
ORIGINAL RESEARCH
published: 18 June 2019

doi: 10.3389/fnins.2019.00621

Frontiers in Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 621

Edited by:

Teresa Serrano-Gotarredona,

Spanish National Research Council

(CSIC), Spain

Reviewed by:

Guoqi Li,

Tsinghua University, China

Tielin Zhang,

Institute of Automation (CAS), China

Juan Pedro Dominguez-Morales,

Universidad de Sevilla, Spain

*Correspondence:

Deboleena Roy

roy77@purdue.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 18 November 2018

Accepted: 29 May 2019

Published: 18 June 2019

Citation:

Roy D, Panda P and Roy K (2019)

Synthesizing Images From

Spatio-Temporal Representations

Using Spike-Based Backpropagation.

Front. Neurosci. 13:621.

doi: 10.3389/fnins.2019.00621

Synthesizing Images From
Spatio-Temporal Representations
Using Spike-Based Backpropagation
Deboleena Roy*, Priyadarshini Panda and Kaushik Roy

Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States

Spiking neural networks (SNNs) offer a promising alternative to current artificial neural

networks to enable low-power event-driven neuromorphic hardware. Spike-based

neuromorphic applications require processing and extracting meaningful information

from spatio-temporal data, represented as series of spike trains over time. In this paper,

we propose a method to synthesize images from multiple modalities in a spike-based

environment. We use spiking auto-encoders to convert image and audio inputs into

compact spatio-temporal representations that is then decoded for image synthesis. For

this, we use a direct training algorithm that computes loss on the membrane potential of

the output layer and back-propagates it by using a sigmoid approximation of the neuron’s

activation function to enable differentiability. The spiking autoencoders are benchmarked

on MNIST and Fashion-MNIST and achieve very low reconstruction loss, comparable

to ANNs. Then, spiking autoencoders are trained to learn meaningful spatio-temporal

representations of the data, across the two modalities—audio and visual. We synthesize

images from audio in a spike-based environment by first generating, and then utilizing

such shared multi-modal spatio-temporal representations. Our audio to image synthesis

model is tested on the task of converting TI-46 digits audio samples to MNIST images.

We are able to synthesize images with high fidelity and the model achieves competitive

performance against ANNs.

Keywords: autoencoders, spiking neural networks, multimodal, audio to image conversion, backpropagataon

1. INTRODUCTION

In recent years, Artificial Neural Networks (ANNs) have become powerful computation tools
for complex tasks such as pattern recognition, classification and function estimation problems
(LeCun et al., 2015). They have an “activation” function in their compute unit, also know as
a neuron. These functions are mostly sigmoid, tanh, or ReLU (Nair and Hinton, 2010) and are
very different from a biological neuron. Spiking neural networks (SNNs), on the other hand,
are recognized as the “third generation of neural networks" (Maass, 1997), with their “spiking”
neuron model much closely mimicking a biological neuron. They have a more biologically
plausible architecture that can potentially achieve high computational power and efficient neural
implementation (Ghosh-Dastidar and Adeli, 2009; Maass, 2015).

For any neural network, the first step of learning is the ability to encode the input into
meaningful representations. Autoencoders are a class of neural networks that can learn efficient
data encodings in an unsupervised manner (Vincent et al., 2008). Their two-layer structure makes
them easy to train as well. Also, multiple autoencoders can be trained separately and then stacked

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00621
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00621&domain=pdf&date_stamp=2019-06-18
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:roy77@purdue.edu
https://doi.org/10.3389/fnins.2019.00621
https://www.frontiersin.org/articles/10.3389/fnins.2019.00621/full
http://loop.frontiersin.org/people/417290/overview
http://loop.frontiersin.org/people/474514/overview
http://loop.frontiersin.org/people/502975/overview

Roy et al. Synthesizing Images From Spatio-Temporal Representations

to enhance functionality (Masci et al., 2011). In the domain of
SNNs as well, autoencoders provide an exciting opportunity for
implementing unsupervised feature learning (Panda and Roy,
2016). Hence, we use autoencoders to investigate how input spike
trains can be processed and encoded into meaningful hidden
representations in a spatio-temporal format of output spike trains
which can be used to recognize and regenerate the original input.

Generally, autoencoders are used to learn the hidden
representations of data belonging to onemodality only. However,
the information surrounding us presents itself in multiple
modalities—vision, audio, and touch. We learn to associate
sounds, visuals and other sensory stimuli to one another. For
example, an “apple” when shown as an image, or as text, or heard
as an audio, holds the same meaning for us. A better learning
system is one that is capable of learning shared representation of
multimodal data (Srivastava and Salakhutdinov, 2012). Wysoski
et al. (2010) proposed a bimodal SNN model that performs
person authentication using speech and visual (face) signals.
STDP-trained networks on bimodal data have exhibited better
performance (Rathi and Roy, 2018). In this work, we explore
the possibility of two sensory inputs—audio and visual, of the
same object, learning a shared representation using multiple
autoencoders, and then use this shared representation to
synthesize images from audio samples.

To enable the above discussed functionalities, we must look
at a way to train these spiking autoencoders. While several
prior works exist in training these networks, each comes with
its own advantages and drawbacks. One way to train spiking
autoencoders is by using Spike Timing Dependent Plasticity
(STDP) (Sjöström and Gerstner, 2010), an unsupervised local
learning rule based on spike timings, such as Burbank (2015) and
Tavanaei et al. (2018). However, STDP, being unsupervised and
localized, still fails to train SNNs to perform at par with ANNs.
Another approach is derived from ANN backpropagation; the
average firing rate of the output neurons is used to compute the
global loss (Bohte et al., 2002; Lee et al., 2016). Rate-coded loss
fails to include spatio-temporal information of the network, as
the network response is accumulated over time to compute the
loss. Wu et al. (2018b) applied backpropagation through time
(BPTT) (Werbos, 1990), while Jin et al. (2018) proposed a hybrid
backpropagation technique to incorporate the temporal effects.
Very recently Wu et al. (2018a) demonstrated direct training
of deep SNNs in a Pytorch based implementation framework.
However, it continues to be a challenge to accurately map the
time-dependent neuronal behavior with a time-averaged rate
coded loss function.

