 1990), CIFAR10,
CIFAR100 (Krizhevsky and Hinton, 2009), and ImageNet (Deng
et al., 2009). ImageNet is by far the most exhaustive dataset,
and like (Bartunov et al., 2018), we find that using this
benchmark reveals scaling issues related to the Feedback
Alignment algorithms. For each of these benchmarks we use two
networks. For MNIST, CIFAR10, and CIFAR100 we use one fully
connected network and one convolutional network which are
further described in Table 2. For ImageNet we use two standard
convolutional networks: AlexNet (Krizhevsky et al., 2012) and
VGG16 (Simonyan and Zisserman, 2014), which have produced
high accuracy with BP. For each dataset, the corresponding
model architectures are summarized in Table 2.

4.2. SDFA and SSDFA for Fully Connected
Network
We start by reporting our findings on fully connected networks.
The three properties of the feedback matrix that we study are:

1. Rank: The number of linearly independent vectors in the
feedback matrix.

2. Sparsity: The percentage of zero-valued weights in the
feedback matrix connecting each hidden layer to the
classification error. We are particularly interested in the case

TABLE 2 | Network architectures.

Dataset Fully connected

network

Convolutional network

MNIST FC 400

Softmax 10

Conv (3×3 1×1 32)

Conv (3×3 1×1 64)

Pool (2×2 2×2)

FC 128

Softmax 10

CIFAR (10, 100) FC 1000

FC 1000

FC 1000

Softmax (10, 100)

Conv (5×5 1×1 96)

Pool (3×3 2×2)

Conv (5×5 1×1 128)

Pool (3×3 2×2)

Conv (5×5 1×1 256)

Pool (3×3 2×2)

FC 2048

FC 2048

Softmax (10, 100)

ImageNet – AlexNet (Krizhevsky et al., 2012)

ImageNet – VGG16 (Simonyan and

Zisserman, 2014)

The format for convolutional layers is as follows: Conv (kernel size, number output

channels, stride size). The format for pool layers is as follows: Pool (kernel size, stride

size). The networks used for the CIFAR10 and CIFAR100 datasets were both derived from

Nøkland (2016).

where each hidden neuron is connected to a single error
(SSDFA).

3. Angle: The angle between the vectorized weight matrix (W)
and the vectorized feedback matrix (B).

The evaluation platform is setup in TensorFlow (Abadi et al.,
2016). For MNIST and CIFAR10 there are 10 output neurons
and hence 10 error signals. For each combination of rank and
sparsity we simulate the models 10 times and statistically observe
the accuracy of the network. To ensure that the network has
feedback from all ten errors, the product of rank and connectivity
(1 − sparsity) must be equal to or >1. In order to create a
N × M feedback matrix connecting N hidden neurons and M
errors with rank R and sparsity S, we need R linearly independent
vectors with sparsity S. When the rank of the matrix is not full,
some of the vectors must be linearly dependent. As a result,
they must have the same zero valued indices. When the rank
and connectivity product is <1, some columns in our matrix
will be completely zero. This implies these errors will never be
propagated backwards and the error at the layer will not depend
on these classes. Consequently, we are unable to generate results
for cases where the product is <1. If the network does not have
feedback from all ten errors, then the network’s performance
is impacted, not because of lower rank or higher sparsity, but
because only some of the error signals are being propagated back.
Rank: Empirically, we observe that the rank of a feedback matrix
has the largest impact on the resulting accuracy of the network.
As we increase the rank, the accuracy of the network increases
and finally saturates. In Figure 5 we show our results for the
MNIST and CIFAR10 datasets. In Figures 5A,B, we show the
accuracy and angle vs. the rank of the feedback matrix, for
varying sparsity. For the MNIST dataset, we observe that the test
accuracy saturates, as expected at 97.5%, and is maximum for the
full-rank matrix. However, for CIFAR10, the accuracy continues
to increase as a function of rank without saturation. This shows
that the rank of the feedback matrix is a critical design parameter
and the feedback needs to be a full-rank matrix to maximize the
network’s accuracy.
Sparsity: Our results show that sparsity of the feedback matrix
has very little impact on the resulting accuracy of the network
in both the MNIST and CIFAR10 networks (Figure 5). We
also observe that sparsity has a negligible impact on the angle
between the feedback matrix used and the resulting feed forward
weights (Figure 6). For many resource constrained systems, a
small difference in accuracy for large improvements in power and
performance is an excellent trade-off. We observe that training
with highly sparse feedback matrices, even with just a single
feedback error, performs very well—while significantly reducing
the computational demand, as we describe later.
Angle: Lillicrap et al. (2016) shows that at each hidden layer, the
angle between error gradient computed by FA and BP decreases
as the network is trained. Instead we look at the angle between
the vectorized weight matrix and feedback matrix after training.
In the case of propagating errors to shallow layers of the network,
the corresponding weight matrix used for the angle calculation
is the product of all the weights matrices following this layer.
Hence, for the angle calculation for a layer l in a n layer network,

