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Network dysfunction is well established in patients with Alzheimer’s disease (AD) and
has been shown to be present early in the disease. This is especially interesting in
patients with mild cognitive impairment (MCI) since they are more likely to develop
AD. In EEG, one type of network analysis is microstates where the EEG is divided
into quasi-stable states and these microstates have been linked to networks found
with resting state functional MRI. In the current exploratory study, we therefore wanted
to explore the changes in microstates in MCI, and AD compared to healthy controls
(HC) and whether microstates were able to separate patients with MCI who progressed
(pMCI) and those who remained stable (sMCI). EEGs were recorded at baseline
for 17 patients with AD, 27 patients with MCI, and 38 older HC and the patients
were followed for 3 years. To investigate whole-brain dynamics we extracted different
microstate parameters. We found that patients with MCI, and AD had significantly
higher occurrence (p-value = 0.028), and coverage (p-value = 0.010) for microstate
A compared to HC. However, we did not find any significant systematic deviation of the
transition probabilities from randomness for any of the groups. No significant differences
were found between pMCI and sMCI but the largest difference in duration was found for
microstate D. Microstate A has been linked to the temporal lobes in studies combining
EEG and fMRI and the temporal lobes are the most affected by AD pathology in the early
stages of the disease. This supports our idea that microstate A may be the first affected
microstate in early AD. Even though not significant between pMCI and sMCI, Microstate
D has previously been shown to be associated with both frontal and parietal areas
as measured with fMRI and may correspond to underlying pathological changes in the
progression of MCI to AD. However, larger studies are needed to confirm these findings.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease and patients with AD have shown changes in functional
brain networks (Dickerson and Sperling, 2009). Studies have
even suggested that alterations in networks are present very
early in the disease process (Selkoe, 2002; Cummings, 2004).
Patients mild cognitive impairment (MCI), which is thought
of as mild objective cognitive deficits, are associated with
later development of AD (Petersen et al., 1999; Petersen,
2004). While some patients with MCI progress (pMCI)
others remain stable (sMCI) in their disease, which is in
large due to different etiological causes as for example
depression or vascular changes. However, for patients with
MCI due to AD, there is also evidence of fast and slow
progression (Chui, 1987), which may be due to affection of
different brain networks.

Multiple methods to investigate brain networks have
been proposed with the most common being fMRI. But
since network function are thought of as fast processes
that changes over time, fMRI may not be able to capture
these. Electroencephalography (EEG) has a high temporal
resolution and methods like microstate analysis has been
able to show topographical maps that have been associated
with resting state networks (Van de Ville et al., 2010;
Yuan et al., 2012). Microstates is a technique where the
multichannel resting-state EEG signal can be divided
into a number of distinct states (Lehmann et al., 1987).
Although these states occur in a time range of milliseconds
(ms), it has been shown that momentary stable spatial
patterns that last approximately 80–120 ms before rapidly
transitioning to a different microstate (Khanna et al., 2015).
The majority of the studies have clustered the resting
EEG into four microstate classes, which has been found
to be the optimal number according to cross-validation
criterion (Pascual-Marqui et al., 1995; Koenig et al.,
2002) and a study found a high test-retest reliability
(Khanna et al., 2014).

Only few studies have investigated alterations in microstates
in patients with AD (Ihl et al., 1993; Dierks et al., 1997;
Strik et al., 1997; Stevens and Kircher, 1998; Nishida et al.,
2013). Most studies found a shorter duration of the microstates
compared to healthy elderly controls with one study finding
a longer duration of microstates. However, a more recent
study has found no significant changes in either duration or
occurrence in patients with AD compared to healthy controls
(Nishida et al., 2013). Moreover, none of the studies have
investigated the early changes in microstates by looking at
patients with MCI or whether microstates are able to differentiate
between pMCI and sMCI.

In the current exploratory study, we wanted to investigate
the changes in microstates in patients with MCI compared to
both AD, and healthy controls (HC). Furthermore, we wanted
to investigate whether microstates can be used to separate
pMCI from sMCI. Lastly, we wanted to investigate whether any
microstates parameters correlated with either cognitive scores
or AD biomarkers.

