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Functional magnetic resonance imaging (fMRI) at resting state (RS) has been widely used to characterize the main brain networks. Functional connectivity (FC) has been mostly assessed assuming that FC is static across the whole fMRI examination. However, FC is highly variable at a very fast time-scale, as demonstrated by neurophysiological techniques. Time-varying functional connectivity (TVC) is a novel approach that allows capturing reoccurring patterns of interaction among functional brain networks. Aim of this review is to provide a description of the methods currently used to assess TVC on RS fMRI data, and to summarize the main results of studies applying TVC in healthy controls and patients with multiple sclerosis (MS). An overview of the main results obtained in neurodegenerative and psychiatric conditions is also provided. The most popular TVC approach is based on the so-called “sliding windows,” in which the RS fMRI acquisition is divided in small temporal segments (windows). A window of fixed length is shifted over RS fMRI time courses, and data within each window are used to calculate FC and its variability over time. Sliding windows can be combined with clustering techniques to identify recurring FC states or used to assess global TVC properties of large-scale functional networks or specific brain regions. TVC studies have used heterogeneous methodologies so far. Despite this, similar results have been obtained across investigations. In healthy subjects, the default-mode network (DMN) exhibited the highest degree of connectivity dynamism. In MS patients, abnormal global TVC properties and TVC strengths were found mainly in sensorimotor, DMN and salience networks, and were associated with more severe structural MRI damage and with more severe physical and cognitive disability. Conversely, abnormal TVC measures of the temporal network were correlated with better cognitive performances and less severe fatigue. In patients with neurodegenerative and psychiatric conditions, TVC abnormalities of the DMN, attention and executive networks were associated to more severe clinical manifestations. TVC helps to provide novel insights into fundamental properties of functional networks, and improves the understanding of brain reorganization mechanisms. Future technical advances might help to clarify TVC association with disease prognosis and response to treatment.
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INTRODUCTION

The human brain at resting state (RS) exhibits highly structured spontaneous fluctuations in functional magnetic resonance imaging (fMRI) data, which reflect the underlying network architecture (Biswal et al., 2010). RS functional connectivity (FC) captures the temporal associations between such fluctuations, and has been successfully used to characterize the main networks of the brain and map abnormalities of functional network architecture occurring in different neurological conditions. In healthy controls, RS FC strength was found to be associated to age, with RS fluctuations being strongest in adulthood and lowest in children and elderly (Mak et al., 2017). A dependency of connectivity from sex (Biswal et al., 2010; Mak et al., 2017), as well as from cognitive, emotional, and behavioral variables was also detected (Kelly et al., 2012).

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system leading to a progressive increase over time of clinical disability and cognitive impairment (Filippi et al., 2017, 2018). Reorganization of brain functional networks in MS has been shown from the first RS fMRI studies (Lowe et al., 2002, 2008; Rocca et al., 2010; Roosendaal et al., 2010), which is thought to limit the clinical consequences of widespread tissue damage (Filippi et al., 2013a; Sbardella et al., 2015). Cortical reorganization has been demonstrated to be variable across the different stages of the disease, and a progressive exhaustion or inefficiency of the adaptive properties of the cerebral cortex is likely to be among the factors responsible for the worsening of clinical disability (Rocca et al., 2010, 2018; Roosendaal et al., 2010; Loitfelder et al., 2011). In neurodegenerative conditions, RS FC studies showed a progressive and gradual spreading of connectivity changes from a target brain network, reflecting specific behavioral and cognitive dysfunctions (Zhou et al., 2017). In psychiatric diseases, disruption of fronto-parietal network connectivity seems to be the common fingerprint across distinct forms of pathology (Baker et al., 2019).

However, current understanding of the role of functional abnormalities in neurological and psychiatric disorders is still incomplete, mostly due to inconsistencies in the findings from several studies. Specifically, in MS some investigations found trends toward lower RS FC vs. healthy controls in the default-mode (Rocca et al., 2010, 2012, 2018; Bonavita et al., 2011), sensorimotor (Rocca et al., 2018) and subcortical (Liu et al., 2011; Rocca et al., 2018) networks, while in other studies the opposite trends were observed (Roosendaal et al., 2010; Tona et al., 2014; Schoonheim et al., 2015). Similarly, even if RS FC abnormalities were principally located in the core regions hit by pathology, a certain variability of brain areas involved by RS FC changes was detected in neurodegenerative and psychiatric conditions (Busatto, 2013; Weiner et al., 2017).

The wide spectrum of clinical characteristics of MS patients has been considered as one of the main causes for the discrepancies described in RS fMRI literature (Filippi et al., 2013a; Sbardella et al., 2015). However, technical factors might also bias connectivity estimation, including scanner-related signal instabilities, an inappropriate control of confounding covariates, and the application of analysis methods based on inaccurate assumptions.

For instance, one of the main assumptions of classical RS FC assessment methods is that connectivity is static across the entire fMRI examination, e.g., it can be assessed by calculating the mean correlation between whole-length RS fMRI time series (Biswal et al., 2010). However, as widely evident by neurophysiological techniques, brain FC is highly variable at a very fast time-scale. The functioning human brain during any state of wakefulness repeatedly changes between different combinations of cognitive, sensorimotor, attentional, emotional, auditory, and visual-related tasks. Notably, the majority of brain regions experience continuous functional changes even during sleep (Tagliazucchi and van Someren, 2017). Thus, studying time-varying RS FC patterns is likely to shed light not only on physiological processes occurring in healthy subjects, but also to understand clinical manifestations of different neurological and psychiatric conditions. In fact, clinical symptoms associated to these diseases are likely to depend not only from damage to specific brain regions, but also from delayed (or abnormal) communication between brain areas. The study of the temporal reconfigurations of FC occurring within RS fMRI sessions has been defined as time-varying functional connectivity (TVC) (Hutchison et al., 2013; Calhoun et al., 2014; Preti et al., 2017).

The main goal of this review is to summarize the main results obtained using TVC in healthy and diseased populations. A particular focus is given to studies of patients with MS; however, the main findings of investigations performed in neurodegenerative and psychiatric conditions are also reported. The review is structured as follows: in section Methods Used to Assess Time-Varying Functional Connectivity, we present the main approaches developed to investigate TVC using fMRI data, with a main emphasis on the methods applied to study MS patients. Then, we summarize the results obtained applying these methods in healthy controls (section Application of TVC to Healthy Subjects) and in patients with MS (section Application of TVC Techniques to MS). An overview of the results derived from other neurological and psychiatric conditions is also given (section Application of Time-Varying FC Techniques to Psychiatric and Other Neurological Diseases). In the final part (section Current Limitations and Future Directions), current TVC methodological limitations are discussed and possible future developments are presented.

METHODS USED TO ASSESS TIME-VARYING FUNCTIONAL CONNECTIVITY

Several analysis strategies have been applied so far to quantify temporal variations of blood oxygenation level dependent (BOLD) signal fluctuations (Hutchison et al., 2013; Preti et al., 2017). Some strategies aim at capturing variations in inter-regional associations between pairs of brain areas (Sakoglu et al., 2010; Allen et al., 2014), while others try to detect changing patterns of temporal synchrony at a multivariate level, e.g., considering all brain regions at once (Tagliazucchi et al., 2012; Liu and Duyn, 2013). One of the most popular methods for TVC analysis, which is based on the use of the so-called “sliding windows” (Sakoglu et al., 2010; Allen et al., 2014), belongs to the first category, since it relies on the calculation of a series of pairwise correlation coefficients over small shifting segments of fMRI time series.

Despite the great variability of available pipelines, TVC analysis usually requires the performance of the following steps: (1) selection of a set of regions of interest (ROIs) in the brain; (2) assessment of time-varying correlations among the selected ROIs; and (3) extraction of features quantifying connectivity changes over time, as described in details in the next paragraphs.

Selection of Regions of Interest for TVC Analysis

It is important to properly identify the ROIs (which may be areas of the brain, or even entire functional networks) that will be included in TVC analysis. Several factors can influence the choice of ROIs: spatial resolution, the use of a priori hypotheses or data-driven strategies, and the rationale of the experiment, which may focus on selected functional circuits or on the whole brain.

The large majority of studies assessing TVC in MS patients mainly relied on the use of a priori atlases, such as the Automatic Anatomical Labeling (AAL) (Tzourio-Mazoyer et al., 2002) or the Desikan (Desikan et al., 2006) cortical atlas (Leonardi et al., 2013; Lin et al., 2018; van Geest et al., 2018a,b). Some studies built ad-hoc ROIs centered in critical nodes of large-scale brain networks (Bosma et al., 2018). However, a widely used approach in previous literature consists in a ROI data-driven selection through independent component analysis (ICA; Rocca et al., 2010, 2019; Sakoglu et al., 2010; Filippi et al., 2013b; Allen et al., 2014; Damaraju et al., 2014; Yang et al., 2014; Zalesky et al., 2014; Bisecco et al., 2018; Castellazzi et al., 2018; d'Ambrosio et al., 2019) (Figure 1). The broad application of ICA in previous TVC studies can be explained by the flexibility of this approach, which allows to extract ROIs at different spatial resolution according to ICA dimensionality, to perfectly fit the data (avoiding non-linear registrations with a priori atlases, which may be challenging in diseased populations) and to reduce the impact of physiological and motion-related noise.
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FIGURE 1. Schematic representation of the post-processing steps used in the assessment of time-varying functional connectivity (TVC). Top row: selection of regions of interest for TVC analysis, which can be done using data-driven approaches (e.g., independent component analysis, A) or using a priori atlases (B). Middle row: assessment of time-varying correlations between fMRI time series. The most popular approach consists in using a sliding-window analysis (C); alternative approaches, such as time-frequency analysis (D) or point-process analysis (E) have been also proposed. Bottom row: extraction of features quantifying connectivity changes over time, which can be done using several techniques, such as graph theory (F), k-means clustering to estimate recurring TVC states (G), or fuzzy meta-state analysis (H). ICA, independent component analysis; AAL, automatic anatomical labeling; ACC, anterior cingulate cortex; CAP, co-activation pattern; MCC, middle cingulate cortex; PCC, posterior cingulate cortex; SPG, superior parietal gyrus; MFG, middle frontal gyrus; R, right; L, left.



Since ROIs identified by “static” a priori atlases may not reflect significant connectivity variations occurring within brain regions at short time scales (Ryyppo et al., 2018), recent studies have suggested that incorporating information of time-varying connectivity between neighboring voxels to parcellate the brain may improve accuracy of TVC analyses (Preti and Van De Ville, 2017; Ryyppo et al., 2018).

Assessment of Time-Varying Correlations Among Brain Regions

Sliding Window Analysis

The most popular strategy used to examine time-varying correlations between RS fMRI time series relies on the use of sliding windows (Sakoglu et al., 2010; Allen et al., 2014). In this approach, a time window of fixed length is selected, and correlations between pairs of fMRI time series are calculated using data within that window. Then, the window is shifted in time by a certain number of time points, and correlations are re-assessed on the new data. This procedure results in a series of pair-wise correlation matrices that describe the time-resolved behavior of connectivity over the entire duration of the fMRI experiment (Allen et al., 2014; Figure 1).

The choice of an appropriate length for sliding windows is crucial: too short time segments may introduce spurious fluctuations associated with intrinsic fMRI signal instability, while with increased window size TVC estimation may become too similar to the classic static FC (Leonardi and Van De Ville, 2015; Preti et al., 2017). Different validation analyses recommended to set window length around 30–60 s (or the equivalent time expressed as repetition times, TRs), demonstrating consistent reproducibility of the obtained results (Allen et al., 2014; Damaraju et al., 2014; Rashid et al., 2014, 2016; Zalesky et al., 2014; Leonardi and Van De Ville, 2015; Qin et al., 2015; Zalesky and Breakspear, 2015; Choe et al., 2017; Zhang C. et al., 2018).

Once sliding windows correlation matrices have been produced, different strategies can be applied to extract features describing connectivity reorganization through time inside the data (Leonardi et al., 2013; Allen et al., 2014; Miller et al., 2016), as described in details in section Extraction of Features Quantifying Time-Varying Connectivity.

Beyond Sliding-Window Analysis

A variety of approaches alternative to sliding windows have been developed to quantify TVC in fMRI data (Preti et al., 2017). For instance, time-frequency decomposition has been used to represent correlations between two fMRI time series in the joint time and frequency domain (Chang and Glover, 2010; Yaesoubi et al., 2015a; Figure 1). Point-process analysis allowed to detect recurring patterns of co-activation between brain regions from a small fraction of the total scans of a RS fMRI experiment (Tagliazucchi et al., 2012; Liu and Duyn, 2013). Phase coherence connectivity has been proposed to calculate RS FC at each recorded fMRI time point (Deco and Kringelbach, 2016).

In MS studies, two alternative methods to sliding windows have been applied. One study (Bosma et al., 2018) used dynamic conditional correlations (DCC) to quantify TVC. DCC were originally proposed to study fluctuations of financial time series (Engle, 2002) and subsequently adapted to neuroimaging data to quantify time-varying variances and correlations between multivariate RS fMRI time series (Lindquist et al., 2014). DCC overcome some limitations intrinsic to sliding-window techniques, since they do not depend from any arbitrary window length and do not give the same weight to all time points within the window, ignoring older observations. Moreover, DCC are not easily confused by changes of correlation occurring in fMRI time series merely due to random noise (Lindquist et al., 2014).