In a network trained for classification, an output layer neuron
competes with its neighbors for the highest firing rate, which
translates into the class label, thus making rate-coded loss a
requirement. However, the target for an autoencoder is very
different. The output neurons are trained to regenerate the input
neuron patterns. Hence, they provide us with an interesting
opportunity where one can choose not to use rate-coded loss.
Spiking neurons have an internal state, referred to as the
membrane potential (Vmem), that regulates the firing rate of
the neuron. The Vmem changes over time depending on the
input to the neuron, and whenever it exceeds a threshold, the

neuron generates a spike. Panda and Roy (2016) first presented
a backpropagation algorithm for spiking autoencoders that uses
Vmem of the output neurons to compute the loss of the network.
They proposed an approximate gradient descent based algorithm
to learn hierarchical representations in stacked convolutional
autoencoders. For training the autoencoders in this work, we
compute the loss of the network using Vmem of the output
neurons, and we incorporate BPTT (Werbos, 1990) by unrolling
the network over time to compute the gradients.

In this work, we demonstrate that in a spike-based
environment, inputs can be transformed into compressed spatio-
temporal spike maps, which can be then be utilized to reconstruct
the input later, or can be transferred across network models,
and data modalities. We train and test spiking autoencoders
on MNIST and Fashion-MNIST dataset. We also present an
audio-to-image synthesis framework, composed of multi-layered
fully-connected spiking neural networks. A spiking autoencoder
is used to generate compressed spatio-temporal spike maps of
images (MNIST). A spiking audiocoder then learns to map
audio samples to these compressed spike map representations,
which are then converted back to images with high fidelity
using the spiking autoencoder. To the best of our knowledge,
this is the first work to perform audio to image synthesis in a
spike-based environment.

The paper is organized in the following manner: In section
2, the neuron model, the network structure and notations
are introduced. The backpropagation algorithm is explained in
detail. This is followed by section 3 where the performance of
these spiking autoencoders is evaluated on MNIST (LeCun et al.,
1998) and Fashion-MNIST (Xiao et al., 2017) datasets. We then
setup our Audio to Image synthesis model and evaluate it for
converting TI-46 digits audio samples to MNIST images. Finally,
in section 4, we conclude the paper with discussion on this work
and its future prospects.

2. LEARNING SPATIO-TEMPORAL
REPRESENTATIONS USING SPIKING
AUTOENCODERS

In this section, we understand the spiking dynamics of
the autoencoder network and mathematically derive
the proposed training algorithm, a membrane-potential
based backpropagation.

2.1. Input Encoding and Neuron Model
A spiking neural network differs from a conventional ANN in
two main aspects—inputs and activation functions. For an image
classification task, for example, an ANN would typically take the
raw pixel values as input. However, in SNNs, inputs are binary
spike events that happen over time. There are several methods for
input encoding in SNNs currently in use, such as rate encoding,
rank order coding and temporal coding (Wu et al., 2007). One
of the most common methods is rate encoding, where each pixel
is mapped to a neuron that produces a Poisson spike train, and
its firing rate is proportional to the pixel value. In this work,
every pixel value of 0–255 is scaled to a value between [0, 1]

Frontiers in Neuroscience | www.frontiersin.org 2 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 1 | The input image is converted into a spike map over time. At each time step neurons spike with a probability proportional to the corresponding pixel value

at their location. These spike maps, when summed over several time steps, reconstruct the original input.

and a corresponding Poisson spike train of fixed duration, with
a pre-set maximum firing rate, is generated (Figure 1).

The neuron model is that of a leaky integrate-and-fire (LIF)
neuron. The membrane potential (Vmem) is the internal state of
the neuron that gets updated at each time step based on the input
of the neuron, Z[t] (Equation 1).The output activation (A[t]) of
the neuron depends on whether Vmem reaches a threshold (Vth)
or not. At any time instant, the output of the neuron is 0 unless
the following condition is fulfilled,Vmem ≥ Vth (Equation 2). The
leak factor is determined by a constant α. After a neuron spikes,
it’s membrane potential is reset to 0. Figure 2B illustrates a typical
neuron’s behavior over time.

V[t]
mem = (1− α)V[t−1]

mem + Z[t] (1)

A[t] =

{

0, V
[t]
mem < Vth

1, V
[t]
mem ≥ Vth

(2)

The activation function (Equation 2), which is a clip function,
is non-differentiable with respect to Vmem, and hence we
cannot take its derivative during backpropagation. Several works
use various approximate pseudo-derivatives, such as piece-wise
linear (Esser et al., 2015), and exponential derivative (Shrestha
and Orchard, 2018). As mentioned in Shrestha and Orchard
(2018), the probability density function of the switching activity
of the neuron with respect to its membrane potential can be
used to approximate the clip function. It has been observed that
biological neurons are noisy and exhibit a probabilistic switching
behavior (Benayoun et al., 2010; Nessler et al., 2013), which
can be modeled as having a sigmoid-like characterstic (Sengupta
et al., 2016). Thus, for backpropagation, we approximate the clip
function (Equation 2) with a sigmoid which is centered around
Vth, and thereby, the derivative of A[t] is approximated as the

derivative of the sigmoid, (A
[t]
apx) (Equations 3, 4).