Frontiers in Neuroscience | www.frontiersin.org 7 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

FIGURE 5 | Accuracy and angle (in degrees) vs. rank for MNIST and CIFAR10 fully connected networks. Data points are grouped by sparsity, and averaged over 10

different simulations.

FIGURE 6 | Accuracy and angle vs. sparsity. Results from rank 5 and 10 are shown with bars showing the standard deviation for 10 different simulations.

Frontiers in Neuroscience | www.frontiersin.org 8 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

the angle is given by

6 (Bl,W) = 6 (Bl,

n
∏

i=l+1

Wi) (14)

In Figure 5 we show a strong correlation of accuracy and
angle between the feedback matrix and the weight matrix. This
correlation is more apparent for CIFAR10 because it does not
plateau as it approaches a full-rankmatrix. This correlation is also
illustrated in Figure 6 because neither the angle nor the accuracy
changes significantly as a function of sparsity.

In Table 3 we summarize the results for fully connected
networks. We show the results collected from running BP, DFA,

TABLE 3 | Test accuracy (in %) for fully connected networks.

Benchmark BP DFA SSDFA

MNIST 98.2 97.8 97.5

CIFAR10 59.9 58.9 58.6

CIFAR100 33.1 29.4 28.8

TABLE 4 | Test accuracy (in %) for the convolutional neural networks.

Benchmark BP DFA SSDFA

MNIST 99.1 98.9 98.8

CIFAR10 79.6 72.3 73.1

CIFAR100 51.0 43.7 41.8

ImageNet (AlexNet) 53.6 6.2 2.8

Accuracy results are slightly less for ImageNet than originals because minimal pre-

processing and data augmentation techniques were used. All results are reported as

Top-1 accuracy.

and SSDFA on MNIST, CIFAR10, and CIFAR100 with fully
connected networks of different sizes summarized in Table 2.
All the network parameters and code to run experiments can
be found under: https://github.com/bcrafton/ssdfa. The results
yielded by BP and DFA are similar to previous work (Nøkland,
2016), which shows that DFA performs similarly to BP for the
fully connected networks. Also like previous work (Nøkland,
2016), we observe a non-negligable drop in accuracy for the
CIFAR100 benchmark using both DFA and SSDFA. Since
both DFA and SSDFA fail to match backpropagation for this
benchmark, we infer that the issue is likely caused by the direct
feedback and not the sparsity.

4.3. SDFA and SSDFA for Convolutional
Neural Networks
Earlier work (Nøkland, 2016) show that DFA can be used
in convolutional neural networks (CNNs). However, we note,
similar to Bartunov et al. (2018), as we increase the complexity
of our network and dataset, DFA fails to match the accuracy of
BP. For the convolutional network benchmarks, we show our
results in Table 4. Consistent with previous work, the CNNs
we use for MNIST show similar performance for BP, DFA, and
SSDFA. However, as the problem and network complexities scale
to CIFAR10, CIFAR100, and ImageNet, the gap between BP and
DFA grows to where their performance is no long comparable.