MATERIALS AND METHODS

Recruitment, Inclusion Criteria, and
Subjects
The whole dataset or parts of the dataset have also been used
for other studies (Engedal et al., 2015; Musaeus et al., 2018a,
2019; Nielsen et al., 2018) including separate presentation of
results from spectral power analysis (Musaeus et al., 2018b)
and for coherence and imaginary part of coherency analysis
(Musaeus et al., 2019).

This prospective cohort study was conducted at two
Danish memory clinics at Zealand University Hospital and
Rigshospitalet, respectively. Patients consecutively referred for
cognitive evaluation and diagnosed with either MCI or mild AD
and at least a baseline Mini-Mental State Examination (MMSE)
score of ≥22 were eligible for inclusion. The patient selection
was defined using preexisting exclusion criteria: (1) no close
relatives who wished to participate, (2) if they were participating
in other intervention studies or (3) if they were suffering from
other neurological, psychiatric, or other severe disease, (4) if
they received sedative medication due to a potential sedative
effect, and (5) if they had any past or current addictions to
alcohol or medications.

The HC were all volunteers recruited trough public
advertisements at the memory clinics, at local associations
for elders and through an online recruitment site for trial
subjects. Inclusion criteria were: (1) age between 50 and
90 years, (2) MMSE score ≥26, (3) ACE ≥85, (4) normal
neurological and clinical examination, (5) normal or age-related
brain atrophy measured on a computed tomography (CT)
scan, (6) normal routine blood tests. Exclusion criteria
were: (1) an inability to participate (including impaired
vision or hearing), (2) presence of cognitive symptoms
including memory complaints, (3) signs of major neurological,
psychiatric or other severe disease, which potentially could
elicit cognitive impairments including signs of major
depression or a geriatric depression scale score >7, (4) be
pregnant, (5) have undergone general anesthesia, (6) received
electroconvulsive therapy in the past 3 months, (7) receive
sedatives, or (8) have any past or current addictions to
alcohol or medications.

In total, we included 17 patients with AD, 27 patients with
MCI, and 38 HC. The study was reported to and approved by
the Danish Data Protection Agency and by the Regional Ethical
Committee according to Danish legislation.

Diagnostic Assessment
The patients underwent a standardized diagnostic assessment
including a full physical and neurological examination, routine
blood analysis, brain CT or MRI scan as well as cognitive
screening, i.e., MMSE, Addenbrooke’s Cognitive Examination
(ACE), Digit Symbol Substitution Test (DSST), and Clinical
Dementia Rating (CDR). Furthermore, as part of the diagnostic
assessment patients and relatives underwent NeuroPsychiatric
Inventory (NPI), Major Depression Inventory (MDI), Activities
of Daily Living Inventory (ADCS-ADL). The CT and MRI
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scans were examined by a neuro-radiologist. The majority
also had a lumbar puncture (except two patients with
MCI and six HC) performed to measure AD biomarkers
(Amyloid-β42, total tau, and phosphorylated tau), and for
routine parameter analysis. If diagnostically relevant, the patients
also had a neuropsychological evaluation undertaken by a
clinical neuropsychologist, but these were individualized for
each patient with varying overlap and therefore not included
in the current study. Diagnoses were settled by consensus of
a multidisciplinary team based on all examination results. The
included MCI patients fulfilled the Winblad consensus criteria
(Winblad et al., 2004) and AD patients fulfilled the NIA-AA
criteria (McKhann et al., 2011).

At inclusion, all HC underwent the standardized diagnostic
assessment, which included cognitive tests (ACE, MMSE, DSST),
MDI and analysis of CSF was performed on almost all HC. At the
baseline visit all HC were referred for a standardized EEG. The
EEG recordings were not used in the diagnostic assessment.