Another study (Zhou et al., 2016) quantified connectivity reorganization over time using brain entropy (BEN). Entropy is a statistical and physical index that measures irregularity of a time-varying system (Sandler, 2006). In RS fMRI data, voxel-wise assessments of entropy were performed by calculating sample entropy, defined as the negative logarithm of the probability that if two time series of length m have a correlation < r, then two time series of length m+1 also have a correlation < r. A higher entropy indicates increased randomness of a system, meaning that the time-varying system activity is less predictable and less organized (Wang et al., 2014).

Extraction of Features Quantifying Time-Varying Connectivity

Sliding-window (or alternative) techniques produce a large amount of correlation data, calculated on several time segments. Some features have then to be extracted from this big data mass, to summarize to what extent functional relationships reorganize through time. The simplest summary TVC statistic is standard deviation (or variance) of sliding-window correlation time series (Sakoglu et al., 2010; Choe et al., 2017) or of DCC time series (Lindquist et al., 2014; Bosma et al., 2018). The mean TVC (Huang et al., 2019) or the sum of absolute differences in pair-wise connectivity between consecutive windows have also been used as a summary TVC measure (van Geest et al., 2018a,b). Another interesting metric assessing temporal variability of BOLD fluctuations is the so-called amplitude of low-frequency fluctuations functional connectivity (ALFF-FC) (Shen et al., 2016), which sums up the spectral content of low-frequency RS fluctuations through consecutive sliding windows.

Flexibility metrics quantifying time-varying global and regional network properties were also calculated using a graph theory framework (Lin et al., 2018), as described in section Graph Theoretical Analysis. More complex strategies rely on the identification of connectivity patterns that reoccur over time during the course of the experiment. Reoccurring RS FC patterns, often called “states,” can be determined using clustering techniques (Allen et al., 2014), principal component analysis (Leonardi et al., 2013) or tensor decomposition (Mokhtari et al., 2018a), as detailed in section Definition of Reoccurring Connectivity States. Finally, approaches overcoming a rigid data decomposition into “fixed” connectivity states have been recently proposed (Miller et al., 2016), as described in detail in section Fuzzy Meta-State Analysis.

Graph Theoretical Analysis

Graph theory analysis can be applied to series of matrices derived from sliding-window analysis (Figure 1). Besides the classical network metrics (Rubinov and Sporns, 2010), which can be quantified as a function of time (Fukushima and Sporns, 2018), more specific metrics can be used to assess time-varying network structure. For instance, network power measures the summed values of TVC pairs in all windows, and density estimates how dense, on average, connections are over time. Specific time-resolved network features include network variation, which describes how different are connectivity values between two adjacent windows, flexibility of homologous, non-homologous and intra-hemispheric connections, which quantify connectivity differences between two consecutive windows for the specified type of connections (Lin et al., 2018), or the Fiedler value, which summarizes how well-connected a network is (Cai J. et al., 2018). Recently, novel approaches have been proposed to improve modeling of brain network TVC using graph theory (Khambhati et al., 2018). Such modeling strategies aim to assess time-varying patterns of connectivity (e.g., dynamic community detection or non-negative matrix factorization), time-varying patterns of activity, or a combination of both. A detailed review of these methods is reported in Khambhati et al. (2018).

Definition of Reoccurring Connectivity States

One of the most diffuse approaches used to identify reoccurring FC states from sliding-window matrices is based on hard-clustering algorithms (Preti et al., 2017), such as the k-means algorithm (Allen et al., 2014). In this approach, data are partitioned into different connectivity states by maximizing a cluster validity index, which describes the between-cluster/within-cluster distance ratio. In this way, identified recurring connectivity states have a minimal degree of overlap (Allen et al., 2014). The amount of time spent in each recurring state (dwell time) and the number of transitions between states can be calculated and compared between groups (Figure 1). Between-group comparisons can be also performed on pair-wise TVC strengths within each detected state (Allen et al., 2014).

Other ways to identify FC states from sliding-window data rely on principal component analysis (PCA) (Leonardi et al., 2013) or tensor decomposition (Mokhtari et al., 2018a). PCA is able to decompose sliding-window matrices into patterns of correlated connectivities (called “eigenconnectivities”) between brain regions. Each eigenconnectivity pattern is characterized by a “contribution” (which can be thought as the equivalent of dwell times for k-means clustering analysis), which varies over time across subjects. Between-group comparisons of such contributions may allow to characterize TVC abnormalities in patients' populations (Leonardi et al., 2013). Similarly, tensor decomposition (Mokhtari et al., 2018a) is able to decompose sliding-window connectivity matrices in a set of components, each with an associated weight, which explain the majority of data content.

Fuzzy Meta-State Analysis

In hard-clustering analysis, windowed correlation matrices are forced to fit into determined TVC recurring states. However, the existence of just one state at each time point may be a too rigid assumption. A more flexible approach is to consider the possibility that multiple states might be represented to varying degrees at the same time point. The contribution of each state for a specific time is characterized by a vector that is called a “meta-state” (Miller et al., 2016). Four different measures of neural reorganization over time can be associated to such meta-states and can be calculated for each study subject: (1) the total number of distinct meta-states that a subject assumes during the experiment; (2) the number of changes between distinct meta-states; (3) the range of meta-states occupied in the n-dimensional meta-state space during the entire RS fMRI experiment; and (4) the total distance traveled in the n-dimensional state space (Figure 1).

APPLICATION OF TVC TO HEALTHY SUBJECTS

Main TVC Findings in Healthy Subjects

The results of the main studies assessing TVC in healthy controls are summarized in Table 1.


Table 1. Summary of studies assessing time-varying resting state functional connectivity in healthy subjects and simulated data.
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In healthy subjects, it was always possible to identify a certain number of recurring connectivity configurations (from 3 to 12, depending on the method applied and on RS fMRI sequence settings). The DMN was one of the functional networks showing the highest degree of connectivity change over time, both when analyzing within-DMN TVC (Chang and Glover, 2010; Liu and Duyn, 2013; Lindquist et al., 2014; Zalesky et al., 2014) and when considering connections between the DMN and other crucial cognitive networks (Chang and Glover, 2010; Liu and Duyn, 2013; Allen et al., 2014; Marusak et al., 2017; Vidaurre et al., 2018). High dynamism was also observed in multimodal brain regions, involved in high-order emotional and cognitive processing (Yang et al., 2014; Zalesky et al., 2014; Chen S. et al., 2016; Marusak et al., 2017; Vidaurre et al., 2018). Such quick temporal reconfigurations may be required to facilitate transient psychological states between different brain functions (starting, maintenance or conclusion of the different attentional, cognitive, and executive tasks). Conversely, networks involved in sensory and motor processing showed more “static” connectivity profiles (Allen et al., 2014; Zalesky et al., 2014).

TVC was also useful to characterize age- and sex-related features. For instance, it was shown that children have higher TVC between the DMN and other subnetworks than young adults, but that young adults have stronger TVC than children among sensorimotor, executive control, and auditory networks (Cai B. et al., 2018). Moreover, variability of TVC among cognitive networks increased with age (Marusak et al., 2017). Overall, these results suggest that maturation is associated with a higher flexibility of functional connections. More discrepancies were found when analyzing sex-related characteristics of connectivity dynamics (Yaesoubi et al., 2015a,b; Nini et al., 2017). While some studies found no differences in TVC configurations between males and females (Yaesoubi et al., 2015b), other studies found that connectivity configurations were different between genders (Yaesoubi et al., 2015a,b; Nini et al., 2017): males showed a higher connectivity flexibility than females in the amygdala, hippocampus, fusiform, and temporal gyrus, whereas the opposite trend was found in the middle cingulate cortex, thalamus, precuneus, and some temporal-occipital regions (Nini et al., 2017).

TVC constitutes a complex and novel methodology. Studies from healthy controls also served to test how reliable and reproducible TVC results were across scanning sessions. This was the goal of some recent investigations (Choe et al., 2017; Smith et al., 2018; Zhang C. et al., 2018), which found that TVC metrics were reliable across days (Smith et al., 2018) and had an overall good reproducibility (Choe et al., 2017; Smith et al., 2018; Zhang C. et al., 2018), even if lower than that of the corresponding static FC metrics (Zhang C. et al., 2018). The highest reliability was found for intra-network connections in the DMN, fronto-parietal, sensorimotor, and occipital networks (Zhang C. et al., 2018).

To better investigate the intrinsic nature of TVC states and their electrophysiological correlates, simultaneously acquired electroencephalography (EEG) and RS fMRI data were analyzed and concurrent temporal variations were assessed (Allen et al., 2017). Results indicated that connectivity states detected by TVC analysis correspond to neuro-electric brain activity with distinct spectral signatures. Moreover, eyes open/eyes closed conditions show some common and some different connectivity patterns, with a greater integration within sensory systems, as well as reduced modularity and increased global efficiency, in the eyes-closed compared to the eyes-open condition (Allen et al., 2017). These results integrate and complete previous EGG/RS fMRI studies, which showed a variable TVC configuration between wakefulness and different stages of sleep (Tagliazucchi et al., 2013), with temporal memory and long-range temporal dependencies decreasing from wakefulness to deep non-rapid eye movement sleep.

Correlations Between TVC and Behavioral/Neuropsychological Performances in Healthy Subjects

To date, correlations between TVC measures and cognitive performances in healthy controls have been evaluated by one study (Cabral et al., 2017), which found that worse cognitive performance in healthy elderly was associated with a lower permanence in a TVC state characterized by strong, positive connectivity. These results suggest that a more static pattern of TVC may characterize poor vs. good performers.

Another study (Shi et al., 2018) analyzed the correlation between TVC and scores obtained at questionnaires of subjective well-being, and found that subjects with higher well-being scores spent less time in low cross-network and strong within-network connectivity states. The total number of transitions between states was also higher in subjects with high well-being scores, suggesting a more efficient transfer of information between networks in this group (Shi et al., 2018). Finally, two studies assessing the relationship between TVC and mindfulness in healthy adults (Lim et al., 2018) and children (Marusak et al., 2018) had similar conclusions, showing that high-mindfulness subjects spent more time in highly-connected states and switched more frequently between states than low-mindfulness subjects, suggesting a more efficient and flexible connectivity in the first group.

APPLICATION OF TVC TECHNIQUES TO MS

Main TVC Findings in MS Patients

The main studies assessing TVC abnormalities in MS patients are summarized in Table 2. As it is evident from this table, TVC methodologies applied in MS investigations were quite heterogeneous. Despite this, results of different studies share some common points.


Table 2. Summary of studies assessing time-varying resting state functional connectivity modifications in multiple sclerosis (MS).
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First of all, networks showing the greatest amount of TVC abnormalities in MS patients in comparison to healthy subjects were the DMN, salience, executive and sensorimotor networks (Leonardi et al., 2013; Zhou et al., 2016; Bosma et al., 2018; Lin et al., 2018; d'Ambrosio et al., 2019; Rocca et al., 2019).

The regional pattern of TVC abnormalities was quite complex, and regions involved by TVC changes were variable across studies, probably depending from the used TVC approach and patients' clinical characteristics. The analysis of eigenconnectivity patterns helped to identify the presence of stronger TVC in parietal regions and weaker TVC in frontal/subcortical regions in relapsing-remitting MS patients with mild to moderate disability compared to healthy controls (Leonardi et al., 2013). These patients also showed more frequently strong connections in temporal and parietal (angular gyrus) regions as well as weaker connections in motor and amygdalar regions vs. control subjects (Leonardi et al., 2013). Another study assessing TVC abnormalities in relapsing-remitting MS patients with mild disability found an increased BEN (corresponding to an increased connectivity disorganization) of regions involved in motor, executive and spatial coordination, as well as reduced BEN in memory brain areas (including temporal and hippocampal cortices) and relay areas as the cerebellum or the brainstem compared to healthy subjects (Zhou et al., 2016).

A recent study using DCC to quantify TVC (Bosma et al., 2018) confirmed the results obtained by Leonardi et al. (2013), and found an increased BOLD signal variability in posterior regions of the DMN in MS patients vs. controls. The same study also found an increased TVC between the salience network and the ascending nociceptive pathway. Conversely, divergent results were obtained by Lin et al. (2018), who showed an overall reduction of network variation in MS patients compared to healthy controls, suggesting a globally more “static” FC configuration, but at the same time found an increased flexibility of interhemispheric connections, which was interpreted as a compensatory mechanism for the decreased global connectivity. A complex pattern of increased and decreased TVC was also shown by d'Ambrosio et al. (2019), who found, in a multicenter study, a selective TVC increase between subcortical and visual/cognitive networks, and a TVC decrease between subcortical and sensorimotor networks in relapsing-remitting MS patients compared to healthy controls (d'Ambrosio et al., 2019).

Specific investigations of crucial systems involved in cognitive functions were performed by Van Geest et al., who studied TVC of the hippocampal network (Lin et al., 2018; van Geest et al., 2018a,b) and of the DMN (Lin et al., 2018; van Geest et al., 2018a,b) and by Huang et al., who investigated the attention network (Huang et al., 2019). Overall, hippocampal and DMN TVC were not different between MS patients and control subjects; however, including TVC measures in multivariate statistical models contributed to explain the performance of MS patients at visuospatial memory (Lin et al., 2018; van Geest et al., 2018a,b) and information processing speed (Lin et al., 2018; van Geest et al., 2018a,b) tasks. Huang et al. detected a complex pattern of TVC abnormalities, which was characterized by a TVC decrease within the dorsal and ventral attention networks, as well as TVC increase between the same networks (Huang et al., 2019).