We attribute this problem to the convolutional layers in
the network. The convolutional architecture introduces extra
constraints on the weight space, and as such, results in stronger
constraints on the feedback matrix which can be used. This can
be seen in Figure 7, where we show the filter weights for the first
convolutional layer from training AlexNet on ImageNet using BP
and DFA. The resulting filters show completely different patterns.
The BP filters show a well-defined spatial structure, while the
filters from DFA are noisy with much less structure. From this,

FIGURE 7 | Filters acquired from training AlexNet with BP (A) and DFA (B). Filters for BP show shape and spatial structure, while filters from DFA are random.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2019 | Volume 13 | Article 525

https://github.com/bcrafton/ssdfa
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

we infer that DFA cannot learn convolutional filters as efficiently
as BP for large and complex networks.

One way to alleviate this problem is Transfer Learning (Pan
and Yang, 2010). Transfer Learning is a technique where a model
from a prior task is used to initialize a model for another task.
This is of particular importance in mobile platforms where pre-
trained models are transferred to the mobile platform and the
models are further refined via on-device learning. By borrowing
the weights from the convolutional layers of CNNs which yield
good results, we can bypass training these layers with DFA or
SSDFA. We demonstrate that by reusing these convolutional

TABLE 5 | Test accuracy (in %) for after transfer learning of the convolutional filters

followed by SSDFA for the fully connected layers.

Benchmark BP DFA SSDFA

MNIST 99.1 99.1 99.0

CIFAR10 77.1 77.8 78.0

CIFAR100 48.2 49.0 48.2

ImageNet (AlexNet) 49.0 48.8 46.3

ImageNet (VGG16) 65.8 65.3 64.5

Accuracy results are slightly less for ImageNet than originals because minimal pre-

processing and data augmentation techniques were used. All results are reported as

Top-1 accuracy.

filters and training the fully connected layers using DFA and
SSDFA, we can achieve similar performance to BP. In Table 5,
we show the results for five different benchmarks of varying
complexity. In each of these benchmarks, we transfer the weights
from CNNs trained with BP and train the fully connected layers
of each network. In all of these benchmarks, the performance of
DFA and SSDFA is competitive with BP. The largest performance
degradation we observe is 2.7% on the ImageNet benchmark
using the AlexNet network.

4.4. Computational Advantage
The primary advantage of using SSDFA is that it greatly reduces
data movement in the backwards pass. Furthermore, SSDFA
also reduces the number of multiply-and-accumulate operations
(MACs) and memory-reads. Computationally, this is motivated
by biology where memory and compute are interleaved and
global movement of data is minimal. New neuromorphic
architectures for deep learning (Shin et al., 2017; Lee et al., 2018,
2019) and reinforcement learning (Amaravati et al., 2018a,b; Cao
et al., 2019; Kim et al., 2019) seek to apply this constraint to
avoid the communication overhead. However, as we have noted
earlier, BP violates this constraint. Rather than requiring local
information, it requires information from the weights of the
deeper layers in the network. By decoupling the forward and
backward weights, DFA and SSDFA do not require information
about the weights deeper in the network.

FIGURE 8 | Total number of MACs and Data Movement (in MB) for a single training example on CIFAR100 (A,B) and ImageNet (C,D) across BP, DFA, and SDFA.

Frontiers in Neuroscience | www.frontiersin.org 10 May 2019 | Volume 13 | Article 525

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

In Figure 8, we show the MAC and data movement savings
when implemented in a near memory architecture on the
CIFAR100 and ImageNet datasets. In section 2, we defined data
movement as any data that must be sent outside of the neuron.
In the backwards pass this is the error information sent to each
neuron in SSDFA and DFA. For BP implemented on a von
Neumann architecture, this is equivalent to all the data that must
be transported to and from main memory. In Figures 8B,D we
show the data movement results across SSDFA, DFA, and BP for
CIFAR100 and ImageNet. On the ImageNet dataset we observe
a 6,400× reduction in data movement from BP to SSDFA.
This number reflects our approximations in Table 1, where BP
requires |W| + |A| + |Ei+1| words of data and SSDFA requires
just a single error, e. From DFA to SSDFA, we observe a 1,000×
reduction in data movement since each neuron receives only
a single error rather than 1,000. We show the data movement
requirements for the CIFAR100 benchmark in Figures 8C,D. We
observe that the advantages of using SSDFA are less for smaller
benchmarks because the number of errors and size of the hidden
layers are less.