Study Design
The patients were recruited within 6 months after the diagnosis
and all tests were repeated at inclusion. Follow-up visits were
carried out on a yearly basis, with serial cognitive tests, i.e.,
MMSE and ACE and the NPI, MDI, ADCS-ADL, and CDR
scales. Clinical progression of MCI to AD was determined
based on whether the patient clinically fulfilled the NIA-AA
criteria (McKhann et al., 2011). If the patient progressed to
another diagnosis, they were excluded from the comparison
between pMCI and sMCI.

The primary investigator performing the tests was blinded for
the results of the EEG, imaging and CSF analysis during the study
period. This was done for the investigator to be blinded for the
potential presence of underlying AD pathology.

Electroencephalography Recording
The EEG recordings were performed at the two participating
centers and the EEG recordings were performed using
NicoletOne EEG Systems (Natus R©) with a sampling rate of
either 500 or 1000 Hz. Nineteen electrodes were positioned
according to the International 10–20 system. Most EEGs were
recorded with alternating eyes closed (EC) and eyes open periods
for 3 min each but some of the recording only had EC segments.
The participants were alerted if they became visibly drowsy, since
drowsiness influences recording. The neurophysiology assistant
recording the EEG made marks in the EEG when the participant
closed and open their eyes. After the recording, the files were
exported as raw EEGs without any filtering.

Collection and Analysis of Cerebrospinal
Fluid
The lumbar puncture was performed between the L3/L4 or L4/L5
intervertebral space and the CSF was collected in polypropylene
tubes. Analysis of the CSF included routine parameters and
the core AD biomarkers, i.e., Aβ42, T-tau, and P-tau. The AD
biomarkers were quantified with sandwich ELISAs [INNOTEST
amyloid-β42, hTau, and Phospho-Tau (181P), respectively;

Fujirebio Europe, Ghent, Belgium]. AD biomarkers analyses
from both clinics were all carried out at one central laboratory.

Preprocessing of EEG
The EEG data were imported to MATLAB (Mathworks, v2016a)
using the EEGLAB toolbox (Delorme and Makeig, 2004). Only
segments with EC were selected either using markers placed
doing recording or from the first 10 min of recording if markers
were not present. The electrodes were computationally located on
the scalp using the dipfit toolbox (Oostenveld et al., 2011) with
the standard 10–20 electrode model. The excessive channels were
removed, and the data were bandpass filtered from 1 to 70 Hz
using the pop_firws function in MATLAB with a filter order of
2 and the Kaiser window parameter beta was estimated using a
maximum passband ripple of 0.001. Furthermore, the data were
bandstop filtered from 45 to 55 Hz using the same settings as
described previously. Afterward, the data were down sampled
to 200 Hz. Then, the data were divided into 1 s epochs and the
EEGs were visually inspected and epochs with excessive noise or
artifacts were removed. Channels with excessive noise, drift, or
bad connection were interpolated using spherical interpolation.
The EEG had to have ≤ three electrodes with excessive artifact,
otherwise the EEG was excluded from the analysis. Afterward, the
EEGs were re-referenced to average and independent component
analysis (ICA) was performed using the extended infomax
algorithm (Lee et al., 1999) for each file and components that
contained eye blinks, eye movement, or specific line noise
artifacts were removed manually. Lastly, the EEGs were inspected
visually again and epoch with excessive noise or artifacts were
removed. The investigator who performed the preprocessing was
blinded to the diagnosis. Due to excessive artifacts, we excluded
the following number of EEGs: two from patients with AD, two
from patients with MCI, and one from HC. When comparing
pMCI, and sMCI, one EEG from MCI was excluded due to
clinical progression to vascular dementia.