Changes in TVC at the earliest stages of the disease have been rarely assessed, but interesting results have been observed. Patients with clinically isolated syndrome (CIS) suggestive of MS exhibited, early after the first demyelinating attack, reduced TVC in the functional networks more affected by the clinical onset, compared to healthy controls (Rocca et al., 2019). These patients also showed, in the first 2 years after the clinical event, a progressive increase over time of TVC strength, mainly between the DMN and sensorimotor/visual/cognitive networks, combined with a progressive increase over time of global fuzzy meta-state dynamism (Rocca et al., 2019).

Overall, these results suggest that, at the beginning of the disease, TVC dysfunctions have a specific correspondence with clinical symptoms. Then, a progressive increase of TVC oscillations occurs, probably trying to compensate disease-related damage. This initial phase seems to be followed by a loss of coordination and flexibility among brain regions in MS patients (Leonardi et al., 2013; Zhou et al., 2016; Lin et al., 2018; d'Ambrosio et al., 2019), which may be compensated by local increased fluctuations between specific areas (Lin et al., 2018;van Geest et al., 2018a,b).

Recent studies tried to investigate TVC changes in MS populations affected by specific clinical manifestations. In details, cognitive impairment in patients with MS was associated to reduced TVC between subcortical and DMN areas, as well as to reduced global dynamism, compared to cognitively preserved patients (d'Ambrosio et al., 2019). Patients with MS suffering from neuropathic pain expressed selectively reduced TVC strength in the salience-descending nociceptive circuit (Bosma et al., 2018), whereas in patients without such neuropathic pain, TVC strength was increased in the same network (Bosma et al., 2018).

The large majority of the above-mentioned studies assessed TVC changes in relapsing-remitting MS patients, while detailed investigations of TVC abnormalities occurring in progressive MS phenotypes or over the course of the disease, are still missing.

Correlations Between TVC and Clinical, Neuropsychological, and Structural MRI Variables in MS

Different correlation analyses have been performed in MS patients, in order to understand the possible association between TVC abnormalities and motor and cognitive performances, as well as with specific clinical symptoms such as fatigue.

A higher expanded disability status scale (EDSS) score, reflecting more severe clinical disability, was found to be correlated with increased BEN in the bilateral supplementary motor area and in the right precentral operculum (Zhou et al., 2016), as well as with a more rigid (less fluid) global connectivity in MS patients (Lin et al., 2018). Conversely, other studies failed to show significant associations between TVC abnormalities and disability, probably because of the relatively low sample size and/or a narrow EDSS range (Leonardi et al., 2013).

Several correlations have been detected between TVC abnormalities and MS patients' cognitive performances. In particular, better scores in tests involving executive control functions and processing speed ability were correlated with a higher global network dynamism (Lin et al., 2018). Similar findings were shown by van Geest et al. (2018a), who found that a higher dynamism in the DMN during an information processing speed task vs. a resting state condition was associated with better information processing speed performances. These results are in agreement with the reduced network dynamics observed in cognitively impaired vs. preserved MS patients (d'Ambrosio et al., 2019). Conversely, a lower hippocampal TVC contributed to explain, at least partially, better verbal learning, visuospatial learning, and memory performances (van Geest et al., 2018b).

Lower fatigue was associated with reduced TVC in the parahippocampal gyrus, right posterior cerebellum, and brainstem (Zhou et al., 2016). Pain interference has been associated with increased TVC in the posterior cingulate cortex, an associative region involved in the salience and nociceptive networks and DMN (Bosma et al., 2018).

A few studies investigated the relationship between TVC and white matter lesions or MS-related structural damage. Decreased TVC between parietal and fronto-temporal regions of the attention network was associated with an higher lesion load in relapsing-remitting MS patients (Huang et al., 2019). A significant association has been demonstrated between reduced global dynamism in cognitively impaired MS patients and brain atrophy (d'Ambrosio et al., 2019), as well as between increased TVC and diffuse microstructural damage in relapsing-remitting MS patients, quantified as a higher mean diffusivity on diffusion-tensor MRI (Zhou et al., 2016). At the earliest stages of MS, a progressive increase of TVC over 2 years of follow-up was associated with a lower white matter lesion volume change over the same period of time (Rocca et al., 2019).

In summary, in MS patients, abnormal global TVC properties of the sensorimotor, DMN and salience networks were associated with more severe tissue damage at structural MRI, more severe clinical disability, worse cognitive performance and pain interference, evidencing a maladaptive neuronal response to direct disease-related damage. Conversely, abnormal TVC properties of the temporal network and relay areas as the cerebellum and brainstem were correlated with better cognitive performances and less severe fatigue, suggesting a compensatory role of TVC changes.

APPLICATION OF TIME-VARYING FC TECHNIQUES TO PSYCHIATRIC AND OTHER NEUROLOGICAL DISEASES

Main Findings in Psychiatric and Other Neurological Diseases

The main studies discussed in this section are summarized in Table 3.


Table 3. Summary of studies assessing time-varying resting state functional connectivity modifications in different psychiatric and neurological pathologies (excluding multiple sclerosis).
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Several studies tried to characterize TVC abnormalities present in different psychiatric and neurological diseases, sometimes looking for an early diagnostic biomarker (Du et al., 2018; Mennigen et al., 2018). Modification of TVC strength, dwell time or number of transitions between states varied according to the disease status in patients affected by bipolar disorder (Rashid et al., 2014, 2016), schizophrenia (Yu et al., 2015; Cetin et al., 2016; Rashid et al., 2016; Gazula et al., 2018; Yue et al., 2018; Zhang W. et al., 2018), depression (Liao et al., 2018; Qiu et al., 2018; Zhi et al., 2018), autism (He et al., 2018; Rashid et al., 2018a), stroke (Chen et al., 2018), mild traumatic brain injury (Vergara et al., 2018), epilepsy (Ridley et al., 2017; Klugah-Brown et al., 2018), Alzheimer's disease (Quevenco et al., 2017; Jie et al., 2018), and Parkinson's disease (Engels et al., 2018).

In psychiatric diseases, widespread TVC abnormalities have been found. Patients with bipolar disorder and major depression expressed TVC abnormalities mainly in executive (Rashid et al., 2014; Du et al., 2017), amygdala/salience (Qiu et al., 2018; Zhi et al., 2018), and salience/executive regions (Mokhtari et al., 2018a,b). Schizophrenia patients showed a complex pattern of decreased and increased TVC mainly in the DMN (Sakoglu et al., 2010; Abrol et al., 2017), and in frontal, parietal, auditory (Damaraju et al., 2014; Rashid et al., 2014; Du et al., 2017, 2018; Sun et al., 2018), visual (Fu et al., 2018; Rashid et al., 2018b; Sun et al., 2018), and thalamic areas (Damaraju et al., 2014; Rashid et al., 2014, 2018b; Du et al., 2018). Schizophrenia patients spent less time and made fewer transitions between states characterized by weak correlations between the thalami and sense-related brain regions (Damaraju et al., 2014). They also showed more lagged correlations between the DMN and sensory networks (Yaesoubi et al., 2017a) and a higher occupancy rate of globally disconnected states (Yu et al., 2015; Cetin et al., 2016; Rashid et al., 2016; Gazula et al., 2018; Yue et al., 2018; Zhang W. et al., 2018). In children with autism spectrum disorders, TVC was mainly decreased in DMN and insular areas (Falahpour et al., 2016; Guo et al., 2018; He et al., 2018; Rashid et al., 2018a).

In neurological disorders, TVC abnormalities have been mainly observed in areas directly affected by the disease. For example, subcortical stroke and mild traumatic brain injury patients showed TVC abnormalities in sensorimotor networks (Chen et al., 2018; Vergara et al., 2018). Patients with myoclonic/frontal lobe epilepsy showed reduced TVC mainly in frontal and parietal brain regions, whereas patients with temporal lobe epilepsy experienced TVC decrease mainly in temporal regions (Ridley et al., 2017; Klugah-Brown et al., 2018; Wang et al., 2018). Generalized epilepsy was related to TVC strength changes mainly in the DMN and cognitive networks (Liu et al., 2017; Li et al., 2018). Patients suffering from Alzheimer's disease had reduced regional (nodal) TVC (Alderson et al., 2018) and alterations in inter-network TVC of the anterior and posterior regions of the DMN (Jones et al., 2012; Quevenco et al., 2017), the frontal cortex and temporal areas (Jie et al., 2018). Patients with Parkinson's disease showed TVC changes mainly in sensorimotor, executive, cognitive (Liu et al., 2018), visual, and DMN areas (Diez-Cirarda et al., 2018), combined with reduced global and nodal TVC (Cai J. et al., 2018; Diez-Cirarda et al., 2018).

Correlations Between TVC and Clinical, Neuropsychological, and Structural MRI Variables in Psychiatric and Other Neurological Diseases

In schizophrenia patients, reduced global time-resolved graph metrics have been related to structural disease-related damage (Yu et al., 2015), while abnormalities in TVC of auditory brain regions have been correlated with the presence of auditory hallucinations (Sun et al., 2018). Hallucinations were also correlated with a more rigid, reduced global dynamism (Miller et al., 2016; Mennigen et al., 2018). Autistic behavior and diagnosis were associated with longer dwell times in a globally disconnected state (Rashid et al., 2018a).

In patients with temporal lobe epilepsy, recurring states characterized by high inter-network TVC expressed reduced dwell time and correlated with an early seizure onset (Klugah-Brown et al., 2018). Interestingly, reduced TVC in the ictal irritative zone was associated to an intracranial EEG connectivity increase in the same epileptic region in alpha, beta and gamma bands (Ridley et al., 2017). In patients with Alzheimer's disease, TVC abnormalities between the anterior and the posterior DMN areas correlated with poorer episodic memory performance (Quevenco et al., 2017), while reductions in global TVC were associated with microstructural tissue damage (Alderson et al., 2018). In patients with Parkinson's disease, TVC abnormalities in the DMN have been associated with memory performance (Engels et al., 2018), while TVC alterations in the putamen were associated with clinical disability (Liu et al., 2018).

At this moment, TVC approaches are applicable only at a group level. However, some preliminary investigations have successfully used TVC abnormalities to classify schizophrenia patients from bipolar patients and/or healthy controls (Cetin et al., 2016; Rashid et al., 2016), suggesting a future application of TVC at an individual level.

CURRENT LIMITATIONS AND FUTURE DIRECTIONS

The field of TVC is relatively new: all main technical developments have been achieved in the last 9 years. Nonetheless, in such short period of time TVC has provided greater insights into fundamental properties of functional networks, and has improved knowledge of the pathophysiological brain reorganization occurring in MS and other neurological and psychiatric diseases.

However, TVC methodology presents some inherent limitations that are likely to be overcome in the next future. Further investigations are also needed to better understand the physiological meaning of TVC fluctuations and their electrophysiological correlates.

How Reliably Can Time-Varying Fluctuations Be Detected From fMRI Data?

One of the main pitfalls of current TVC analysis approaches consists in the fact that the mere presence of signal fluctuations in an fMRI time series is often taken as an evidence of TVC (Hindriks et al., 2016). This might be not necessarily true: FC values fluctuating over time might be observed just because of noise, or statistical uncertainty. Several measures have been employed to test the effective presence of FC variability in fMRI time series, including variance (Sakoglu et al., 2010), standard deviation (Chang and Glover, 2010), kurtosis (Laumann et al., 2017), or more complex, non-linear measures (Zalesky et al., 2014). Usually, these metrics are compared between real fMRI data and simulated data, constructed ad-hoc to have a static FC. If the test is significant, the null hypothesis of stationarity can be rejected, and TVC can be considered to be effectively present in the data.

Results of studies assessing evidence of TVC in RS fMRI data were quite disappointing, showing that the power of TVC detection in typical 10-min RS fMRI acquisitions was relatively low (Leonardi and Van De Ville, 2015; Hindriks et al., 2016; Zhang C. et al., 2018). Solutions to improve the likelihood of detecting TVC might be the choice of appropriate lengths for sliding windows (Leonardi and Van De Ville, 2015) or the concatenation of more RS fMRI sessions (Hindriks et al., 2016). On the other hand, it is possible that measures used to test the hypothesis of dynamism so far might be not fully appropriate (Miller et al., 2018). Indeed, novel wavelet-based metrics (Miller et al., 2018) seem to be more sensitive to capture non-stationarities present in real RS fMRI data.