In Figures 8A,Cwe show the number of MACs across SSDFA,
DFA, and BP for CIFAR100 and ImageNet. The reduction in the
number ofMACs fromBP to SSDFA is nearly a factor of two. This
reflects our approximations in Table 1, where we show that the
number of MACs reduces from 2|W| to |W| + |b|. The number
of MACs required to compute the error at a hidden layer reduces
from |W| to |b|, but the number of MACs to compute the partial
error at each weight remains |W|. Since we must compute the
error at each feedforward weight, the reduction in MACs will
always be bounded. If the feedforwardmatrix,W, was also sparse,
then this bottleneck could be reduced and allow for a larger
reduction in MAC operations.

5. DISCUSSION

Feedback Alignment and Direct Feedback Alignment have
been proposed to address the weight transport problem in
backpropagation. We propose Sparse DFA where the fixed
feedback matrix used is constrained to be sparse. Such a sparse
feedback matrix helps in a simpler physical implementation of
communicating errors. To justify our arguments, we studied the
training performance of networks MNIST, CIFAR10, CIFAR100,
and ImageNet using feedback matrices with different constraints,
such as rank and sparsity. We observe that rank of the
feedback matrix has much stronger impact on accuracy, and
making the feedback connections sparse has negligible effect on

performance. Furthermore, using an extremely sparse version
of SDFA where only a single error is fed back for weight
update, we observe comparable performance while minimizing
data movement.

As was claimed in Bartunov et al. (2018), Feedback Alignment,
Direct Feedback Alignment, and as a result, the proposed Sparse
Direct Feedback Alignment, do not scale to large networks.While
our results are similar, we show that this is specifically true
for convolutional networks due to the additional architectural
constraints of repeated filters which they incorporate. We show
that by fixing the convolutional filters of the network to those
trained using BP, and learning only the fully connected layers
using DFA, we observe that the network’s performance is close
to that of BP. Our approach greatly simplifies the task of
propagating the errors from the deeper end of the network to the
shallow layers for learning the model weights.

6. METHODS

We construct our networks in TensorFlow and create a new
layer type so that we can feedback error directly to each hidden
layer. To get optimal results we perform a hyper parameter
search and also test different gradient descent optimizers and
activation functions. We sweep learning rate and learning rate
decay to find the optimal set. For weight initialization we used a
uniform distribution in the range [−1/

√

fanout, 1/
√

fanout]. For

feedback matrix initialization we used [−1/
√

fanin, 1/
√

fanin]
where the input dimension was layer size. For sparse matrices

we found [−1/
√

fanin·N
fanout

, 1/
√

fanin·N
fanout

] (where N is the number of

sparse connections) to work well.

AUTHOR CONTRIBUTIONS

BC developed the main ideas, worked on the simulation
experiments, and wrote the paper. AP worked on the simulation
experiments and wrote the paper. EG worked on the simulation
experiments. AR developed the main ideas and wrote the paper.

FUNDING

This work was funded by the U.S. Department of Defense’s
Multidisciplinary University Research Initiatives (MURI)
Program under grant number FOA: N00014-16-R-FO05 and
the Semiconductor Research Corporation under the Center for
Brain Inspired Computing (C-BRIC).

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

“Tensorflow: a system for large-scale machine learning,” in 12th {USENIX}

Symposium on Operating Systems Design and Implementation ({OSDI} 16)

(Savannah, GA), 265–283.

Amaravati, A., Nasir, S. B., Thangadurai, S., Yoon, I., and Raychowdhury, A.

(2018b). “A 55 nm time-domain mixed-signal neuromorphic accelerator with

stochastic synapses and embedded reinforcement learning for autonomous

micro-robots,” in Solid-State Circuits Conference-(ISSCC), 2018 IEEE

International (San Francisco, CA: IEEE), 124–126.

Amaravati, A., Nasir, S. B., Ting, J., Yoon, I., and Raychowdhury, A.