A
[t]
apx =

1

1+ exp(−(V
[t]
mem − Vth))

(3)

∂A[t]

∂V
[t]
mem

≈
∂A

[t]
apx

∂V
[t]
mem

=
exp(−(V

[t]
mem − Vth))

(1+ exp(−(V
[t]
mem − Vth)))2

(4)

2.2. Network Model
We define the autoencoder as a two layer fully connected feed-
forward network. To evaluate our proposed training algorithm,
we have used two datasets - MNIST (LeCun et al., 1998) and
Fashion MNIST (Xiao et al., 2017). The two datasets have the
same input size, a 28 × 28 gray-scale image. Hence, the input
and the output layers of their networks have 784 neurons each.
The number of layer(1) neurons is different for the two datasets.
The input neurons [layer(0)] are mapped to the image pixels in
a one-to-one manner and generate the Poisson spike trains. The
autoencoder trained on MNIST later used as one of the building
blocks of the audio-to-image synthesis network. The description
of the network and the notation used throughout the paper is
given in Figure 2A.

2.3. Backpropagation Using Membrane
Potential
In this work, loss is computed using the membrane potential of
output neurons at every time step and then it’s gradient with
respect to weights is backpropagated for weight update. The
input image is provided to the network as 784×1 binary vector

over T time steps, represented as X
(t)
spike

. At each time step the

desired membrane potential of the output layer is calculated
(Equation 5). The loss is the difference between the desired
membrane potential and the actual membrane potential of the
output neurons. Additionally a masking function is used that
helps us focus on specific neurons at a time. The mask used

here is bitwise XOR between expected spikes [X
[t]
spike

] and output

spikes [A(2)[t]] at a given time instant. The mask only preserves
the error of those neurons that either were supposed to spike
but did not spike, or were not supposed to spike, but spiked. It
sets the loss to be zero for all other neurons. We observed that
masking is essential for training in spiking autoencoder as shown
in Figure 4A

O[t] = Vth.
∗X

[t]
spike

(5)

mask = bitXOR(X
[t]
spike

,A(2)[t]) (6)

Frontiers in Neuroscience | www.frontiersin.org 3 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 2 | The dynamics of a spiking neural network (SNN): (A) A two layer feed-forward SNN at any given arbitrary time instant. The input vector is mapped

one-to-one to the input neurons [layer(0)]. The input value governs the firing rate of the neuron, i.e., number of times the neuron output is 1 in a given duration. (B) A

leaky integrate and fire (LIF) neuron model with 3 synapses/weights at its input. The membrane potential of the neuron integrates over time (with leak). As soon as it

crosses Vth, the neuron output changes to 1, and Vmem is reset to 0. For taking derivative during backpropagation, a sigmoid approximation is used for the neuron

activation.

Error = E = mask.∗(O[t] − V(2)[t]
mem) (7)

Loss = L =
1

2
|E|2 (8)

The weight gradients, ∂L
∂W , are computed by back-propagating

loss in the two layer network as depicted in Figure 2A. We derive
the weight gradients below.

∂L

∂V
(2)[t]
mem

= −E (9)

From Equation (1),

∂V
(2)[t]
mem

∂W(2)
= (1− α)

∂V
(2)[t−1]
mem

∂W(2)
+

[

A(1)[t]
]T
. (10)

The derivative is dependent not only on the current input

[A(1)[t]], but also on the state from previous time step [V
(2)[t−1]
mem].

Next we apply chain rule on Equations (9–10),

∂L

∂W(2)
=

∂L

∂V
(2)[t]
mem

∂V
(2)[t]
mem

∂W(2)
= −E

[

(1−α)
∂V

(2)[t−1]
mem

∂W(2)
+

[

A(1)[t]
]T

]

,

(11)
from Equation (1),

∂V
(2)[t]
mem

∂Z(2)[t]
= I, (12)

from 9 and 12, we obtain the local error of layer(2) with respect to
the overall loss which is backpropagated to layer(1),

δ2 =
∂L

∂Z(2)[t]
= I(−E) = −E, (13)

next, the gradients for layer(1) are calculated,

∂Z(2)[t]

∂A(1)[t]
= W(2), (14)

from Equations (3–4),

∂A(1)[t]

∂V
(1)[t]
mem

≈
∂A

(1)[t]
apx

∂V
(1)[t]
mem

=
exp(−(V

(1)[t]
mem − Vth))

(1+ exp(−(V
(1)[t]
mem − Vth)))2

, (15)

from Equation (1),

∂V
(1)[t]
mem

∂W(1)
= (1− α)

∂V
(1)[t−1]
mem

∂W(1)
+

[

X
[t]
spike

]T
, (16)

from (13–16),

∂L

∂W(1)
=

∂L

∂V
(1)[t]
mem

∂V
(1)[t]
mem

∂W(1)
=

[

[

W(2)
]T

δ2 ◦
∂A(1)[t]

∂V
(1)[t]
mem

]

[

(1− α)
∂V

(1)[t−1]
mem

∂W(1)
+

[

X
[t]
spike

]T
]

. (17)

Thus, Equations (11) and (17) show how gradients of the loss
function with respect to weights are calculated. For weight
update, we use mini-batch gradient descent and a weight decay
value of 1e-5. We implement Adam optimization (Kingma and
Ba, 2014), but the first and second moments of the weight
gradients are averaged over time steps per batch (and not

averaged over batches). We store ∂V
(l)[t]
mem

∂W(l) of the current time step

for use in next time step. The initial condition is, ∂V
(l)[0]
mem

∂W(l) = 0. If a

Frontiers in Neuroscience | www.frontiersin.org 4 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

neuron spikes, it’s membrane potential is reset and therefore we

reset ∂V
(l,m)[t]
mem

∂W(l) to 0 as well, where l is the layer number andm is the

neuron number.