Microstate Analysis
Before performing the microstate analysis, we first lowpass
filtered the data at 20 Hz with the same settings as mentioned
above. Afterward, we concatenated the epochs for each subject,
i.e., ending up having one continuous EEG file. We performed
the microstates analysis using the Microstate EEGlab Toolbox
(Poulsen et al., 2018). Here, we first extracted the global field
power (GFP) peaks and the settings were a minimum peak
distance of 10 ms, the number of GFP peaks per subject that enter
the segmentation was set at 1000, and GFP peaks that exceeded
2 times the standard deviation of the GFPs of all maps were
excluded. All the GFP peaks from all subjects were aggregated
into one file before segmentation with the goal to maximizing
the similarity between the microstates they would be assigned
to. For segmentation, we used the modified K-means algorithm
since it ignores the polarity of the EEG topography (Lehmann,
1971; Wackermann et al., 1993; Pascual-Marqui et al., 1995).
Here, we predefined the number of microstates as four, which
previously has been reported as the most common (Khanna et al.,
2014) and reproduceable (Khanna et al., 2015). The number of
repetitions were set at 50 and maximum number of iterations
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FIGURE 1 | The global maps that were calculated based the aggregated
dataset from all participants and were back-fitted to each of the EEG
recordings. The labels (A–D) are according to the previous literature in the
field.

were set at 1000. The global maps (see Figure 1) were then
back-fitted to each of the EEG files by labeling each of EEG
segments with the class of microstates it is most familiar. Since
resting state EEG is noisy, it happens that consecutive time
frames are labeled different by change. To avoid this, we rejected
microstate segments shorter than 30 ms. The labels of time frames
in small segments were changed to the next most likely microstate
class, as measured by global map dissimilarity (Poulsen et al.,
2018). After back-fitting the global maps, we calculated global
explained variance (GEV), duration, occurrence, coverage, and
the syntax for EEG files.

As a post hoc examination of the transition probabilities,
we performed the same analysis as previously described in
detail (Lehmann et al., 2005; Nishida et al., 2013). In short, we
calculated the observed transitions based on all transitions and
then the expected transitions based on the occurrence of the
microstates for each subject separately. Afterward, these values
(4 × 4 − 4 = 12) were averaged across subjects for each group,
and the difference was assessed using the chi-square distance. To
statistically test the difference, we performed a permutation test
with 5000 repetitions where the labels “expected” and “observed”
were randomly assigned to the subjects’ sets of the 12 transition
probabilities, and the chi-square distance was computed. The
underlying hypothesis of this test was that if transitions from
one state into the next occurred randomly, observed transition
values would be proportional to the relative occurrence of the
microstate classes.

Statistics
MATLAB (vR2016a) was used for all statistical analyses. When
comparing demographics, number of epochs, average GEV
and cognitive scores for AD, MCI, and HC, we performed
one-way ANOVAs. Independent t-tests were used to compare
baseline cognitive scores between pMCI and sMCI. Since the
microstate results (duration, occurrence, coverage, and syntax)
were non-normally distributed, we log-transformed the data.
Afterward, we performed an ANCOVA with age, gender,
education, and current medication (see Table 1) as covariates.
If we found a significant difference (p-value < 0.05), we
performed independent t-tests (without covariates) between AD
vs. HC, MCI vs. HC, and AD vs. MCI. For the microstate
results from baseline EEG between pMCI vs. sMCI we used an
ANCOVA with the same covariate as mentioned above. The
division of the baseline EEGs into either pMCI and sMCI was
determined on progression after 2nd year follow-up. We used
the data before long-transformation for display in the tables.
For the post hoc analyses between microstate features, we also
calculated effect size measured with Cohen’s d, which is defined
as the difference between two means divided by the standard
deviation of the data.

Furthermore, we performed Spearman’s correlation using
the values from significant differences between AD, MCI, and
HC (coverage, and occurrence for microstate A). We chose to
correlate these values with amyloid, total tau, phosphorylated
tau, MMSE, and ACE.

RESULTS

Demographics, Cognitive Tests, and EEG
Length
Characterization of the patients including cognitive test scores
and EEG length is shown in Table 1. For the performance on
cognitive tests for each visit see Table 2. For the comparison
between demographics, baseline cognitive scores, and CSF
biomarkers for pMCI and sMCI see Table 3. Flow diagram of the
included patients is illustrated in Figure 2.

TABLE 1 | Table showing the characteristics of the participants included in the analysis.