Improving Temporal Resolution of fMRI Acquisitions

Results of TVC also depend upon the temporal resolution used to acquire fMRI data. TVC studies usually investigate modifications in RS FC occurring within seconds, by using fMRI volumes acquired with TRs ranging from 1 s to 3 s (Chang and Glover, 2010; Allen et al., 2017; Cabral et al., 2017; Nini et al., 2017; Yaesoubi et al., 2017b; Marusak et al., 2018). Investigations performed on RS fMRI data acquired with a higher sampling rate, e.g., thanks to the use of simultaneous multi-slice imaging techniques, may be more powerful in detecting changing connectivity reconfigurations over time (Choe et al., 2017). Also, the use of ultra-fast fMRI acquisition techniques, such as inverse imaging (Lin et al., 2006), generalized inverse imaging (Boyacioglu and Barth, 2013), or multi-slab echo-volumar imaging (Posse et al., 2013), might constitute an important improvement for TVC. Ultra-fast fMRI allows to acquire a single functional volume covering the whole brain in <300 ms, resembling the results of magnetoencephalography studies (Asslander et al., 2013). Therefore, fMRI scans acquired with ultra-fast techniques do not include physiological aliasing and allow the detection of more accurate BOLD signal responses to neural activity. Seminal studies already showed that ultra-fast fMRI significantly enhanced the sensitivity of mapping RS FC dynamics (Posse et al., 2013).

Improving TVC Pre- and Post-processing

Regardless of the analysis method, the signal-to-noise ratio of the BOLD signal in RS fMRI is low, especially in small temporal segments (Handwerker et al., 2012). Non-neural processes contaminating RS fMRI time series can affect TVC estimates (Hutchison et al., 2013; Murphy et al., 2013; Preti and Van De Ville, 2017). These confounds often include the effects of motion, cardiac and respiratory activity, and fluctuations in arterial CO2 concentration (Hutchison et al., 2013; Murphy et al., 2013; Nikolaou et al., 2016; Glomb et al., 2018). Global signal regression (GSR) may be useful to better denoise RS fMRI time series (Murphy and Fox, 2017); however, it was shown to slightly reduce reliability of the estimated TVC connectivity states (Smith et al., 2018). Moreover, the impact of GSR was spatially heterogeneous across brain regions and was dependent from the amount of global signal magnitude across windows (Xu et al., 2018). As such, caution is suggested in applying GSR to sliding-window correlation analyses, and a control of subjects' mental fluctuations during RS fMRI scanning is recommended (Xu et al., 2018). By applying accurate pre-processing steps on the fMRI data, the rate of artifacts present in the TVC analyses will be minimized (Murphy et al., 2013), thus increasing the quality of the observed findings.

Improvements can still be done not only to pre-processing of RS fMRI time series, but also to TVC post-processing, e.g., by implementing new, accurate methods to estimate changing connectivity over time. Recent papers proposed new approaches to analyse TVC, which aim at capturing change points of connectivity in functional correlation matrices (Cribben et al., 2012; Jeong et al., 2016; Kundu et al., 2018). Other studies introduced tensor-based multilayer community detection algorithms, which are able to describe how organization of functional networks evolves over time (Al-Sharoa et al., 2019). All these methods might be useful to complement TVC information obtained by using more standard, state-of-art methods, such as sliding-window analysis. Finally, improvements can still be done in statistical thresholding strategies. TVC assessment relies on the use of a massive amount of pairwise correlations, stored in series of connectivity matrices, and the best way to perform a proper adjustment for multiple comparisons is still an open issue. Traditional methods of correction for multiple comparisons (Friston et al., 1994) may be too conservative and may suppress all significant results; therefore, different approaches of adjustment for multiple comparisons might be more suitable. For instance, network-based statistic (NBS, Zalesky et al., 2010) was proposed as an alternative method of multiple comparison correction in studies using graph theory, which suffers of similar drawbacks as TVC. NBS has been rarely applied in TVC studies (Diez-Cirarda et al., 2018), probably because the process to construct “components” is not straightforward when connectivity matrices change over time. Future studies investigating new strategies of adjustment for multiple comparisons may propose new solutions for this issue.

Functional Interpretation of TVC Findings

Although some studies have tried to provide a functional interpretation of TVC output, several questions remain to be answered by future work. Preliminary data found some degree of correspondence between EEG rhythms and TVC frequency content (Allen et al., 2017) and hypothesized that some of the TVC states observed in healthy subjects, especially at the end of RS fMRI sessions, might be related to drowsiness or light sleep (Allen et al., 2014, 2017). A preliminary study assessing contemporary TVC and EEG registrations confirmed the presence of connectivity changes over different phases of sleep, with long-range temporal dependencies becoming weaker during deep sleep (Tagliazucchi et al., 2013). Still, it is not clear why larger TVC oscillations have been registered in functional networks at the beginning of RS fMRI sessions (Allen et al., 2014, 2017). Theories hypothesizing the brain functional “anticipation” (e.g., brain predisposition to switch quickly between different psychological states; Zalesky et al., 2014) might partially explain why more “specialized” functional networks (sensorimotor, auditory, visual) express more constant TVC behavior, while more complex, multi-modal networks express more dynamism. On the other hand, constant TVC oscillations in sensorimotor, auditory and visual networks might only reflect their lower activity during RS (Syed et al., 2017).

From this perspective, additional multi-modal studies integrating information from imaging and electrophysiological modalities are necessary for a better comprehension of the neural origin, mechanisms and function of temporal FC variations, as well as of the physiological meaning of TVC states.

CONCLUSIONS

The analysis of time-varying FC has contributed to provide significant information on intrinsic brain functional organization, both in healthy and diseased conditions, which complements data produced by static FC approaches. TVC seems to be an intrinsic property of the brain with a neural origin, although some open questions still remain about the correct interpretation of TVC output.

In MS patients, TVC helped to better understand the pathophysiological functional reorganization occurring in the brain, with a peculiar involvement of the DMN, salience, sensorimotor, and fronto-temporal networks. TVC abnormalities were partially correlated with more severe tissue damage and more severe clinical disability, while more extensive correlations were found with abnormal cognitive performances. In patients with neurodegenerative and psychiatric conditions, TVC abnormalities of the DMN, attention and executive networks were also associated to stronger clinical manifestations. Overall, these results suggest a maladaptive neuronal response to disease-related damage.

There are still several unmet needs in neurological and psychiatric conditions that TVC analysis may help to address. First, TVC may be useful to identify multi-modal regions, crucial for functional network plasticity, which may constitute possible targets for motor and cognitive neurorehabilitation protocols, as well as for symptomatic or disease-modifying treatments. Second, trajectories of TVC changes over time during the disease course need to be better defined, both in MS and in psychiatric/other neurodegenerative disorders. This may be the topic of future longitudinal studies, or of cross-sectional studies enrolling patients at different disease phases. Finally, it is still unclear whether TVC abnormalities may have a prognostic value on future disease course. The collection of clinical data at medium- or long-term follow-up may allow to define whether some TVC abnormalities are associated with a more favorable/worse disease prognosis.
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GE Signa HDxT 3T
202 volumes
TR=2.15s

17 sites
TR=2s
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14 sites
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140 volumes
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. Segmentation of 264 brain

regions from the Power atlas
(Power etal., 2011)
Sliding-window analysis, window
length = 28 TRs (60.25), steps
=5TRs (10.755)

. Standard deviation of TVC.

across windows

. Manual segmentation of 10

spherical ROIs (radius = 6 and
10mm)

Sliding-window analysis, window
length = 15 TRs (30s), steps =
47TRs (85)

Standard deviation of TVG
across windows

. Group ICA decomposition in 48

relevant independent
‘components of interest,
classified into seven functional
networks

Sliding-window analysis, window
length = 20 TRs (40s), steps =
1TR @25)

. k-means clustering of dynamic

‘ampiitude of low-frequency
fluctuations (six recurring states)

. Manual segmentation of three

spherical ROIs (radius = 6mm)
Flexible least squares to
construct a TVC map at each
timepoint

. k-means clustering (five

recurring states)
Correlations with clinical scores

. Group ICA decomposition of the

DMN, used to select the PCC for
subsequent analyses
Sliding-window analysis, window
length = 50 TRs (100s), steps =
27TRs (45)

. Calculation of TVG map between

the PCC and the rest of the brain
in each window; calculation of
variance of FC across windows
k-means clustering analysis (six
recurring states)

Correlation with social

behavior scales

. Segmentation of 116 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al., 2002)
Slding-window analysis,
non-overlapping windows,
‘window length ranging from 30
1060

Metrics of temporal and spatial
variabilty of VG across
windows

. Six machine-learning

classffication algorithms

. Group ICA decomposition in 54

relevant independent
‘components of interest, used to
develop 68 cubical ROIs (edige
= 10mm)

. Siiding-window analysis, window

length = 9 TRs (27s) and 11
TRs (335)

. Graph theory: variabilty of

modularity across windows

. Group ICA decomposition in 50

relevant independent
‘components of interest,
classified into seven functional
networks

. Siiding-window analysis, window

length = 22 TRs (44s), steps =
1TR @25)

. k-means clustering (four

recurring states)
Indvidual reconstruction of TVC
states using dual regression

. Segmentation of cortical brain

regions from the AAL atlas
(Tzourio-Mazoyer et al., 2002)

. Siiding-window analysis, window

length = 50 TRs (100s), steps =
10TRs (205)

. Standard deviation of TVC

density (proportional to the
number of functional
connections) across windows

. Segmentation of 200 brain

regions using the Craddock atlas
(Craddock et al., 2012)

8D = 4.5 years
70 healthy controls

20 females (41%)

mean age = 21.9 years
SD = 5.6 years

24 Parkinson's
disease patients

7 females (29.2%)

mean age = 63.42 years

SD = 7.93 years

27 healthy controls

11 females (40.1%)

mean age = 59.37 years

SD = 8,54 years

Autism Brain Imaging Data
Exchange (ABIDE)

76 autism spectrum disorders
9 females (11.8%)

mean age = 16.1 years

SD = 4.9 years

range = 7-29.9 years

76 typically development
young adults

12 females (15.8%) mean age
= 158 years

SD = 4.5 years

range = 8-29.9 years

FBIRN Data Repository
151 schizophrenia patients
37 females (24.5%)

mean age = 37.8 years
SD = 11.4 years 163

healthy controls

46 females (28.2%)

mean age = 36.9 years

SD = 11 years

Autism Brain Imaging Data
Exchange (ABIDE)

209 autism spectrum
disorder adolescents

0 females (0%)

mean age = 16.5 years

SD = 6.2 years

298 typical

development adolescents

0 females (0%)

mean age = 16.8 years

SD = 6.2 years

Autism Brain Imaging Data
Exchange (ABIDE)

38 autism spectrum disorders
0 females (0%)

age range = 3-7 years.

41 typical

development children

0 females (0%)

age range = 3-6 years.

ADNI database

43 patients with mild cognitive
impairment wiith late onset
17 females (39.5%)

mean age = 72.1 years

SD = 8.2 years

56 patients with mild cognitive
impairment with early onset
35 females (62.5%)

mean age = 71.1 years
SD = 6.8 years

50 healthy controls

29 females (58%)

mean age = 75 years

SD = 6.9 years

28 patients with
Alzheimer's disease
Unspecified sex and age
892 healthy controls

438 fernales (49%)

median years = 79 years
range = 75-83 years

19 frontal lobe
epilepsy patients

9 females (47.4%)
median age = 24.2 years
range = 13-51 years

18 healthy controls

5 females (27.8%)
median age = 23.9 years
range = 11-41 years

43 children with benign
epilepsy

(centrotemporal spikes)

19 females (44.2%)

mean age = 9.61 years

SD = 2.04 years

28 typically developing chidren

18 females (46.4%)
mean age = 10 years
SD = 2.31 years

48 major depressive disorder
37 females (77.1%)
mean age = 34.8 years

to adults with high risk of
developing schizophrenia, - also
showed increased TVC between
the cerebellum, temporal cortex,
frontal gyri and thalami

Increased TVC between temporal
and cerebellar areas correlated
with higher symptom

severity scores

Compared with patients without
cognitive impairment, Parkinson's
disease patients  with  mild
cognitive  impairment  showed
higher TVC  between the DMN
and the rest of the brain

In patients, no correlation was
found between TVC abnormalities
and motor severity

No between-group differences
were observed in TVC

Compared 1o healthy controls,
schizophrenia patients  showed
increased  dynamic  amplitude
of low-frequency fluctuations in
states characterized by  strong
TVC between the thalami and
sensory regions

Patients also showed reduced
dynamic amplitude of
low-frequency fluctuations in
states characterized by weak
TVC between the thalami and
sensory regions

Compared to typically developing
adolescents, autism  spectrum
disorder  adolescents  showed
reduced TVC among the right
anterior insula,  ventromedial
prefrontal cortex and the posterior
central cortex

Reduced TVC between the right
anterior insula and the
ventromedial prefrontal cortex
correlated with higher

symptom severity

Compared to typically developing
children, Autism spectrum
disorders children showed
differences in TVC variance
between the PCC and: (1) the
whole brain; (2) the right
precentral gyrus; and (3) visual
areas

In autism spectrum disorder
children, lower TVC variance
between the PCC and the right
precentral gyrus negatively
correlated with social motivation

Patients with early mild cognitive
impairment, compared to healthy
controls, showed increased TVC
variabiity

TVC abnormalities helped to
identify patients with early-onset
mild cognitive impairment from
patients with late-onset mild
cognitive impairment and healthy
controls (accuracy = 74.7 and
73.6%, respectively)

Patients with Alzheimer's disease
showed lower dwell time in brain
states with strong contributions of
the posterior areas of the DMN,
and higher dwell time in states
with strong contributions of the
anterior areas of the DMN