3. EXPERIMENTS

3.1. Regenerative Learning With Spiking
Autoencoders
For MNIST, a 784-196-784 fully connected network is used. The
spiking autoencoder (AE-SNN) is trained for 1 epoch with a
batch size of 100, learning rate 5e-4, and a weight decay of 1e-
4. The threshold (Vth) is set to 1. We define two metrics for
network performance, Spike-MSE and MSE. Spike-MSE is the
mean square error between the input spike map and the output
spike map, both summed over the entire duration. MSE is the
mean square error between the input image and output spikemap
summed over the entire duration. Both, input image and output
map, are normalized, zero mean and unit variance, and then the
mean square error is computed. The duration of inference is kept
the same as the training duration of the network.

It is observed in Figure 3 that the leak coefficient plays
an important role in the performance of the network. While
a small leak coefficient improves performance, too high of a
leak degrades it greatly. We use Spike-MSE as the comparison
metric during training in Figure 3A, to observe how well the
autoencoder can recreate the input spike train. In Figure 3B, we
report two different MSEs, one computed against input spike
map (spikes) and the other compared firing rate to pixel values
(pixels), after normalizing both. For ’IF’ neuron (α = 0), the train
data performs worse than test data, implying underfitting. At α

set to 0.01 we find the network having comparable performance
between test and train datasets, indicating a good fit. At α = 0.1,
the Spike-MSE is lowest for both test and train data, however the
MSE is higher. While the network is able to faithfully reconstruct
the input spike pattern, the difference between Spike-MSE and
regular MSE is because of the difference in actual pixel intensity
and the converted spike maps generated by the poisson generator
at the input. On further increasing the leak, there is an overall
performance degradation on both test and train data. Thus, we
observe that leak coefficient needs to be fine-tuned for optimal
performance. Going forth, we set the leak coefficient at 0.1 for all
subsequent simulations, as it gave the lowest train and test data
MSE on direct comparison with input spike maps.

Figure 4A shows that using a mask function is essential for
training this type of network. Without a masking function the
training loss does not converge. This is because all of the 784
output neurons are being forced to have membrane potential
of 0 or Vth, resulting in a highly constrained optimization
space, and the network eventually fails to learn any meaningful
representations. In the absence of any masking function, the
sparsity of the error vector E was less than 5%, whereas, with
the mask, the average sparsity was close to 85%. This allows
the optimizer to train the critical neurons and synapses of
the network. The weight update mechanism learns to focus
on correcting the neurons that do not fire correctly, which

effectively reduces the number of learning variables, and results
in better optimization.

Another interesting observation was that increasing the
duration of the input spike train improves the performance as
shown in Figure 4B. However, it comes at the cost of increased
training time as backpropagation is done at each time step, as well
as increased inference time. We settle for an input time duration
of 15 as a trade-off betweenMSE and time taken to train and infer
for the next set of simulations.

We also study the impact of hidden layer size for the
reconstruction properties of the autoencoder. As shown in
Figure 7A, as we increase the size of the network, the
performance improves. However, this comes at the cost of
increased network size, longer training time and slower inference.
While one gets a good improvement when increasing hidden
layer size from 64 to 196, the benefit diminishes as we increase
the hidden layer size to 400 neurons. Thus for our comparison
with ANNs, we use the 784×196×784 network.

For comparison with ANNs, a network (AE-ANN) of same
size (784×196×784) is trained with SGD, both with and without
Adam optimizer (Kingma and Ba, 2014) on MNIST for 1 epoch
with a learning rate of 0.1, batch size of 100, and weight decay of
1e-4. When training the AE-SNN, the first and second moments
of the gradients are computed over sequential time steps within
a batch (and not across batches). Thus it is not analogous to the
AE-ANN trained with Adam, where the moments are computed
over batches. Hence, we compare our network with both variants
of the AE-ANNs, trained with and without Adam. The AE-SNN
achieves better performance than the AE-ANN trained without
Adam; however it lags behind the AE-ANN optimized with
Adam as shown in Figure 5A. Some of the reconstructed MNIST
images are depicted in Figure 5B. One important thing to note
is that the AE-SNN is trained at every time step, hence there
are 15× more backpropagation steps as compared to an AE-
ANN. However at every backpropagation step, the AE-SNN only
backpropagates the error vector of a single spike map, which is
very sparse, and carries less information than the error vector of
the AE-ANN.

Next, the spiking autoencoder is evaluated on the Fashion-
MNIST dataset (Xiao et al., 2017). It is similar to MNIST, and
comprises of 28×28 gray-scale images (60,000 training, 10,000
testing) of clothing items belonging to 10 distinct classes. We test
our algorithm on two network sizes: 784-512-784 (AE-SNN-512)
and 784-1024-784 (AE-SNN-1024). The AE-SNNs are compared
against AE-ANNs of the same sizes (AE-ANN-512, AE-ANN-
1024) in Figure 6A. For the AE-SNNs, the duration of input spike
train is 60, leak coefficient is 0.1, and learning rate is set at 5e-
4. The networks are trained for 1 epoch, with a batch size of
100. The longer the spike duration, the better would be the spike
image resolution. For a duration of 60 time steps, a neuron can
spike anywhere between zero to 60 times, thus allowing 61 gray-
scale levels. Some of the generated images by AE-SNN-1024 are
displayed in Figure 6B. The AE-ANNs are trained for 1 epoch,
batch size 100, learning rate 5e-3 and weight decay 1e-4.