HC (n = 37) AD (n = 15) MCI (n = 25) p-value

Mean age (SD), years 65.7 (6.9) 70.1 (7.8) 71.4 (6.0) 0.006

Female gender, n 17 8 6 0.119

Education, years (SD) 12.7 (3.6) 12.1 (4.0) 10.6 (3.4) 0.105

MMSE, mean (SD) 29.1 (1.0) 26.3 (3.2) 27.6 (1.5) 0.001∗

Antidepressants 1 1 4 0.161

Cholinesterase Inhibitors 0 8 1 0.001∗

Pain killers 2 0 2 0.553

CSF amyloid, mean (SD) 997.5 (320.2) 550.7 (141.2) 782.3 (319.8) 0.001∗

CSF total tau, mean (SD) 303.3 (144.7) 618.4 (186.0) 419.6 (173.9) 0.001∗

CSF phosphorylated tau, mean (SD) 68.5 (103.4) 93.0 (33.3) 59.4 (21.5) 0.384

EEG length, mean seconds (SD) 177.5 (62.1) 147.1 (19.6) 153.6 (44.6) 0.078

HC, healthy controls; AD, Alzheimer’s disease; MCI, mild cognitive impairment; SD, standard deviation; MMSE, Mini-Mental State Examination; CSF, cerebrospinal fluid.
∗ Indicates significant p-value (< 0.05).
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TABLE 2 | The cognitive scores, number of participants that dropped out, and number of patients with MCI that progressed doing follow-up for year 2.

Baseline 2nd year follow-up t-value p-value

HC Dropout/total (n) 0 1/37

Progression/no-progression NR NR

MMSE, mean (SD) 29.08 (0.98) 29.36 (0.83) −1.312 0.194

ACE, mean (SD) 94.70 (3.28) 95.58 (3.32) −1.139 0.259

MDI, mean (SD) 3.62 (2.87) 4.06 (3.30) −0.600 0.551

MCI Dropout/total (n) 0 6/25

Progression/no-progression NR 12/13

MMSE, mean (SD) 27.60 (1.50) 26.00 (3.33) 2.138 0.038∗

ACE, mean (SD) 84.13 (8.17) 79.67 (11.59) 1.464 0.151

MDI, mean (SD) 7.13 (5.91) 10.22 (7.75) −1.450 0.155

NPI, mean (SD) 3.38 (3.49) 5.24 (2.49) −1.844 0.073

ADL, mean (SD) 70.71 (4.84) 66.59 (9.87) 1.544 0.133

AD Dropout/total (n) 0 7/15

Progression/no-progression NR NR

MMSE, mean (SD) 26.27 (3.17) 23.50 (5.53) 1.537 0.139

ACE, mean (SD) 77.60 (12.87) 67.14 (18.85) 1.532 0.141

MDI, mean (SD) 5.67 (4.70) 4.17 (4.62) 0.664 0.515

NPI, mean (SD) 1.5 (1.24) 5.00 (2.45) −4.235 < 0.000∗

ADL, mean (SD) 70.86 (8.16) 67.38 (8.67) 0.942 0.358

Missing values (%) 6.78 26.21

In addition, the percentage of missing values for the cognitive scores can be seen. All cognitive scores have been compared over time using a paired t-test. ∗ Indicates
significant p-value (< 0.05).

TABLE 3 | Demographics, baseline cognitive scores, and CSF results for stable mild cognitive impairment (sMCI) and progressed mild cognitive impairment (pMCI).

Baseline – sMCI
(n = 13)

Baseline – pMCI
(n = 11)

p-value

Mean age (SD), years 72.38 (6.06) 70.27 (6.63) 0.424

Female gender, n 4 2 0.500

Education, years (SD) 10.69 (3.84) 10.55 (3.36) 0.922

CSF amyloid, mean (SD) 820.08 (348.64) 695.75 (309.90) 0.419

CSF total tau, mean (SD) 398.25 (162.10) 461.56 (206.29) 0.440

CSF phosphorylated tau, mean (SD) 60.54 (24.54) 59.89 (19.28) 0.948

MMSE, mean (SD) 27.92 (1.38) 27.09 (1.58) 0.182

ACE, mean (SD) 87.54 (6.08) 79.00 (8.36) 0.010∗

MDI, mean (SD) 8.67 (6.89) 6.00 (4.14) 0.297

NPI, mean (SD) 3.09 (3.96) 3.00 (2.24) 0.952

CDR, mean (SD) 0.50 (0) 0.56 (0.17) 0.281

ADL, mean (SD) 70.60 (6.06) 70.86 (2.73) 0.918

T-tests were performed to compare the two groups for each score separately. ∗ Indicates significant (p-value < 0.05) difference. One patient with MCI showed up during
follow-up to fulfill the criteria for vascular dementia and was not included in the comparison between pMCI and sMCI.