Compared to healthy subjects,

epiepsy  patients  showed
reduced TVC between the
fronto-parietal  network  and

cerebllar/subcortical networks
They also spent less time in
the most fundamental connectivty
state

Alower dwell time i this state
correlated with age of

seizure onset

Compared to typically developing
children, epilepsy children showed
decreased TVC variabilty in the
orbital inferior frontal gyrus and
increased TVC variability in the
precuneus

Patients with interictal epileptiform
discharges, compared to patients
without  interictal  epileptiform
discharges, showed higher TVG
variability in the supramarginal
gyrus

Excessive TVC variabilty of the
precuneus correlated with a
younger onset age of seizure
Increased network strength and
efficiency in patients with suicide
ideation compared to healthy
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Siemens Trio 3T
250 volumes
TR=2s

Siemens Trio 3T
Unspecified volumes
TR=2s

Siemens Trio 3T
170 volumes
TR=2s

GE Excite 3T
195 volumes
TR=2s

Philips Achieva 7T
200 volumes
TR=2s

Siemens Allegra 3T
Eyes open

202 volumes
TR=15s
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. Sliding-window analysis, window

length = 50TRs (1005), steps =
5TRs (10s)

Graph theory analyses: network
strength, network efficiency,
nodal efficiency, small worldness
Variance of area-under-the-curve
of graph metrics

. Correlation with suicide

ideation scores

. Group ICA decomposition in 21

relevant independent
components of interest

. Siiding-window analysis, window

length = 55 TRs (110s), steps =
1TR(2s)

. kemeans dlustering (six recurring

states)

. Correlations with

disease duration

. Segmentation of bilateral

putamen and 56 brain regions.
from the Desikan atlas (Desikan
et al., 2006)

Slicing-window analysis, window
length = 30 TRs (60s), steps =
27TRs (45)

Standard deviation of TVG
strength

. Correlations with clinical scores

. Group ICA decomposition in 47

relevant independent
components of interest,
classified into eight functional
networks

. Sliding-window analysis, window

length = 22 TRs (44s), steps =
1TR(29)

. k-means clustering (five

recurring states). Fuzzy
metax-state analysis

. Segmentation of three

amygdalar subregions in each
hemisphere, following the
JuBrain Cytoarchitectonic Atlas
(Ziles and Amunts, 2010)
Sliding-window analysis, window
length = 100 TRs (200s), step =
1TR(29)

Voxel-wise maps of variance of
‘amygdalar TVC across windows

. Segmentation of 90 brain

cortical regions from the AAL
atlas (Tzourio-Mazoyer et al.,
2002)

Sliding-window analysis, window
length = 30 TRs (60s), steps =
17R @2s)

Principal components analysis:
eigen-connectivty

patterns (states)

. Group ICA decomposition in 49

relevant independent
components of interest,
classffied into 7 functional
networks

Sliding-window analysis, window
length = 22 TRs (33), steps =
1TR(1.55)

k-means clustering (five
recurring states)

. Group ICA decomposition in 49

relevant independent
components of interest,
classffied into seven functional
networks

Sliding-window analysis, window
length = 22 TRs (33), steps =
1TR(1.55)

k-means clustering (five
recurring-states)

. Machine learning classification of

the study subgroups

. Group ICA decomposition in 33

relevant independent
components of interest
Sliding-window analysis, window
length = 22 TRs (44), steps =
1TR@s)

k-means clustering (four
recurring states)

SD =10.3 years
30 healthy controls

18 females (60%)
mean age = 35.7 years
SD = 10.2 years

43 patients with idiopathic
generalized epilepsy

15 females (34.8%)

mean age = 23.12 years
SD = 4.8 years

48 healthy controls

19 females (39.5%)

mean age = 23.02 years
SD = 1.49 years

30 patients with
Parkinson's disease

11 females (36.7%)
mean age = 57.8 years
SD = 9.9 years

28 healthy controls

14 females (50%)
mean age = 58.4

SD = 7.6 years

53 patients with clinical
high-risk for psychosis
21 females (39.6%)
mean age = 20.4 years
SD = 4.5 years

58 schizophrenia patients
20 females (34.5%)
mean age = 21.8 years
SD = 3.8 years

70 healthy controls

41 females (58.6%)
mean age = 21.9 years
SD = 5.6 years

30 patients with major
depression disorder

20 females (66.7%)
mean age = 36.1 years
SD = 12,3 years

range = 18-60 years
62 healthy controls

33 females (53.2%)

mean age = 35.1 years
- SD = 15.9 years
- range = 16-81 years

37 healthy controls divided
according to
presence/absence of
memory decline

13 females (35.1%)

mean age = 73 years

SD = 6.6 years

60 schizophrenia patients
18 females (21.7%)

mean age = 35.85 years
SD = 12.01 years

38 bipolar disorder patients
20 females (52.6%)

mean age = 38.96 years
SD = 109 years

61 healthy controls

28 females (45.9%)

mean age = 3.4 years

SD = 1157 years

60 schizophrenia patients
13 ferales (21.7%)

mean age = 35.85 years
SD = 12.01 years

38 bipolar disorder patients
20 females (52.6%)

mean age = 38.96 years
SD = 109 years

61 healthy controls

28 females (45.9%)

mean age = 35.4 years
SD = 1157 years
Generation R study

774 children

22 children diagnosed with
autism spectrum disorders
15 children with autistic traits -
age range = 4.89-8.90 years
774 typical

development chidren

subjects and major depressed
patients without suicide ideation
Patients without suicide ideation
showed TVC atterations within the
left middle/inferior frontal gyrus,
fight  superior parietel  gyrus,
tight posteentral gyrus and right
fusiform gyrus

TVC network strength
distinguished patients with and
without suicide ideation from
healthy subjects

Patients  with  idiopathic
generalized  epilepsy  showed
reduced dwell time in a
state characterized by strong
correlations  between  visual
and  remaining  sense-related
networks, as well as increased
dwelltime in a state characterized
by strong correlations between
cognitive  and  sense-related
networks

In patients with idiopathic
generalized epilepsy, reduced
dwell time in the first
above-mentioned state was
correlated with a higher

seizure frequency

Compared 1o healthy controls,
Parkinson's  disease  patients
showed reduced TVC between
the posterior subunit in the left
putamen with the left superior
frontal gyrus, right putamen and
the right precentral gyrus, as well
as between the right posterior
putamen and  bilateral pallidum
nuclei

TVC abnormalities correlated with
more severe disabilty

Compared to healthy subjects,
schizophrenia ~patients showed
significantly  lower  global
meta-state dynamism

Compared to healthy controls,
patients with high-risk for
psychosis showed significantly
lower meta-state dynamism

Compared to healthy controls,
patients with major depression
disorder exhibited decreased
positive TVC correlations between
the amygdala and left
centromedial and superficial
subregions, primarily in the
brainstem, decreased positive
fronto-thalamic TVC, and
decreased negative TVC of the left
centromedial subregion with the
right superior frontal gyrus

In patients, mean positive TVG
strength between the left
centromedial region and
brainstem was positively
corretated with the age of onset
of major depression disorder
Subjects with memory decline
showed reduced TVC between
anterior and posterior brain areas.
Increased global connectivity,
reduced TVC between anterior
and posterior brain areas,
increased TVC between
interhemispheric fronto-temporal
areas and reduced TVC between
parietal and temporal areas
corretated with memory decline
and apoprotein E-e4 carrier status
Compared ~ to  controls,
schizophrenia patients ~showed
increased  TVC  between: ()
temporal regions; (i) frontal
regions; (i) subcortical regions; iv)
temporal and parietal regions, and
reduced TVC between: () frontal
and parietal regions and (i) frontal
and occipital areas

Compared to bipolar patients,
schizophrenia patients ~showed
increased  TVC  between: ()
frontal and parietal  areas;
@) sensorimotor  areas; (i)
sensorimotor and parietal areas
Compared to healthy controls,
bipolar disorder patients showed
increased TVC between temporal
and parietal areas, as well as
reduced TVC within

parietal regions

TVC improved classification
between patients with
schizophrenia, patients with
bipolar disorder and healthy
controls: TVC overall classification
accuracy (84.28%) was
significantly higher than overal
classification accuracy of static
FC metrics (69.12%)

In typically developing chidren,
TVC globally increased with age
in fronto-temporal, fronto-parietal
and temporo-parietal networks
Gompared to typically developing
children, autism spectrum
disorder children showed: ()
increased TVG between the right
insula and left
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Study RS fMRI acquisition
parametersS
Bosma et al. (2018) GEST
277 volumes
TR=2s

d’Ambrosio et al. (2019)  Multicenter setting: seven
centers

3T

200 volumes

TR=3s

Siemens Trio 3T
240 volumes
TR=2s

Huang et al. (2019)

Siemens Trio 3T
450 volumes
TR=11s

Leonardi et al. (2013)

Linetal. (2018) Philips Achieva 3T
240 volumes

TR=2s

Rocca et al. (2019) Phiips Achieva 1.5T
200 volumes

TR=3s

van Geest et al. (2018a)  GE Signa HDxt 3T
RS IMRI:

202 volumes
TR=22s
Task-related (SDMT):
460 volumes
TR=2s

van Geest et al. (2018b) Siemens Sonata 1.5T

RS VR

200 volumes

TR=285s

Task-related fMRI (episodic
memory):

208 volumes

TR=222s

Siemens Trio 3T
240 volumes
TH=2¢

Zhou et al. (2016)
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. Siiding-

. Segmentation of § cortical

regions belonging to the DMN,
salience network, ascending and
descending nociceptive network
(according with Hemington et al.,
2016) and the primary sensory
area (Harvard Oxford Cortical
Structural Atias, Desikan et al.,
2006)

. Dynamic conditional correlations
. Standard deviation of dynamic

conditional correlation and of RS
fMRI time series

. Group ICA decomposition in 43

relevant independent
components of interest,
classified into seven different
functional networks

. Sliding-window analysis, window
length = 22 TRs (665), step = 1
TR@s)

k-means clustering analysis
(thres recurring states); fuzzy
meta-state analysis

. Correlations with clinical

variables, cognitive
performance, T2 lesion volume,
and brain volume

. Segmentation of six regions of

interest belonging to the
attention network

. Sliding-window analysis, window

length = 40 TRs (80s), and 20
TRs (40s), steps = 1 TR (25)
Estimation of the temporal
correlation coefficient between
truncated time courses

. Segmentation of 88 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al,, 2002)
jindow analysis, window
length = 30 TRs (33s), 40 TRs
(445), 60 TRs (66's) and 120 TRs
(1825), steps = 2 TRs (2.25)
Principal component analysis:

10 eigenconnectivity

patterns (states)

. Segmentation of 18 cortical

regions from the Freesurfer
Desikan atlas (Desikan et al.,
2006)

. Sliding-window analysis, window

length = 20 TRs (40), steps =
1TR(29)

. Graph theory: network

variations, flexibiity of
inter-hemispheric,
cross-hemispheric, and
intra-hemispheric connections.

. Group ICA decomposition in 43

relevant independent
components of interest,
classified into seven different
functional networks

. Siiding-window analysis, window

length = 22 TRs (669), step = 1
TR(3s)

. kemeans clustering analysis (two

recurring states)

. Fuzzy meta-state analysis
. Correlations with linical

variables, cognitive
performance, T2 lesion volume,
and brain volume

. Segmentation of 224 regions

from the Brainnettome atlas (Fan
etal., 2016), Yeo atlas (Yeo
stal., 2011) and from FSL FIRST
segmentation

. RS fMRI: sliding-window

analysis, window length = 27
TRs (69.45), steps = 5 TRs
(119) Task-related fMRI:
sliding-window analysis, window
length = 30 TRs (60s), steps =
5TRs (10s)

. Sum of the absolute differences

in RS and task-related FC
between consecutive windows

. Segmentation of 92 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al,, 2002)

. Task-related fMRI:

sliding-window analysis, window
length = 27 volumes (59.9s),
steps =5 TRs (11.15)

. Sum of the absolute differences

in FC between
consecutive windows

. Voxel-wise analysis (no ROI

selection necessary)

. Galculation of brain entropy and

ampiitude of low frequency
fluctuations.

. Voxel-wise comparison of brain

entropy and amplitude of low
frequency fluctuations

Study subjects®

31MS patients (25
relapsing-rermitting MS, 4
secondary progressive MS,
3 unknown)

20 females (64.5%)

mean age = 39 years

SD = 10 years.

31 healthy controls

20 females (64.5%)

mean age = 38 years

SD = 11 years.