For Fashion-MNIST, the AE-SNNs exhibited better
performance than AE-ANNs as shown in Figure 6A. We
varied the learning rate for AE-ANN, and the AE-SNN still

Frontiers in Neuroscience | www.frontiersin.org 5 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 3 | The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples, batch size = 100) for different leak coefficients (α). (A) spike-based MSE

(Mean Square Error) Reconstruction Loss per batch during training. (B) Average MSE over entire dataset after training.

FIGURE 4 | The AE-SNN (784-196-784) is trained over MNIST (60,000 training samples, batch size = 100) and we study the impact of (A) mask and (B) input spike

train duration on the Mean Square Error (MSE) Reconstruction Loss.

FIGURE 5 | AE-SNN trained on MNIST (training examples = 60,000, batch size = 100). (A) Spiking autoencoder (AE-SNN) vs. AE-ANNs (trained with/without Adam).

(B) Regenerated images from test set for AE-SNN (input spike duration = 15, leak = 0.1).

Frontiers in Neuroscience | www.frontiersin.org 6 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 6 | AE-SNN trained on Fashion-MNIST (training examples = 60,000, batch size = 100) (A) AE-SNN [784×(512/1,024)×784] vs. AE-ANNs (trained

with/without Adam, lr = 5e-3). (B) Regenerated images from test set for AE-SNN-1024.

FIGURE 7 | (A) AE-SNN (784×H×784) trained on MNIST (training examples = 60,000, batch size = 100) for different hidden layer sizes = 64, 196, 400 (B) AE-ANN

[784×1,024×784] trained on Fashion-MNIST (training examples = 60,000, batch size = 100) with Adam optimization for various learning rates (lr). Baseline: AE-SNN

trained with input spike train duration of 60 time steps. (C) AE-SNN [784×1,024×784] trained on Fashion-MNIST (training examples = 60,000, batch size = 100) for

varying input time steps, T = 15, 30, 60. Baseline: AE-ANN trained using Adam with lr = 5e-3.

outperformed it’s ANN counterpart (Figure 7B). This is an
interesting observation, where the better performance comes at
the increased effort of per-batch training. Also it exhibits such
behavior on only this dataset, and not on MNIST (Figure 5A).
The spatio-temporal nature of training over each time step
could possibly train the network to learn the details in an
image better. Spiking Neural Networks have an inherent
sparsity in them which could possibly acts like a dropout
regularizer (Srivastava et al., 2014). Also, in case of AE-SNN,
the update is made at every time step (60 updates per batch),
in contrast to ANN where there is one update for one batch.
We evaluated AE-SNN for shorter time steps, and observe that
for smaller time steps (T = 5, 10), AE-SNN performs worse
than AE-ANN (Figure 7C). The impact of time steps is greater
for Fashion-MNIST, as compared to MNIST (Figure 4B), as
Fashion-MNIST data has more grayscale levels than the near-
binary MNIST data. We also observed that, for both datasets,
MNIST and Fashion-MNIST, the AE-SNN converges faster than
AE-ANNs trained without Adam, and converges at almost the
same time as an AE-ANN trained with Adam. The proposed
spike-based backpropagation algorithm is able to bring the

AE-SNN performance at par, and at times even better, than
AE-ANNs.

3.2. Audio to Image Synthesis Using
Spiking Auto-Encoders
3.2.1. Dataset

For the audio to image conversion task, we use two standard
datasets, the 0–9 digits subset of TI-46 speech corpus (Liberman
et al., 1993) for audio samples, and MNIST dataset (LeCun et al.,
1998) for images. The audio dataset has read utterances of 16
speakers for the 10 digits, with a total 4,136 audio samples. We
divide the audio samples into 3,500 train samples and 636 test
samples, maintaining an 85%/15% train/test ratio. For training,
we pair each audio sample with an image. We chose two ways of
preparing these pairs, as described below:

1. Dataset A: 10 unique images of the 10 digits is manually
selected (1 image per class) and audio samples are paired with
the image belonging to their respective classes (one-image-
per-audio-class). All audio samples of a class are paired with
the identical image of a digit belonging to that class.

Frontiers in Neuroscience | www.frontiersin.org 7 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 8 | Audio to image synthesis model using an autoencoder trained on MNIST images, and an Audiocoder trained to convert TI-46 digits audio samples into

corresponding hidden state of the MNIST images.

FIGURE 9 | The performance of the audio to image synthesis model on the two datasets - A and B [Th = 10)] (A) Mean square error loss (test set) (B) Images

synthesized from different test audio samples (5 per class) for the two datasets A and B.

2. Dataset B: Each audio sample of the training set is paired with
a randomly selected image (of the same label) from theMNIST
dataset (one-image-per-audio-sample). Every audio sample is
paired with a unique image of the same class.

The testing set is same for both Dataset A and B, comprising
of 636 audio samples. All the audio clips were preprocessed
using Auditory Toolbox (Slaney, 1998). They were converted to
spectrograms having 39 frequency channels over 1,500 time steps.
The spectrogram is then converted into a 58,500×1 vector of
length 58,500. This vector is then mapped to the input neurons
(layer(0)) of the audiocoder, which then generate Poisson spike
trains over the given training interval.