Microstates Results Between HC, MCI,
and AD
The average GEV was not significantly different between HC
(mean = 0.54, SD = 0.08), MCI (mean = 0.53, SD = 0.10), and AD
(mean = 0.56, SD = 0.03), (p-value = 0.3624, F-value = 1.0290).

See Figure 1 for global maps of the microstates that
were used for back-fitting. Between AD, MCI, and HC, we
found significantly different occurrence (p-value = 0.0277,
F-value = 3.7807, degrees of freedom = 68) and coverage
(p-value = 0.0101, F-value = 4.9237, degrees of freedom = 68)
for microstate A, see Table 4. For the post hoc t-test

for occurrence we found a significant difference between
AD, and HC (p-value = 0.0395, t-value = 2.1142, Cohen’s
d = 0.6471) and between MCI, and HC (p-value = 0.0411,
t-value = 2.0874, Cohen’s d = 0.5404). For coverage,
we found a significant difference between AD, and HC
(p-value = 0.0066, t-value = 2.8359, Cohen’s d = 0.8681) and
between MCI, and HC (p-value = 0.0077, t-value = 2.7575,
Cohen’s d = 0.7139).

For the syntax analysis, we found patients with MCI and AD
were significantly more likely to transition from microstates
C to A, and for AD from and D to A compared to HC
when only looking at the observed transition percentages
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FIGURE 2 | Flow diagram showing the number of participants recruited and drop-out over 3 years. Figure reproduced from Musaeus et al. (2018b).

for each microstate separately, see Figure 3. However,
when we performed the permutation test between observed
and expected percentage of transitions, we did not find
any systematic deviation of transition from randomness
(p-value > 0.05). See Table 6 for observed and expected
percentage of transitions.

Microstates Between pMCI and sMCI
No significant differences (p-value < 0.05) were found
between pMCI and sMCI for duration, occurrence,
or coverage. The largest difference in duration was
found for microstate D between pMCI and sMCI
(see Table 5).

We also performed syntax analysis, but no significant
differences were found between pMCI and sMCI.

Correlation
No significant correlations were found between coverage,
and occurrence for microstates A and amyloid, total tau,
phosphorylated tau, MMSE, or ACE.

DISCUSSION

In the current exploratory study, we found that patients with
MCI, and AD compared to HC had significantly higher
occurrence and coverage of microstate A. In addition,
both microstates C and D transitioned significantly more
to microstate A in patients with AD compared to HC,
and microstate C transitioned more to microstate A in
MCI compared to HC. However, we did not find evidence
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that there was any systematic deviation of transition
probabilities from randomness for any of the groups.
Between pMCI, and sMCI, we did not find any significant
differences but the largest difference in duration was
found for microstate D. Lastly, no correlations were
found between microstate A and either biomarkers or
neuropsychological tests.