MAGNIMS Cognition study
62 relapsing-remitiing MS
patients (23 with cognitive
impairment, 39 without
cognitive impairment)

40 females (64.5%)

mean age = 39.5 years
SD = 8.5 years

65 healthy controls

38 females (58%)

mean age = 35.8 years
SD = 9.4 years

22 relapsing-remitting
MS patients

15 females (68.2%)
mean age = 39.1 years
age range = 20-58 years
22 healthy controls

15 fomales (68.2%)
mean age = 39.6 years
age range = 26-56 years

22 relapsing-remitting
MS patients

14 females (63.6%)
mean age = 36.8 years
SD = 8 years

14 healthy controls

9 females (64.2%)
mean age = 38.4 years
SD = 6 years

37 relapsing-remitting
MS patients

28 females (75.7%)
mean age = 42.57 years
SD = 11.4 years

18 relapsing-remitting MS
patients (matched with healthy
controls) 15 females
(83.3%)mean age=32 years
SD=4.9 years

15 healthy controls

8 females (53.3%)

mean age = 28.93 years

SD =5 years

50 patients with CIS
suggestive of MS

30 females (60%)

mean age = 30.5 years

SD = 7.7 years

13 healthy controls

9 females (69.2%)

mean age = 33.1 years

SD = 7.8 years

29 MS patients

18 females (62%)

mean age = 41.25 years
SD = 9.34 years

18 healthy controls

11 females (61.1%)
mean age = 40.68 years
SD = 13.29 years

38 MS patients
26 females (68.4%)
mean age = 47.2 years
SD = 8 years

29 healthy controls

18 females (62.1%)
mean age = 43.9 years
SD = 8.4 years

34 relapsing-remitting
MS patients

21 females (61.8%)
mean age = 42.1 years
age range = 20-58 years
34 healthy controls

21 females (61.8%)
mean age = 41.8 years
age range = 21-58 years

Main findings

- Greater TVG between the salience
and  ascending  nociceptive
network in MS patients vs. healthy
controls

- Greater variability of RS FC in MS

patients vs. healthy controls

Patients with neuropathic pain

had abnormal cross-network

connectivity between the salience
and DMN

- MS patients, compared to healthy
controls, showed: () reduced
TVC between subcortical and
visual/cognitive networks, as well
as between visual and cognitive
networks; and (i) increased
TVC between subcortical and
sensorimotor networks

- Compared  to  cognitively
preserved, cognitively impaired
MS patients showed reduced
TVC between subcortical and
DMN, lower dwell time in a
state characterized by high intra-
and inter-network ~ connectivit
and lower global
variations over time

- In patients with cognitive

impairment, reduced global

dynamism correlated with

brain atrophy

Compared to controls, decreased

TVC within the dorsal and ventral

attention networks, as well as

increased TVC between the dorsal
and ventral attention networks
was detected

- Decreased TVC within parietal
and between fronto-temporal
regions was correlated with a
higher white matter lesion load

- A novel data-driven approach,

based on principal component

analysis, was able to detect
large-scale recurring connectivity
patterns with similar dynamics

Compared to controls, MS

patients showed more frequently

strong connections in parietal
regions (PCC, superior parietal
and angular gyrus) and more
frequently weak connections in
prefrontal regions and in

the amygdala

Lower  network  variations

and higher flexibilty of inter-

hemispheric connections in MS
patients compared with controls

Better executive functions on

cognitive testing were associated

to higher connectivity dynamics

connectivity

- At baseline, compared to healthy
controls, CIS  patients showed
TVC  abnormalities  between
sensorimotor and DMN with the
remaining networks

- According to type of onset,
selective baseline RS FC decrease
was detected in functional
networks more affected by the
clinical attack

- At folowup, increased
connectivity strength and global
connectivity  dynamism  was
observed in patients vs. healthy
controls

- In CIS patients, higher TVC at

year 2 correlated with lower white

matter lesion volume changes

at follow-up

TVG i the DMN increased during

the task vs. rest in both controls

and MS patients

- A higher increase of VG in the
DMN during the task vs. rest was
associated with better information
processing speed in MS patients

STVC of the left and right
hippocampus, as well as TVC
of the entire brain, did not differ
between healthy controls and MS
patients
Lower hippocampal TVC was
associated with better verbal
learning and memory, and with
better visuospatial leaming and
memory performances
Brain entropy was increased
in MS patients compared to
controls, especially i regions
related to motor, executive,
spatial coordination and memory
functions.
- More severe brain entropy was
correlated with a higher
clinical disabllty

2 Al RS scans were acquired in the eyes-closed condition.

ATVC analysis approach summarizes: (1) ROls used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
?For each study group of healthy subjects, sex is represented as number of females (%), mean age and standard deviation (SD).
RS, resting state; MR, functional magnetic resonance imaging; TVC, time-varying functional connectivity; TR, repetition time; DMN, default-mode network; MS, multiple sclerosis; SD,
standard deviation; AAL, automated anatomical labeling; PCC, posterior cingulate cortex; CIS, clinically isolated syndrome.
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RS fMRI acquisition
parametersS

Six sites: Siemens Tim Trio 3T
One site: GE Discovery MR750
3T

162 volumes

TR=2s

Philips Intera MR 3T
140 volumes
TR=3s

Siemens Trio 3T
Unspecified volumes
TR=2s

Siemens Trio 3T
149 volumes
TR=2s

Philips Achieva 3T
170 volumes
TR=2s

6 sites: Siemens Tim Trio 3T

1 site: GE Discovery MR750 3T
162 volumes

TR=2s

Philips Achieva TX 3T
214 volumes
TR=21s

3 sites: Siemens Trio Tim 3T
2 sites: GE Signa HDx 3T

1 site: Siemens Allegra 3T

1 site: Philps 3T

100-210 volumes:

TR ranging from 1.5 0 35

Siemens Tim Trio 3T
180 volumes
TR=2s

TVC analysis approach*
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Group ICA decomposition in 47
relevant independent
components of interest,
classified into 7 functional
networks

. Sliding-window analysis, window

length = 22 TRs (44), steps =
1TR(2s)

. Clustering (five recurring states)

performed using temporal ICA
Correlations with gray

matter volumes

Group ICA decomposition in
nine relevant independent
components of interest,
subsequently segmented in 148
cortical regions from the
Destrieux atlas (Destrieux et al.,
2010)

Time-frequency analysis

. Graph theory: synchrony, global

metastabilty, eigenvector
centralty, clustering coefficient,
local efficiency, and participation
coefficient

. Correlation with

structural abnormalities

. Segmentation of 76 brain

regions from the Desikan atlas
(Desikan et al., 2006)
Sliding-window analysis, window
length = 30 TRs (60s), steps =
27TRs (45)

Graph theoretical analysis:
global efficiency, clustering
efficiency, modularity,
assortativty, Fiedler value

. Group ICA decomposition in 39

relevant independent
components of interest

. Siiding-window analysis, window

length = 31 TRs (62$), steps =
1TRs (25)

kemeans clustering (five
recurring states)

Correlations with
magnetoencephalography data
and classification performance
compared to static FC

and magnetoencephalography

. Segmentation of left and right

primary motor area, premotor
cortex and supplementary motor
area (spherical RO, radii
5mm)

Sliding-window analysis, window
length = 82TRs (64s), steps = 1
TR(2s)

. Standard deviation of TVC

across windows

. Group ICA decomposition in 50

relevant independent
components of interest,
classified into 7 different
functional networks
Sliding-window analysis, window
length = 22 TRs (44s), steps =
1TR(29)

k-means clustering (five
recurring states)

. Group ICA decomposition in 29

relevant independent
ccomponents of interest,
classified into seven functional
networks

Sliding-window analysis, window
length = 22 TRs (44.25), steps
—1TR@1s)

Kk-means clustering (two
recurring states).

Graph theory: global efficiency,
local efficiency, clustering
coefiicient,

betweenness centrality

. Segmentation of 116 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al., 2002)
Sliding-window analysis, window
length = 20 TRs (ranging from
3010 605)

GIG-ICA clustering (fve
recurring-states)

Corretations with

cognitive scores

. Segmentation of 116 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al., 2002)
Sliding-window analysis, window
length = 20 TRs (405), steps =
17R (25)

GIG-ICA clustering

(five recurring-states)

Study subjects®

FBIRN Data Repository 151
schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

163 healthy subjects

46 females (28.2%)

mean age = 36.9 years

ADNI database 34 patients
with Aizheimer’s disease
18 females (52.9%)
mean age = 78.79 years
SD = 6.14 years

33 patients with mid
cognitive impairment

13 females (39.4%)
mean age = 73.61 years
SD = 5.6 years

36 healthy controls

19 females (52.8%)
mean age = 74.46 years
SD =551 years

69 Parkinson's
disease patients

30 females (43.5%)
mean age = 60 years
SD = 9.8 years

29 healthy controls

13 females (43.5%)
mean age = 583 years
SD = 97.5 years

47 schizophrenia patients
13 females (27.7%)
mean age = 35.18 years
SD = 11.83 years

45 healthy controls

7 females (15.6%)

mean age = 37.28 years
SD = 13.86 years

70 stroke patients
45 right-sided lesions:

23 females (32.9%)
mean age = 58.44 years
SD = 11.43 years

25 left-sided lesions

8 females (11.4%)

mean age = 59.88 years
SD = 12.96 years

56 healthy controls

26 females (37.1%)

mean age = 56.73 years
D = 1021 years

151 schizophrenia patients

37 females (24.5%)

mean age = 37.8 years

163 healthy subjects

46 females (28.2%)

mean age = 36.9 years

37 patients with
Parkinson's disease

12 with normal cognition
6 females (50%)

mean age = 65.17 years
SD = 8.31 years

23 with mild cognitive
impairment

10 females (44%)

mean age = 69.17 years
SD = 4.48 years

26 healthy controls

8 females (31%)

mean age = 68.31 years
SD = 7.52 years

Bipolar and schizophrenia
network on
intermediate phenotypes
118 schizophrenia patients
57 females (50%)

mean age = 35.57 years
SD = 12.29 years

132 schizoaffective
disorder patients

75 females (57%)

mean age = 36.23 years
SD = 12.23 years

140 bipolar disorder with
psychosis patients

87 females (62%)

mean age = 36 years

SD = 12,57 years

238 healthy controls

138 females (58%)

mean age = 38.15 years
SD = 12,55 years

58 schizophrenia patients
20 females (35%)

mean age = 21.8 years
SD = 8.8 years

53 adlults at high risk of
developing schizophrenia
21 females (38%)

mean age = 20.4 years

Main findings

Compared to healthy subjects,

patients  with  schizophrenia
exhibited higher TVC strength
between: i) sensorimotor,

precuneus and parietal areas;
andi) frontal, temporal and insular
cortices

In patients, TVC abnormaliies
correlated with lower gray

matter volumes

In Alzheimer's disease patients,
reduced synchrony was observed
between  right fronto-parietal
regions, ~ sensorimotor ~ regions
and DMN, together with overall
reduced metastability

In patients, increased eigenvector
centralty, clustering coefficient,
local efficiency, and participation
coefficient correlated with more
severe structural damage

Compared to healthy subjects,
patients  with  Parkinson's
disease showed lower network
connections ~ (Fiedler  value),
modularity and global efficiency
Lower network connections in
patients with Parkinson's disease
correlated with disease severity

Classification between
schizophrenia  patients  and
healthy controls improved with
TVC (accuracy = 82.79%)
compared to static FC metrics
(accuracy = 70.33%)
Classification performance did
not improve when using a
combination of TVC and
magnetoencephalography
metrics (accuracy = 85.35%),
compared to the combination of
static FC and
magnetoencephalography
metrics (accuracy = 87.91%)
Compared 1o healthy controls,
stoke patients showed TVC
reductions between sensorimotor
and visual-related cortices and
between the sensorimotor and
the limbic system

In stroke patients with right-sided
lesions, reduced TVC between
the right primary motor area and
the left precentral gyrus correlated
with more severe disabilty

Compared to healthy controls,
schizophrenia patients showed: ()
higher dwell time in states
characterized by overall low inter-
and intra-network TVG strength;
(i) lower dwell time in states
characterized by high correlations
between visual, motor and
auditory networks; and (i
increased TVC between thalami
and sensory networks

Compared to healthy controls,
Parkinson's  disease  patients
with mid cognitive impairment
showed lower dwell time in a
state characterized by overal
low strength of inter- and intra-
network connections, as  well
as higher number of transitions
between states

Parkinson's disease patients with
cognitive impairment also
showed: () reduced clustering
cosfiicient in the right precentral
gyrus vs. healthy controls; and (i)
reduced betweenness centralty
of the left paracentral gyrus vs.
patients without

cognitive impairment

Compared to healthy controls (and
bipolar patients), schizophrenia
and  schizoaffective  disorder
patients showed increased TVC
between frontal with angular and
postentral areas, and reduced
TVC between temporal and frontal
areas

Compared with all  remaining
study  groups,  schizophrenia
patients also showed reduced
TVC between the cerebellum and
subcortical and frontal areas
Reduced TVC between cerebellar
and frontal areas correlated with
higher symptom severity scores

Compared to healthy controls,
schizophrenia patients and adults
with high risk of developing
schizophrenia  showed  TVC
alterations between motor,
temporal, cerebelar, frontal and
thalamic areas

Schizophrenia patients,
compared
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Siemens Trio 3T

GE Discovery MR750 3T
162 volumes

TR=2s

Rashid et al. (2018b)

Ridley et al. (2017) Siemens Avanto 1.5T
200 volumes

TR=3s

Sakoglu et al. (2010) Siemens Allegra 3T
Active MR (auditory oddball
task):

Two consecutive runs

249 volumes

TR=15s

Sunetal. (2018) Laboratory dataset
Philps Achieva 3T
Eyes open

240 volumes
TR=2s

‘COBRE dataset
Siemens Trio 3T

150 volumes
TR=2s

Siemens Trio 3T
145 volumes
TR=2s

Vergara et al. (2018)