3.2.2. Network Model

The principle of stacked autoencoders is used to perform audio-

to-image synthesis. An autoencoder is built of two sets of
weights; the layer(1) weights (W(1)) encodes the information

into a “hidden state” of a different dimension, and the second

layer (W(2)) decodes it back to it’s original representation. We
first train a spiking autoencoder on MNIST dataset. We use the

AE-SNN as trained in Figure 5A. Using layer(1) weights [W[1]]

of this AE-SNN, we generate “hidden-state” representations of
the images belonging to the training set of the multimodal
dataset. These hidden-state representations are spike trains of
a fixed duration. Then we construct an audiocoder: a two

Frontiers in Neuroscience | www.frontiersin.org 8 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

FIGURE 10 | The audiocoder (AC-SNN/AC-ANN) is trained over Dataset A, while the autoencoder (AE-SNN/AE-ANN) is fixed. MSE is reported on the overall

audio-to-image synthesis model composed of AC-SNN/ANN and AE-SNN/ANN. (A) Reconstruction loss of the audio-to-image synthesis model for varying Th. (B)

Audiocoder performance AC-SNN (Th = 15) vs. AC-ANN (16 bit full precision). (C) Effect of training with reduced hidden state representation on AC-SNN and

AC-ANN models.

TABLE 1 | Summary of results obtained for the 3 tasks - autoencoder on MNIST, autoencoder on fashion-MNIST, and audio to image conversion (T = input

duration for SNN).

Dataset Network size Epochs T
Loss (MSE) (test)

SNN ANN ANN (with Adam)

MNIST 784-196-784 1 15 0.357 0.226 0.122

Fashion-MNIST
784-512-784 1 60 0.178 0.416 0.300

784-1,024-784 1 60 0.140 0.418 0.387

Audio-to-image A 58,500-2,048-196/196-784 20 30 0.254 0.408 0.144

Audio-to-image B 58,500-2,048-196/196-784 20 30 0.543 0.611 0.556

The lowest MSE is highlighted in bold

layer spiking network that converts spectrograms to this hidden
state representation. The audiocoder is trained with membrane
potential based backpropagation as described in section 2.3. The
generated representation, when fed to the “decoder” part of the
autoencoder, gives us the corresponding image. The network
model is illustrated in Figure 8.

3.2.3. Results

The MNIST autoencoder (AE-SNN) used for audio-to-image
synthesis task is trained using the following parameters: batch
size of 100, learning rate 5e-4, leak coefficient 0.1, weight decay
1e-4, input spike train duration 15, and number of epochs 1, as
used in section 3.1. We use Dataset A and Dataset B (as described
in section 3.2.1) to train and evaluate our audio-to-image
synthesis model. The images that were paired with the training
audio samples are converted to Poisson spike trains (duration 15
time steps) and fed to the AE-SNN, which generates a 196×15
corresponding bitmap as the output of layer(1) (Figure 2A). This
spatio temporal representation is then stored. Instead of storing
the entire duration of 15 time steps, one can choose to store a
subset, such as first 5 or 10 time steps. We use Th to denote the
saved hidden state’s duration.

This stored spike map serves as the target spike map for
training the audiocoder (AC-SNN), which is a 58,500 × 2,048 ×
196 fully connected network. The spectrogram (39 × 1,500) of
each audio sample was converted to 58,500 × 1 vector which is
mapped one-to-one to the input neurons [layer(0)]. These input
neurons then generate Poisson spike trains for 60 time steps. The
target map, of Th time steps, was shown repeatedly over this

duration. The audiocoder (AC-SNN) is trained over 20 epochs,
with a learning rate of 5e-5 and a leak coefficient of 0.1. Weight
decay is set at 1e-4 and the batch size is 50. Once trained, the
audiocoder is then merged with W(2) of AE-SNN to create the
audio-to-image synthesis model (Figure 8).

For Dataset A, we compare the images generated by audio
samples of a class against the MNIST image of that class to
compute the MSE. In case of Dataset B, each audio sample of
the train set is paired with an unique image. For calculating
training set MSE, we compare the paired image and the generated
image. For testing set, the generated image of an audio sample is
comparedwith all the training images having the same label in the
dataset, and the lowest MSE is recorded. The output spike map is
normalized and compared with the normalized MNIST images,
as was done previously. Our model gives lower MSE for Dataset
A compared to Dataset B (Figure 9A), as it is easier to learn just
one representative image for a class, than unique images for every
audio sample. The network trained with Dataset A generates very
good identical images for audio samples belonging to a class.
In comparison the network trained on Dataset B generates a
blurry image, thus indicating that it has learned to associate the
underlying shape and structure of the digits, but has not been able
to learn finer details better. This is because the network is trained
overmultiple different images of the same class, and it learns what
is common among them all. Figure 9B displays the generated
output spike map for the two models trained over Dataset A and
B for 50 different test audio samples (5 of each class).

The duration (Th) of stored “hidden state” spike train was
varied from 15 to 10, 5, 2, and 1. A spike map at a single time

Frontiers in Neuroscience | www.frontiersin.org 9 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

step is a 1-bit representation. The AE-SNN compresses an 784×8
bit representation into 196×Th-bit representation. For Th = 15,
10, 5, 2, and 1, the compression is 2.1×, 3.2×, 6.4×, 16× and
32×, respectively. In Figure 10A we observe the reconstruction
loss (test set) over epochs for training using different lengths of
hidden state. Even when the AC-SNN is trained with a much
smaller “hidden state”, the AE-SNN is able to reconstruct the
images without much loss.