Previous studies have investigated patients with AD (Ihl
et al., 1993; Dierks et al., 1997; Strik et al., 1997; Stevens and
Kircher, 1998; Nishida et al., 2013) but the majority found a
shorter duration of the microstates in patients suffering from
AD (Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher,
1998) compared to healthy older controls. In the early studies
(Ihl et al., 1993; Dierks et al., 1997; Strik et al., 1997; Stevens
and Kircher, 1998) adaptive segmentation was used, which may
have given rise to different results. However, a more recent study
using clustering analysis (Nishida et al., 2013) did not find any
significant differences between patients with AD and HC, which
could be due to low sample size or as previously suggested
temporal disorganization in patients with AD (Koenig et al.,
2005; Nishida et al., 2013). However, in the current study we
found longer duration in both patients with MCI, and AD with
significant increased occurrence and coverage in microstate A
compared to HC, see Table 4. The main reason for our finding
compared to the recent study not finding any significant results
between AD, and HC (Nishida et al., 2013) may be differences
in methods. Here, we compiled GFP peaks for all participants
before segmentation or it could be due to differences in the
recruitment. However, significantly increased occurrence and
coverage for microstate A has not previously been reported
and the underlying reason may be underlying AD pathology
in the temporal lobes, which has been shown in pathological
studies using Braak staging (Braak and Braak, 1991; Thal et al.,
2002) and studies using follow-up data on the deposition of
amyloid with PiB-PET (Okello et al., 2009; Villemagne et al.,
2011). The increased coverage and occurrence of microstate A
may therefore be due to underlying pathological changes in the
temporal lobes and thereby disruption of the underlying neuronal
networks. Interestingly, no statistically significant differences
were found between MCI, and AD, which may indicate that the
majority of the included patients with MCI had an underlying
AD pathology. Supportive of this assumption, is the observation
that more than half of the MCI cohort progressed significantly
clinically over 2 years follow-up. However, we did not find
any significant changes in the microstate B between AD, MCI,
and HC, which may be due the topographical map did not
involve as large a region of the temporal region as microstate
A. However, in a previous paper using the same data for
spectral power analysis, we found that the changes are more
pronounced on the left side (Musaeus et al., 2018b). This effect
may correspond to previous MR studies showing atrophy being
more pronounced on the left side (Killiany et al., 2000; Baron
et al., 2001) or a previous study showing more pronounced
hypometabolism in the left temporal region using SPECT (Hogh
et al., 2004). On the other hand, this may also simply be due
to low sample size and thereby individual differences affecting
the results. For the syntax analysis, we found that patients TA
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FIGURE 3 | Significant results for the syntax analysis between HC, MCI, and AD. The first column is for HC, second for MCI, and third for AD. The values represent
the percentage of times when microstates C, and D transitioned to the other microstates. The figure shows that both microstates C, and D were more likely to
transition to microstate A in patients with AD and in patients with MCI microstate C transitioned significantly more to microstates A.

TABLE 5 | Table showing the mean, standard deviation (SD), and p-value for comparisons between pMCI, and sMCI for microstates A-D for duration, occurrence,
and coverage.

Duration Occurrence Coverage

pMCI sMCI p-value pMCI sMCI p-value pMCI sMCI p-value

Microstate A, (SD) 75.32 (8.98) 76.22 (10.48) 0.594 2.41 (0.67) 2.47 (0.53) 0.587 0.18 (0.06) 0.19 (0.05) 0.547

Microstate B, (SD) 79.32 (16.66) 76.29 (8.49) 0.296 2.41 (0.96) 2.62 (0.84) 0.654 0.20 (0.12) 0.20 (0.08) 0.463

Microstate C, (SD) 81.59 (18.26) 95.06 (22.59) 0.673 2.61 (0.74) 3.31 (0.48) 0.708 0.22 (0.11) 0.31 (0.07) 0.655

Microstate D, (SD) 116.90 (33.91) 93.08 (26.15) 0.235 3.30 (0.58) 3.15 (0.75) 0.292 0.39 (0.14) 0.30 (0.10) 0.238

with both AD, and MCI were more likely to transition from
microstate C to A, and AD from D to A, see Figure 3.
However, we did not find any systematic deviation of transition
probabilities from randomness, which strongly indicates that the
transitions were in large part due to the increased occurrence
of microstate A.

The microstate classes have also been associated with BOLD
signal and resting state networks obtained with fMRI in multiple

studies (Britz et al., 2010; Van de Ville et al., 2010; Yuan
et al., 2012). One study has associated microstate A with
BOLD activations in the superior and middle temporal gyri
as well as the left middle frontal gyrus (Britz et al., 2010).
Other studies extracted 13 (Yuan et al., 2012) and 10
(Musso et al., 2010) microstates, respectively, and any direct
comparisons were therefore very difficult. By visual inspection,
it is possible that microstate A may correspond to microstate
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TABLE 6 | Observed and expected percentage of transitions.