Wang et al. (2018) Siemens TIM Trio 3T
300 volumes

TR=2s

VYaesoubi et al. (2017a)  Siemens Tim Trio T
GE Discovery MR750 3T
162 volumes

TH=28

Yu et al. (2015) Siemens Trio 3T
Eyes open
150 volumes

Th=2%

Yue et al. (2018) Siemens Trio 3T
240 volumes

TR=2s

Zhang W. et al. (2018) Siemens Trio 3T
1,000 volumes

TR=0427s

Zhietal. (2018) Multicenter setting
Phiips Achieva 3T
Siemens Verio 3T
Siemens Prisma 3T
240 volumes
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Sex and age association
with recurring-states

. Group ICA decomposition in 7

relevant independent
components of interest
Sliding-window analysis, window
length = 22 TRs (44, steps =
1TR (25)

k-means clustering (five
recurring states)

Cortelation with peak weights of
single nucleotide polymorphism
mostly located in chromosome &

. Segmentation of spherical ROIs

(raclius = 5 mm), defined by their
contat to implanted electrodes
Sliding-window analysis, window
length = 30 TRs (905), steps =
0.66 TR (25)

Gorrelation with EEG data

. Group ICA decomposition in 10

relevant independent
components of interest
Slding-window analysis, window
length = 64 TRs (96'5), steps =
27TRs (3s)

Time-frequency analysis
Standard deviation of TVG
across windows, between-group
comparison of TVC in

each window

. Segmentation of 90 brain

regions from the AAL atlas
(Tzourio-Mazoyer et al., 2002)
Sliding-window analysis, window
length = 50 TRs (100s), steps =
3TRs (65)

Graph theory analysis: temporal
globalocal efficiency, richness,
sparsity range of

temporal networks

. Group ICA decomposition in 48

relevant independent
components of interest,
classified in nine functional
networks

Sliding-window analysis, window
length = 15 TRs (30s)

k-means clustering (four
recurting states)

. Machine learning for

group classification

. Voxel-by-voxel calculation of

connection strength index (CSI)
and connection count index
(CC) within a whole gray matter
from the MNI template (Evans
etal, 1992)

. Sliding-window analysis, window

length = 60 TRs (120s), steps =
1TR(29)

Mean of CSl and CCI

across windows

. Group ICA decomposition in 50

relevant independent
components of interest, using
data from a subgroup of 120
healthy subjects
Time-frequency analysis
k-means clustering (five
recurring states)

. Group ICA decomposition in 48

relevant independent
components of interest,
classified into six functional
networks.

. Sliding-window analysis, window

length = 20 TRs (40s), step = 1
TR(25)

Graph theory: connectivity
strength, clustering coefficient,
global efficiency; variance of
graph metrics over time.

. Assessment of reoccurring

connectivity states based on
graph metrics (four
recurting states)

. Segmentation of bilateral

amygdalae, using stereotaxic
and probabilistic maps of
cytoarchitectonic boundaries
Slding-window analysis, window

length = 18 TRs (36'5)

Standard deviation of voxel-wise
amygdalar TVC across windows

. Segmentation of Brodmann

areas 44, 45 (frontal), 22, 40
(audtory) (Ziles and Amunts,
2010)

Sliding-window analysis, window
length 100 TRs (42.75), steps =
27TRs (0.855)

k-means clustering (5 recurring
states)

Variance of TVC strength
between ROIs across windows.
Correlation with dlinical scales

. Group ICA decomposition in 49

relevant independent
‘components of interest,
classified into eight functional
networks

Sliding-window analysis, window
length = 22 TRs (44's), steps =
1TR 25)

k-means clustering (five
recuring states)

Graph theory: global and node
properties in each connectivity
state

Correlations with depression
severity and cognitive score

2All RS scans were acquired in the eyes-closed condition, except where indicated
ATVC analysis approach summarizes: (1) ROs used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
®For each study group of healthy subjects, sex is represented as number of females (%), mean age and standard deviation (SD).
RS, resting state; MR, functional magnetic resonance imaging; TVC, time-varying functional connectivity; TR, repetition time; ICA, independent component analysis; FBIRN, function
biomedical informatics research network data; ADNI, Alzheimer's disease neuroimaging intiative; SD, stendard deviation; DMN, default-mode network; FC, functional connectiity; ROI,
region of interest; GIG-ICA, group-information-guided ICA; AAL, automated anatomical labeling; COBRE, center for biomedical research excellence; EEG, electroencephalographic
registration; PCC, posterior cingulate cortex; CSl, connection strength index; CCI, connection count index; MNI, Montreal Neurological Institute.

FBIRN Data Repository
61 schizophrenia patients
9 females (14.8%)

mean age = 38.4 years
87 healthy controls

26 females (20.9%)
mean age = 36.8 years

9 patients with &
drug-resistant epilepsy
3 females (33.3%)
mean age = 30.4 years
SD = 4.5 years

range = 24-38 years
No control group

28 sohizophrenia patients -
5 females (17.9%)

mean age = 36.4 years

SD = 12.43 years

28 healthy controls

9 females (32.1%)

mean age = 28.8 years

SD = 10.7 years

Laboratory dataset
18 schizophrenia patients
8 females (44.4%)

mean age = 38.8 years
SD = 9.9 years

range = 24-56 years

19 healthy controls

9 females (47.4%)

mean age = 37.7 years
SD = 9.0 years

range = 28-59 years
‘COBRE dataset

58 schizophrenia patients
12 fomales (22.6%)
mean age = 38.3 years
SD = 139 years

range = 18-65 years

57 healthy controls.

20 females (35.1%)
mean age = 35.4 years
SD = 1.9 years

range = 18-62 years

48 patients with mild traumatic -
brain injury

25 females (52.1%)
mean age = 27.79 years
SD = 9.18 years

48 healthy controls

25 females (52.1%)
mean age = 27.40 years
SD = 8.96 years

18 patients with juvenile
myoclonic epilepsy

15 females (83.3%)
mean age = 30.11 years
SD = 7.73 years

range = 20-48 years

25 young adlults

10 females (40%)

mean age = 33.2 years
SD = 13.5 years

FBIRN Data Repository
168 healthy subjects

46 females (28.2%)

mean age = 36.9 years
151 schizophrenia patients
37 females (24.5%)

mean age = 37.8 years

82 schizophrenia patients -
17 females (20.7%)

mean age = 38 years

SD = 14 years

82 healthy controls.

19 females (23.2%)

mean age = 37.7 years

SD = 108 years

33 schizophrenia patients
22 females (66.7%)
mean age = 30.6 years
SD = 8.13 years

34 healthy controls

20 females (58.8%) -
mean age = 28.12 years
SD =65 years

35 schizophrenia patients

14 females (40%)

mean age = 32.61 years

SD = 1158 years

22 healthy controls

18 femnales (60%)

mean age = 34.91 years
D = 13.34 years

182 major depressive -
disorder patients
119 females (65.4%)
mean age = 32.0 years
D = 103 years
218 healthy controls
142 ferales (65.29%)
mean age = 29.5 years
SD =83 years

superior frontal  gyrus, right
supramarginal  gyrus and  left
precuneus; and (i) reduced TVC
between the right insula and the
tight supramarginal gyrus, the left
supplementary motor area and
tight supramarginal gyrus

Autism spectrum disorder
patients with high level of autistic
traits showed longer dwell times
in a globally disconnected state
Schizophrenia patients showed
a lower occupancy rate of a
state characterized by high TVG
in temporal, parietal, imbic and
occipital regions (state 1), as wel
as a higher occupancy rate of a
state characterized by increased
fronto-imbic and  intra-occipital
TVC (state ) vs. healthy subjects
Schizophrenia patients with
increased gene polymorphism
had stronger disrupted TVC in
states 1and5

In cortices not involved by
epilepsy, TVC was correlated with
EEG registration of all frequency
bands

In epileptic cortices, TVC
corretated with EEG in alpha band

Compared to controls,
schizophrenia patients exhibited
reduced TVC task-modulation
between the medial temporal
network and the right lateral
fronto-parietal/frontal networks.
They also showed increased TVG
task-modulation between the
motor and frontal networks, and
between the posterior DMN and
orbitofrontal/parietal networks
Compared to healthy controls,
schizophrenia patients ~showed
higher temporal regional efficiency
with left frontal, right medial
parietal and bilateral subcortical
areas.

Abnormalities of temporal
network efficiency correlated with
ahigher presence of
schizophrenia positive and
negative symptoms

Compared to healthy controls,
mild traumatic brain injury patients
showed stronger TVC between
the cerebellum and sensorimotor
areas, as well as a trend toward
increased connectivity between
the cerebellum and almost all
cortical areas

Restlts were similar to those
obtained with the study of static
FC (Vergara et al., 2017)

Patients with juvenile myoclonic
epilepsy showed increased TVC
in the left dorsolateral prefrontal
cortex, dorsal striatum, precentral
and middle temporal gyri

Using temporal and  frequency
information, it was possible to
estimate TVC states present
both i healthy  controls
and  schizophrenia  patients
(characterized by very high or very
low frequency profiles), and states
present just in one group
Compared to controls,
schizophrenia patients showed
more connectiity patterns
characterized by anti-correlations:
between the sensorimotor and
visual/auditory/subcortical
networks, as well as more lagged
correlation between the DMN and
sensory networks

Compared to controls,
schizophrenia patients showed
lower connectivty strength,
clustering coefiicient and global
efficiency, as wel as higher
occupancy rate of a state
characterized by disconnection
between the sensorimotor, the
cognitive control, and the DMN

Compared to controls,
schizophrenia patients showed
increased TVC between the left
amygdala and orbitofrontal
regions

In schizophrenia patients,
variabilty of TVC correlated with
worse information processing and
attention performance, as well as
with more severe disease severity
Schizophrenia patients with
auditory hallucinations showed
decreased TVC between the left
frontal speech and left temporal
auditory areas vs. healthy controls

Compared 1o controls, major
depressive  disorder  patients
showed: () higher TVC strength
between the superior frontal and
midde frontal gyrus; i) decreased
TVC between the lingual gyrus
and middle occipital gyrus; and
(i) decreased TVC between the
superior parictal lobe and middie
frontal gyrus.

- Correlation between TVC

abnormaliies and: () more severe
depressive symptoms, impaired
attention and worse executive
functions; (i) lower attention; and
(i) worse performances at
working memory and

executive functions
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RS fMRI acquisition
parameters®

Siemens Trio 3T
152 volumes
TR=2s

Siemens Sonata 1.5T
Eyes oper/Eyes closed
255 volumes

TR=2s

Siemens Avanto 1.5T
180 volumes
TR=2s

Siemens Trio 3T
126 volumes
TR=3s

GE Signa HDx or Signa 750 3T
360 volumes
TR=2s

Siemens Skyra 3T
Eyes open

1,200 volumes
TR=0.72s
Test-retest data

Multi-Modal MRI
Reproducibility Resource
(Kirby) data set

Philips Achieva 3T

210 volumes

TR=2s

Test-retest data

Human Connectome Project
$500 Data dataset

Siemens Skyra 3T

1,200 volumes

TR=072s

Test-retest data

Siemens Prisma 8T
Eyes open

250 volumes:
TR=2s

Philips Achieva 3T
210 volumes
TR=2s
Test-retest data

Multicenter 3T scanners
Volumes varying from 119 to 195

TRvanying from 2310 35

GE Signa 3T
Siemens Verio 3T
both scanners:
180 volumes
TR=2s

Siemens Verio 3T
390 volumes TR=15s

Siemens Trio 3T
225 volumes
TR=2.48s

Siemens Trio 3T
232 volumes
TR=2s

Siemens Skyra 8T scanner
Eyes open

1,200 volumes
TR=072s

Test-retest data

Siemens Trio 3T
1,506 volumes:
TR=2.08s

Human Connectome Project
dataset

Siemens Skyra 3T
Eyes open

1,200 volumes
TR=072s

UK Biobank dataset
Siemens Skyra 3T
Eyes open

490 volumes
TR=0735s

Data from Allen et al., 2014
Siemens Trio 3T

152 volumes

TR=2s

Data from Allen et al. (2014)
Siemens Trio 3T

152 volumes

TR=2s

Data from Allen et al. (2014)
Siemens Trio 3T

152 volumes

TR=2s

Siemens Trio 3T
884 volumes
TR=0.645s
Test-retest data

Siemens Skyra 3T
1,200 volumes
TR=0.72s

Siemens Skyra 3T
1,200 volumes
TR=072s
Test-retest data

TVC analysis approach®

1. Group ICA decomposition in 50
relevant independent
components of interest,
classified into 7 different
functional networks.