For comparison, we initialize an ANN audiocoder (AC-ANN)
of size 58,500× 2,048× 196. The AE-ANN trained over MNIST
in section 3.1 is used to convert the images of the multimodal
dataset (A/B) to 196×1 “hidden state” vectors. Each element
of this vector is 16 bit full precision number. In case of AE-
SNN, the “hidden state” is represented as a 196×Th bit map. For
comparison, we quantize the equivalent hidden state vector into
2Th levels. The AC-ANN is trained using these quantized hidden
state representations with the following learning parameters:
learning rate 1e-4, weight decay 1e-4, batch size 50, epochs
20. Once trained, the ANN audio-to-image synthesis model
is built by combining AC-ANN and layer(2) weights (W(2))
of AE-ANN. The AC-ANN is trained with/without Adam
optimizer, and is paired with the AE-ANN trained with/without
Adam optimizer, respectively. In Figure 10B, we see that our
spiking model achieves a performance in between the two
ANN models, a trend we have observed earlier while training
autoencoders on MNIST. In this case, the AC-SNN is trained
with Th as 15, while AC-ANNs are trained without any output
quantization; both are trained on Dataset A. In Figure 10C, we
observe the impact of quantization for the ANN model and
the corresponding impact of lower Th for SNN. For higher
hidden state bit precision, the ANN model outperforms the
SNN one. However for extreme quantization case, number
of bits = 2, and 1, the SNN performs better. This could
possibly be attributed to the temporal nature of SNN, where
the computation is event-driven and spread out over several
time steps.

Note, all simulations were performed using MATLAB,
which is a high level simulation environment. The
algorithm, however, is agnostic of implementation
environment from a functional point of view and can be
easily ported to more traditional ML frameworks such as
PyTorch or TensorFlow.

4. DISCUSSION AND CONCLUSION

In this work, we propose a method to synthesize images in
spike-based environment. In Table 1, we have summarized the
results of training autoencoders and audiocoders using our
own Vmem-based backpropagation method1,2. The proposed

1Table 1: Audio-to-Image A: SNN: Th = 15, ANN: no quantization for

hidden state.
2Table 1: Audio-to-Image B: SNN: Th = 10, ANN: no quantization for

hidden state.

algorithm brings SNN performance at par with ANNs for the
given tasks, thus depicting the effectiveness of the training
algorithm. We demonstrate that spiking autoencoders can be
used to generate reduced-duration spike maps (“hidden state”)
of an input spike train, which are a highly compressed version
of the input, and they can be utilized across applications. This
is also the first work to demonstrate audio to image synthesis in
spiking domain. While training these autoencoders, we made a
few important and interesting observations; the first one is the
importance of bit masking of the output layer. Trying to steer
the membrane potentials of all the neurons is extremely hard
to optimize, and selectively correcting only incorrectly spiked
neurons makes training easier. This could be applicable to any
spiking neural network with a large output layer. Second, while
the AE-SNN is trained with spike durations of 15 time steps,
we can use hidden state representations of much lower duration
to train our audiocoder with negligible loss in reconstruction
of images for the audio-to-image synthesis task. In this task,
the ANN model trained with Adam outperformed the SNN one
when trained with full precision “hidden state”. However, at
ultra-low precision, the hidden state loses it’s meaning in ANN
domain, but in SNN domain, the network can still learn from
it. This observation raises important questions on the ability
of SNNs to possibly compute with less data. While sparsity
during inference has always been an important aspect of SNNs,
this work suggests that sparsity during training can also be
potentially exploited by SNNs. We explored how SNNs can
be used to compress information into compact spatio-temporal
representations and then reconstruct that information back from
it. Another interesting observation is that we can potentially train
autoencoders and stack them to create deeper spiking networks
with greater functionalities. This could be an alternative approach
to training deep spiking networks. Thus, this work sheds light
on the interesting behavior of spiking neural networks, their
ability to generate compact spatio-temporal representations of
data, and offers a new training paradigm for learning meaningful
representations of complex data.

AUTHOR CONTRIBUTIONS

DR, PP, and KR conceived the idea and analyzed the results. DR
formulated the problem, performed the simulations and wrote
the paper.

FUNDING

This work was supported in part by the Center for Brain
Inspired Computing (C-BRIC), one of the six centers in JUMP, a
Semiconductor Research Corporation (SRC) program sponsored
by DARPA, the National Science Foundation, Intel Corporation,
the DoD Vannevar Bush Fellowship, and by the U.S. Army
Research Laboratory and the U.K. Ministry of Defense under
Agreement Number W911NF-16-3-0001.

Frontiers in Neuroscience | www.frontiersin.org 10 June 2019 | Volume 13 | Article 621

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Roy et al. Synthesizing Images From Spatio-Temporal Representations

REFERENCES

Benayoun, M., Cowan, J. D., van Drongelen, W., and Wallace, E. (2010).

Avalanches in a stochastic model of spiking neurons. PLoS Comput. Biol.

6:e1000846. doi: 10.1371/journal.pcbi.1000846

Bohte, S. M., Kok, J. N., and La Poutre, H. (2002). Error-backpropagation in

temporally encoded networks of spiking neurons. Neurocomputing 48:17–37.

doi: 10.1016/S0925-2312(01)00658-0

Burbank, K. S. (2015). Mirrored stdp implements autoencoder learning

in a network of spiking neurons. PLoS Comput. Biol. 11:e1004566.

doi: 10.1371/journal.pcbi.1004566

Esser, S. K., Appuswamy, R., Merolla, P., Arthur, J. V., and Modha, D. S.

(2015). “Backpropagation for energy-efficient neuromorphic computing,” in

Advances in Neural Information Processing Systems (Montreal, QC: NIPS

Proceedings Neural Information Processing Systems Foundations, Inc.) 1117–

1125. Available online at: https://papers.nips.cc/paper/5862-backpropagation-

for-energy-efficient-neuromorphic-computing

Ghosh-Dastidar, S. and Adeli, H. (2009). Spiking neural networks. Int. J. Neural

Syst. 19:295–308. doi: 10.1142/S0129065709002002

Jin, Y., Li, P., and Zhang, W. (2018). Hybrid macro/micro level backpropagation

for training deep spiking neural networks. arXiv preprint arXiv:1805.07866.