(2018a). A 55-nm, 1.0–0.4 v, 1.25-pj/mac time-domain mixed-signal

neuromorphic accelerator with stochastic synapses for reinforcement

learning in autonomous mobile robots. IEEE J. Solid State Circuits. 54, 75–87.

doi: 10.1109/JSSC.2018.2881288

Frontiers in Neuroscience | www.frontiersin.org 11 May 2019 | Volume 13 | Article 525

https://doi.org/10.1109/JSSC.2018.2881288
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Crafton et al. Sparse Feedback Alignment

Baldi, P., and Sadowski, P. (2016). A theory of local learning, the learning

channel, and the optimality of backpropagation. Neural Netw. 83, 51–74.

doi: 10.1016/j.neunet.2016.07.006

Baldi, P., Sadowski, P., and Lu, Z. (2018). Learning in the machine: random

backpropagation and the deep learning channel. Artif. Intell. 260, 1–35.

doi: 10.1016/j.artint.2018.03.003

Bankman, D., Yang, L., Moons, B., Verhelst, M., and Murmann, B. (2019). An

always-on 3.8µJ 86% cifar-10 mixed-signal binary cnn processor with all

memory on chip in 28-nm cmos. IEEE J. Solid State Circuits 54, 158–172.

doi: 10.1109/JSSC.2018.2869150

Bartunov, S., Santoro, A., Richards, B. A., Hinton, G. E., and Lillicrap, T. (2018).

Assessing the scalability of biologically-motivated deep learning algorithms and

architectures. arXiv preprint arXiv:1807.04587.

Cao, N., Chang, M., and Raychowdhury, A. (2019). “14.1 A 65 nm 1.1-to-

9.1 tops/w hybrid-digital-mixed-signal computing platform for accelerating

model-based and model-free swarm robotics,” in 2019 IEEE International

Solid-State Circuits Conference-(ISSCC) (San Francisco, CA: IEEE), 222–224.

Chen, Y,-H., Krishna, T., and Emer, J. S., and Sze, V. (2016). Eyeriss: an energy-

efficient reconfigurable accelerator for deep convolutional neural networks.

IEEE J. Solid-State Circuits 52, 127–138. doi: 10.1109/ISSCC.2016.7418007

Chen, Y.-H., Krishna, T., Emer, J. S., and Sze, V. (2017). Eyeriss: an

energy-efficient reconfigurable accelerator for deep convolutional neural

networks. IEEE J. Solid-State Circuits 52, 127–138. doi: 10.1109/JSSC.2016.

2616357

Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., et al. (2016). “PRIME: a

novel processing-in-memory architecture for neural network computation

in ReRAM-based main memory,” in 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA) (Seoul), 27–39.

doi: 10.1109/ISCA.2016.13

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro. 38, 82–99. doi: 10.1109/MM.2018.112130359

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

“Imagenet: a large-scale hierarchical image database,” in Computer Vision

and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (Miami, FL:

IEEE), 248–255.

Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E., and LeBlanc, A. R.

(1974). Design of ion-implanted mosfet’s with very small physical dimensions.

IEEE J. Solid State Circuits 9, 256–268.

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Grossberg, S. (1987). Competitive learning: from interactive activation to adaptive

resonance. Cogn. Sci. 11, 23–63.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.

New York, NY: Wiley.

Hsu, J. (2014). Ibm’s new brain [news]. IEEE Spectr. 51, 17–19.

doi: 10.1109/MSPEC.2014.6905473

Kim, C., Kang, S., Shin, D., Choi, S., Kim, Y., and Yoo, H.-J. (2019). “A 2.1

tflops/w mobile deep rl accelerator with transposable pe array and experience

compression,” in 2019 IEEE International Solid-State Circuits Conference-

(ISSCC) (San Francisco, CA: IEEE), 136–138.

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From

Tiny Images. Technical report, Citeseer.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural Information

Processing Systems (Tahoe, CA: IEEE), 1097–1105.

Kwon, H., Pellauer, M., and Krishna, T. (2018). Maestro: an open-source

infrastructure for modeling dataflows within deep learning accelerators. arXiv

preprint arXiv:1805.02566.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.Nature 521, 436–444.

doi: 10.1038/nature14539

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard,

R. E., Hubbard, W. E., et al. (1990). “Handwritten digit

recognition with a back-propagation network,” in Advances in

Neural Information Processing Systems (Denver, CO: IEEE),

396–404.