2. Slding-window analysis, window
length = 22 TRs (44), steps =
1R (29).

3. k-means clustering (7
recurring states)

1. Group ICA decomposition in 43
relevant independent
components of interest,
classified into seven different
functional networks

2. Sliding-window analysis, window
length = 30 TRs (60), steps =
1TR25)

3. k-means clustering (5 recurring
states)

4. Correlations with EEG data

1. Segmentation in 90 cortical brain
regions of the AAL atlas

2. Phase-coherence connectivty at
each time point

3. Leading eigenvectors and
subsequent k-means clustering
(five recurring states)

1. Segmentation in 264 regions of
the Power atlas (Power et al.,
2011), grouped into 10
functional networks

ing-window analysis, window
length = 50 TRs (150s), steps =
17R (3s) and dynamic sparse
connectiity models

3. k-means clustering analysis (4
recurring states)

1. ROls in crucial nodes of the
DMN and of the “task-positive”
(executive control) network

2. Time-frequency decomposition
using Wavelet transform
coherence;
sliding-window analysis

1. Segmentation in 264 regions of
the Power atlas (Power et al.,
2011)

2. Sliding-window analysis, window
length = 55 TRs (405), steps =
1TR(0.725)

3. Graph theoretical analysis

Kirby dataset:

1. Group ICA decomposition in 39
relevant components of interest,
classifled into 7 functional
networks

2. Sliding-window analysis, window
length = 30 TRs (60s)

Human Connectome Project

$500 Data dataset:

1. Group ICA decomposition in 50
relevant components of interest

2. Sliding-window analysis, window
lengths = 15, 30, 60, and 120
TRs (11, 22, 43, and 86'5)

3. TVC mean and variance,
k-means clustering (three
recurring states) and dynamic
conditional
correlation approaches

1. Segmentation of 114 regions of
the Yeo atlas (Yo et al,, 2011),
classified into 17 functional
networks

2. Sliding-window analysis, window
length = 7 TRs (14s), steps = 1
TR2s)

3. k-means clustering (3-7
recurring states)

1. Segmentation of six spherical
ROl (radius = 3mm) containing
regions of the DMN

. Point-process analysis

3. Estimation of variance of
dynamic connectivity
correlations, compared with
traditional
sliding-window analysis

1. Segmentation of two spherical
ROls (radius = 6 mm) containing
the PCC and left intraparietal
sulous.

. Point-process analysis

3. k-means clustering of
coactivation patterns (eight
coactivation patterns for the
PCC and 12 for the left
intraparietal sulcus)

1. Group ICA decomposition in 25
relevant independent
components of interest,
classified into 3 functional
networks

2. Slding-window analysis, window
length = 22 TRs (445), steps =
1TR (25)

3. k-means clustering (six recurring
states)

4. Correlation with age and
internal thoughts

~

~

1. Group ICA decomposition in four
relevant independent
components of interest

2. Slding-window analysis, window
length = 30 TRs (45), steps =
1TR(159)

3. k-means clustering (5 recurring
states)

4. Correlations with
mindfuiness scores

1. Segmentation in 90 regions of
the AAL atlas

2. Slding-window analysis, window
length = 25, steps = 0.6s

3. Graph theory analysis: flexi
and variance

1. Group ICA decomposition in 5
relevant independent
components of interest

2. Slding-window analysis, window
length = 30 TRs (60s), steps =
1TR2s)

3. k-means clustering (four
recurring states) and fuzzy-meta
states analyses

1. Segmentation of 90 regions from
Shirer et al. (Shirer et al., 2012)

. Point-process analysis

3. k-means clustering of
coactivation patterns (four
recurring states)

1. Group ICA decomposition in six
relevant independent
components of interest

2. Detrended fluctuation analysis

3. Hurst exponent (measuring
long-range
temporal dependence)

N

. Group ICA decomposition in 50
relevant independent
components of interest from the
HCP dataset, in 55 relevant
independent components of
interest from the UK Biobank
dataset

. Hidden Markov model

3. Stochastic inference (12

recurring states)

~

. Group ICA decomposition in 50
relevant independent
components of interest
Time-frequency decomposition

2. k-means clustering (five

recurring states)

1. Group decomposition in 50
relevant components of interest,
classified into seven different
functional networks

2. Sliding-window analysis, window
length = 32 TRs (44, steps =
1TR(2)

3. Clustering of siiding-window
matrices using temporal ICA to
find maximally mutually
temporally independent
connectivity pattemns (five
recurring states)

4. Sex differences

. Group ICA decomposition in 50
relevant independent
components of interest

. Time-frequency decomposition

3. k-means clustering of z-scored

time-frequency decompositions.

o find recurring frequency

modes (four recurring modes)

©

1. Four spherical ROIs (radius =
3mm) in crucial nodes of the
posteromedial cortex;
segmentation of 156 regions
from Craddock et al. (2012)

2. Sliding-window analysis, window
length = 69 TRs (44), steps =
3TRs (25)

3. Hierarchical clustering (fve
recurring states)

1. Segmentation in different
numbers of ROIs (from 90 to
4,000) (Zalesky et al., 2010)

2. Sliding-window analysis, window
length = 605, steps = 1 TR
(©0.729)

3. Non-stationarity of RS fMRI
fluctuations measured using an
ad hoc test statistic

1. Segmentation in 116 regions of
the AAL atlas and 160 regions of
the Dosenbach atlas
(Dosenbach et al., 2010)
Sliding-window analysis, window
length = from 20 TRs to 200 TRs

2. Standard deviation from the
mean and excursion from the
median. Amplitude of
low-frequency fluctuations.
across siding windows

2 RS scans were acquired in the eyes-closed condition, except where indicated.
TVC analysis approach summarizes: (1) ROIs used; (2) assessment of time-varying correlations between brain regions; (3) features extracted for assessing TVC.
*For each study group of healthy subjects, sex is represented as number of females (%), mean age and stendard deviation (SD).
RS, resting state; MR, functional magnefic resonance imaging; TVC, time-varying functional connectivity; ICA, independent component analysis; TR, repetition time; SD, standard
deviation; EEG, electroencephalographic registration; AAL, automated anatomical labeling; ROJs, regions of interest; DMN, defeult-mode network; PCC, posterior cingulate cortex; HCP,
Human connectome project; UK, United Kingdom; FC, functional connectivity.

Study subjects?

405 healthy aclults
200 females (49.4%)

mean age = 21.0 years
age range = 12-35 years -

23 healthy adults -
7 females (30.4%)

mean age = 29 years -
SD = 8.8 years

56 healthy adults with good -
cognitive performance

31 females (44.6%)

mean age = 64 years -
SD =9 years

43 healthy adults with poor
cognitive performance

2 females (66%)

mean age = 66

SD = 8 years

Philadelphia -
neurodevelopmental

cohort database

240 young adults

146 females (60.8%) -
mean age = 18.99 years

SD = 1.12 years

232 children

123 females (53%) -
mean age = 10.67 years

SD = 1.09 years

12 healthy adults -
6 females (50%)

mean age = 27.7 years

SD = 12.4 years

Human Connectome -
Project dataset

77 healthy adults

50 females (64.1%)

age range = 22-35 years

Kirby dataset -
20 healthy aduts Human
Connectome Project 500 -
Data dataset

523 healthy adiults

21 healthy adults with
high-trait mindfuiness

13 females (61.9%)

mean age = 23.7 years

SD =3.4 years

18 healthy adults with
low-trait mindfulness

13 females (72.2%)

mean age = 21.9 years

SD =23 years
Multimodal MRI
Reproducibility Resource
(Kirby21) dataset

21 healthy adults

10 females (47.6%)

mean age = 31.76 years
SD = 9.47 years

1000 Functional
Connectomes Project (FCP)
247 healthy adults

151 females (61.1%)

mean age = 22.72 years

SD = 4.61 years

age range = 18-44 years

Stanford University dataset
73 normally

developing children

34 females (46.57%)

mean age = 12.47

SD = 1.88 years Wayne State
University dataset

73 normally

developing children

49 females (67.12%)

mean age = 12.09 years

SD =254 years

42 children

23 females (54.8%)
mean age = 10.3 years
SD = 2.9 years

age range = 6-17 years

1,000 Functional
Connectomes Project
148 healthy young aduts
74 females (50%)

age range = 18-26 years

Southwest University
Longitudinal Imaging
Multimodal dataset
331 healthy young adiults
247 females (74.6%)
mean age = 20.20 years
SD = 134 years -
212 healthy young aduts

115 females (54.2%) mean age
=22.36 years

SD = 1.49 years

Human Connectome -
Project S500 Data dataset

100 healthy aciults -
54 fomales (54%)

39 healthy adults

Human Connectome
Project dataset

820 healthy adlults

453 females (65.2%)

age range = 22-35 years
UK Biobank dataset
5847 healthy aduts

age range = 40-69 years

Data from Allen et al. (2014)
405 healthy adlults

3. 200 females (49.4%)

4. mean age = 21.0 years
5. age range = 12-35 years

Data from Allen et al. (2014) -
405 healthy aduts

200 females (49.4%)

mean age = 21.0 years

age range = 12-35 years

Data from Allen et al. (2014) -
405 healthy aduts

200 females (49.4%)

21.0 years

12-85 years

22 healthy adults -
4. 6 females (27.3%)

5. mean age = 33.5 years

6. SD = 12.5 years

7. age range = 19-60 years

Human connectome project -
Q2 Data dataset

10 healthy adults

6 females (60%)

age range = 22-35 years

Human connectome project
$900 Data dataset

820 healthy adults

454 females (55.4%)

age range = 22-37 years -

Main findings

Identification of recurring TVC
states that partially diverge from
static connectivity patterns
Regions belonging to the DMN
have highly variable connectivity
over time, while regions of the
sensory and motor networks
exhibit more stable

connectivity configurations

States were replicable with those
of Allen et al. (2014)

TVC states comespond to
neurophysiological mental states
detected with EEG

Eyes open/eyes closed conditions
show some common and some
iferent connectivity patterns
Connectivity between the
thalamus and the cortex changes
from positive to negative in eyes
closed vs. open condition

More frequent switches in subjects
with poor cognitive vs. good
cognitive performances

The lower occurrence of a state
of global, positive coherence is
associated with worse

cognitive performances

Compared with young adults,
chidren  had increased
connectivity between the DMN
and other subnetworks

Children had reduced connectivity
among  sensorimotor, executive
control and auditory networks vs.
young adults

Young aduts spent more time in
the most connected state

Coherence and phase between
the PCC and nodes of the
executive  control  network
significantly vary in time and
frequency

High variabilty over time was
observed between the PCC and
brain areas involved in higher-level
cognitive functions

The sallence network showed
highly ~ flexible  connectivity
with fronto-parietal,  cingulate-
opercular, and attention networks

The salience network maintained
aconsistently high level of
network centralty over time

TVC can be reliably estimated in
test-retest data

The dynamic conditional
correlation method seems to be
more reliable than

sliding-window analysis

High trait mindfulness subjects
spent significantly more time in a
high within-network connectivity
state, characterized by greater
anti-correlations between  task-
positive  networks  and  the
DMN

Transitions between brain states
was more frequent in high vs. low
trait mindfulness subjects

Dynamic conditional correlations
are able to quantify dynamics of
RS fMRI data

Dynarmic conditional correfations
have a similr performance as
sliding-window analysis in
quantifying TVC between

brain regions

Point-process analysis was able
to extract correlational patterns in
RS MR data from relatively brief
periods of co-activation (or co-
deactivation) of brain regions
Co-activation patterns resembled
classical networks derived from
static RS FC analysis, while more
fine-grained co-activation
patterns were detected

The occurrence and amount of
time spent in specific TVC states
are related to the content of self-
generated thought during the scan
Temporal variabiity of TVG among
cognitive networks increases with
age

Regions showing the highest TVC
include multi-modal areas
associated with high-order
cognitive functions, such as the
precuneus and inferior

parictal lobe

High-mindfulness children had a
greater number of transitions
between states than
low-mindfulness children and
showed a state-specific reduction
in connectivity between
salience/emotion and central
executive networks

Flexibiity ~ of  amygdala,
hippocampus,  fusiform ~ gyrus,
and temporal gyrus was higher in
males than in females

Flexibiity of middle cingulate
cortex, thalamus, precuneus, and
temporo-occipital regions was
higher in females than in males
Subjects having a high score in
subjective well being spent less
time in a state characterized by
low cross-network ~ connectivity
and  stong  within-network
connectivity

The total number of transitions
across states was correlated with
a higher subjective

well-being score

Brain state- properties  were
reliable across days

Summary metrics of brain
connectivity dynamics had an
‘adequate test-retest reliability

Temporal memory of RS MRI
time series decreases from
wakefulness to deep non-rapid
eye movement sleep

Long-range temporal
dependence decreases especially
in regions of the DMN and
attention network

Hidden Markov models allow to
model resting (or task-related)
brain activity as a time-varying
sequence of distinct brain
networks, also when analyzing
very large amounts of data

Anew time-frequency
decomposition approach, based
'on wavelet transform coherence,
detected time-frequency
connectivity variations in RS fMRI
data

Recurring connectivity patterns in
time-frequency domain revealed
significant between-group
differences based on sex

A method alternative to k-means
clustering is proposed, based
on temporal ICA. This method
allowed to detect temporally
independent connectivity states

Frequency of occupancy of such
states was not different
between genders

Time-frequency  decomposition
allowed to capture frequency
variations i individual
network  time  courses

Frequency modes represent
“periodic” actiities consisting of
instantaneous activations

and deactivations

Each subregion of the
posteromedial cortex was
associated with five recurring
connectiity states

Each subregion possessed a
unique preferred state and
distinct transition patterns

A consistent set of functional
connections  had  pronounced
fluctuations over time

‘The most dynamic connections
were inter-modular and involved
hubs of the DMN and
fronto-parietal network

TVC was reliable, especially when
windows size was between 30
and 50 TRs, but less refiable than
static FG

The highest reliabilty for static
and dynamic FC analysis was
found for intra-network
connections in the fronto-parietal,
DMN, sensorimotor, and

occipital networks
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