Kingma, D. P. and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436–44.

doi: 10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proc. IEEE 86:2278–2324.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Liberman, M., Amsler, R., Church, K., Fox, E., Hafner, C., Klavans, J., et al. (1993).

Ti 46-word. Philadelphia, PA: Linguistic Data Consortium.

Maass, W. (1997). Networks of spiking neurons: the third generation of neural

network models. Neural Netw. 10:1659–1671.

Maass, W. (2015). To spike or not to spike: that is the question. Proc. IEEE

103:2219–2224. doi: 10.1109/JPROC.2015.2496679

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). “Stacked

convolutional auto-encoders for hierarchical feature extraction," in

International Conference on Artificial Neural Networks (Espoo: Springer),

52–59.

Nair, V. and Hinton, G. E. (2010). “Rectified linear units improve restricted

boltzmann machines,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (Haifa), 807–814.

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.10

03037

Panda, P. and Roy, K. (2016). “Unsupervised regenerative learning of hierarchical

features in spiking deep networks for object recognition,” in Neural Networks

(IJCNN), 2016 International Joint Conference on (IEEE) (Vancouver, BC)

299–306.

Rathi, N. and Roy, K. (2018). “Stdp-based unsupervised multimodal learning with

cross-modal processing in spiking neural network,” in IEEE Transactions on

Emerging Topics in Computational Intelligence . Available online at: https://

ieeexplore.ieee.org/abstract/document/8482490

Sengupta, A., Parsa, M., Han, B., and Roy, K. (2016). Probabilistic deep spiking

neural systems enabled by magnetic tunnel junction. IEEE Trans. Electron

Devices 63:2963–2970. doi: 10.1109/TED.2016.2568762

Shrestha, S. B. and Orchard, G. (2018). “Slayer: Spike layer error reassignment

in time,” in Advances in Neural Information Processing Systems (Montreal,

QC: NIPS Proceedings Neural Information Processing Systems Foundations,

Inc.), 1419–1428. Available online at: https://papers.nips.cc/paper/7415-slayer-

spike-layer-error-reassignment-in-time

Sjöström, J. and Gerstner, W. (2010). Spike-timing dependent plasticity.

Scholarpedia J. 5:1362. Available online at: http://www.scholarpedia.org/article/

Spike-timing_dependent_plasticity

Slaney, M. (1998). Auditory Toolbox. Interval Research Corporation, Technical

Report 10.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting.

J. Mach. Learn. Res. 15:1929–1958. Available online at: http://jmlr.org/papers/

v15/srivastava14a.html

Srivastava, N. and Salakhutdinov, R. (2012). “Learning representations for

multimodal data with deep belief nets,” in International Conference on Machine

Learning Workshop, Vol. 79 (Edinburgh).

Tavanaei, A., Masquelier, T., and Maida, A. (2018). Representation learning using

event-based stdp. Neural Net. 105, 294–303 Available online at: https://www.

sciencedirect.com/science/article/pii/S0893608018301801

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). “Extracting

and composing robust features with denoising autoencoders,” in Proceedings

of the 25th International Conference on Machine Learning (Helsinki: ACM),

1096–1103.

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do

it. Proc. IEEE 78:1550–1560. doi: 10.1109/5.58337

Wu, Q., McGinnity, M., Maguire, L., Glackin, B., and Belatreche, A. (2007).

“Learning mechanisms in networks of spiking neurons,” in Trends in Neural

Computation, K. Chen and L. Wang (Berlin; Heidelberg: Springer), 171–197.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018a). Direct training for spiking

neural networks: faster, larger, better. arXiv preprint arXiv:1809.05793.

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018b). Spatio-

temporal backpropagation for training high-performance spiking

neural networks. Front. Neurosci. 12:23. doi: 10.3389/fnins.2018.

00331

Wysoski, S. G., Benuskova, L., and Kasabov, N. (2010). Evolving spiking neural

networks for audiovisual information processing. Neural Netw. 23:819–835.

doi: 10.1016/j.neunet.2010.04.009

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Roy, Panda and Roy. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2019 | Volume 13 | Article 621

https://doi.org/10.1371/journal.pcbi.1000846
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1371/journal.pcbi.1004566
https://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
https://papers.nips.cc/paper/5862-backpropagation-for-energy-efficient-neuromorphic-computing
https://doi.org/10.1142/S0129065709002002
https://doi.org/10.1038/nature14539
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1109/JPROC.2015.2496679
https://doi.org/10.1371/journal.pcbi.1003037
https://ieeexplore.ieee.org/abstract/document/8482490
https://ieeexplore.ieee.org/abstract/document/8482490
https://doi.org/10.1109/TED.2016.2568762
https://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time
https://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.sciencedirect.com/science/article/pii/S0893608018301801
https://www.sciencedirect.com/science/article/pii/S0893608018301801
https://doi.org/10.1109/5.58337
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1016/j.neunet.2010.04.009
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
	1. Introduction
	2. Learning Spatio-Temporal Representations using Spiking Autoencoders
	2.1. Input Encoding and Neuron Model
	2.2. Network Model
	2.3. Backpropagation Using Membrane Potential

	3. Experiments
	3.1. Regenerative Learning With Spiking Autoencoders
	3.2. Audio to Image Synthesis Using Spiking Auto-Encoders
	3.2.1. Dataset
	3.2.2. Network Model
	3.2.3. Results

	4. Discussion and Conclusion
	Author Contributions
	Funding
	References