Lee, D.-H., Zhang, S., Fischer, A., and Bengio, Y. (2015). “Difference target

propagation,” in Joint European Conference on Machine Learning and

Knowledge Discovery in Databases (Porto: Springer), 498–515.

Lee, J., Kim, C., Kang, S., Shin, D., Kim, S., and Yoo, H.-J. (2018). “UNPU:

a 50.6 tops/w unified deep neural network accelerator with 1b-to-16b fully-

variable weight bit-precision,” in 2018 IEEE International Solid-State Circuits

Conference-(ISSCC) (San Francisco, CA: IEEE), 218–220.

Lee, J., Lee, J., Han, D., Lee, J., Park, G., and Yoo, H.-J. (2019). “7.7 lnpu: A

25.3 tflops/w sparse deep-neural-network learning processor with fine-grained

mixed precision of fp8-fp16,” in 2019 IEEE International Solid-State Circuits

Conference-(ISSCC) (San Francisco, CA: IEEE), 142–144.

Li, C., Belkin, D., Li, Y., Yan, P., Hu, M., Ge, N., et al. (2018). Efficient and

self-adaptive in-situ learning in multilayer memristor neural networks. Nat.

Commun. 9:2385. doi: 10.1038/s41467-018-04484-2

Lillicrap, T. P., Cownden, D., Tweed, D. B., and Akerman, C. J. (2016). Random

synaptic feedback weights support error backpropagation for deep learning.

Nat. Commun. 7:13276. doi: 10.1038/ncomms13276

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Moore, G. E. (1965). Cramming More Components Onto Integrated Circuits. New

York, NY: McGraw-Hill.

Mostafa, H., Ramesh, V., and Cauwenberghs, G. (2018). Deep supervised

learning using local errors. Front. Neurosci. 12:608. doi: 10.3389/fnins.2018.

00608

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., and

Muharemagic, E. (2015). Deep learning applications and challenges in big data

analytics. J. Big Data 2:1. doi: 10.1186/s40537-014-0007-7

Neftci, E. O. (2018). Data and power efficient intelligence with

neuromorphic learning machines. iScience 5:52. doi: 10.1016/j.isci.2018.

06.010

Neftci, E. O., Augustine, C., Paul, S., and Detorakis, G. (2017). Event-driven

random back-propagation: enabling neuromorphic deep learning machines.

Front. Neurosci. 11:324. doi: 10.3389/fnins.2017.00324

Nøkland, A. (2016). “Direct feedback alignment provides learning in deep neural

networks,” in Advances in Neural Information Processing Systems (Barcelona:

IEEE), 1037–1045.

Oja, E. (1982). Simplified neuron model as a principal component analyzer. J.

Math. Biol. 15, 267–273.

O’Reilly, R. C., and Munakata, Y. (2000). Computational Explorations in

Cognitive Neuroscience: Understanding the Mind by Simulating the Brain.

Cambridge, MA: MIT Press.

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.

Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Shin, D., Lee, J., Lee, J., and Yoo, H.-J. (2017). “14.2 dnpu: an 8.1 tops/w

reconfigurable cnn-rnn processor for general-purpose deep neural networks,”

in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (San

Francisco, CA: IEEE), 240–241.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Crafton, Parihar, Gebhardt and Raychowdhury. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 12 May 2019 | Volume 13 | Article 525

https://doi.org/10.1016/j.neunet.2016.07.006
https://doi.org/10.1016/j.artint.2018.03.003
https://doi.org/10.1109/JSSC.2018.2869150
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/MSPEC.2014.6905473
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/s41467-018-04484-2
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1126/science.1254642
https://doi.org/10.3389/fnins.2018.00608
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.1016/j.isci.2018.06.010
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1109/TKDE.2009.191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Direct Feedback Alignment With Sparse Connections for Local Learning
	1. Introduction
	2. Sparse Direct Feedback Alignment
	3. Mathematical Formulation
	4. Results
	4.1. Benchmarks and Network Architectures
	4.2. SDFA and SSDFA for Fully Connected Network
	4.3. SDFA and SSDFA for Convolutional Neural Networks
	4.4. Computational Advantage

	5. Discussion
	6. Methods
	Author Contributions
	Funding
	References