HC MCI AD

Observed Expected Observed Expected Observed Expected

D to C 0.118 0.111 0.084 0.084 0.1 0.096

D to A 0.083 0.088 0.089 0.089 0.094 0.092

D to B 0.087 0.089 0.088 0.089 0.076 0.081

C to D 0.119 0.108 0.085 0.083 0.099 0.095

C to A 0.072 0.079 0.078 0.079 0.082 0.086

C to B 0.076 0.081 0.077 0.078 0.08 0.079

A to D 0.084 0.08 0.088 0.087 0.092 0.088

A to C 0.074 0.074 0.077 0.077 0.084 0.084

A to B 0.062 0.066 0.085 0.085 0.069 0.073

B to D 0.086 0.082 0.089 0.087 0.079 0.077

B to C 0.075 0.076 0.079 0.078 0.076 0.076

B to A 0.065 0.067 0.082 0.085 0.07 0.072

5 and 13 in a previous publication (Yuan et al., 2012)
and thereby be associated with the default mode network.
These findings suggest that microstate A is associated with
temporal connectivity and may even be related to the
default mode network.

In patients with pMCI and sMCI, we did not find
any significant changes but the largest difference in
duration was found for microstate D, see Table 5.
Microstate D has previously been associated with
BOLD changes in the frontal and parietal areas
measured with fMRI (Britz et al., 2010) and may
reflect underlying pathological changes in patients with
MCI who progress to AD. However, larger studies are
needed to test whether microstate D is in fact different
between pMCI and sMCI.

Previous studies have found an inverse correlation between
microstate lifespan and degree of cognitive impairment (Dierks
et al., 1997; Strik et al., 1997). In the current study, we
did not find any correlation between occurrence or coverage
and either biomarkers or neuropsychological tests. This may
be due to the low sample size or the values extracted
based on the global maps. Larger studies are needed to
investigate whether microstate changes are associated with
neuropsychological findings.

In the current study, we choose to extract four microstates
since this is the most commonly reported and these have
been shown to be reliable (Khanna et al., 2014). However,
the GEV was not significantly different between the three
groups but was low (average GEV = 54%) compared to
other studies with most commonly reporting a GEV >70%
(Michel and Koenig, 2018). The low GEV may be due
to either broad filter settings (2–20 Hz) or simply due to
patient data being noisier. In the current analysis, we included
only the first 1000 GFP peaks to the segmentation and
thereby avoided problems in terms of more contributions from
larger EEG files.

The study indicates that microstate A could be an early disease
marker in patients with MCI, but it has some limitations. Firstly,
we acknowledge the relatively small sample size and we did

not correct for multiple comparisons due to the exploratory
nature of the study. However, these changes suggest that
larger studies will be able to use microstates as a classifier
of disease even at an early stage. In addition, the follow-
up time was short and according to previous studies, annual
clinical progression rate is 15% (Petersen et al., 1999; Saxton
et al., 2009), which means that only 30% of the patients
with MCI should have progressed to AD. However, we found
that 48% progressed, which may in part be due to the
patients with MCI being at a more advanced stage of the
disease at inclusion. Furthermore, we included patients receiving
medication in the analysis, which may have affected the EEG.
Nevertheless, our findings in this small pilot study with affected
microstate A in patients with MCI and possible affection of
microstate D in the transition from MCI to AD may be able to
guide larger studies.

CONCLUSION

In the current exploratory study, we found that patients
with MCI, and AD compared to HC had significantly
higher occurrence and coverage of microstate A. The
changes may correspond to the previous literature of
pathological changes in the temporal regions in patients
with AD and microstate A may correspond to temporal
regions measured with BOLD fMRI. Furthermore, between
pMCI, and sMCI, no significant differences were found
but a tendency of a prolonged duration of microstate D in
patients with pMCI was seen. Larger studies are needed to
confirm these findings.
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