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Animal behavior is the final and integrated output of brain activity. Thus, recording and
analyzing behavior is critical to understand the underlying brain function. While recording
animal behavior has become easier than ever with the development of compact and
inexpensive devices, detailed behavioral data analysis requires sufficient prior knowledge
and/or high content data such as video images of animal postures, which makes it
difficult for most of the animal behavioral data to be efficiently analyzed. Here, we report
a versatile method using a hybrid supervised/unsupervised machine learning approach
for behavioral state estimation and feature extraction (STEFTR) only from low-content
animal trajectory data. To demonstrate the effectiveness of the proposed method, we
analyzed trajectory data of worms, fruit flies, rats, and bats in the laboratories, and
penguins and flying seabirds in the wild, which were recorded with various methods and
span a wide range of spatiotemporal scales—from mm to 1,000 km in space and from
sub-seconds to days in time. We successfully estimated several states during behavior
and comprehensively extracted characteristic features from a behavioral state and/or
a specific experimental condition. Physiological and genetic experiments in worms
revealed that the extracted behavioral features reflected specific neural or gene activities.
Thus, our method provides a versatile and unbiased way to extract behavioral features
from simple trajectory data to understand brain function.

Keywords: quantitative behavioral analysis, behavioral states, feature extraction, navigation, calcium imaging,
genetic screening
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INTRODUCTION

The brain receives, integrates, and processes a range of
ever-changing environmental information to produce relevant
behavioral outputs. Therefore, understanding salient behavioral
features can augment our understanding of important aspects
of environmental information as well as of brain activity,
which links the environmental information to behavior. Recent
technological development of compact and inexpensive cameras
and/or global positioning system (GPS) devices has facilitated
convenient monitoring and recording of animal behavior (Dell
et al., 2014; Egnor and Branson, 2016; Brown and de Bivort,
2018). However, the behavioral data generated through these
approaches are frequently represented as a few simple measures,
such as velocity, migratory distance, or the probability of
reaching a particular goal, due to the challenges related to
identification of specific aspects of behavior to be analyzed; in
other words, it is still difficult to figure out how we can describe
an animal behavior meaningfully (Berman, 2018). Owing to poor
description of behavior, dynamic neural activity, for example,
is not sufficiently interpreted even though simultaneous optical
monitoring can measure a large number of time-series neural
activities (Alivisatos et al., 2012; Landhuis, 2017). This large
asymmetry in data richness between neural activity and behavior
has emerged as one of the most significant issues in modern
neuroscience (Anderson and Perona, 2014; Gomez-Marin et al.,
2014; Krakauer et al., 2017).

One way to overcome the challenges in the appropriate
descriptions of behavior is to describe its salient features via
comprehensive analysis through an approach such as machine
learning. Machine learning involves extracting latent patterns
and uncovering knowledge from a large amount of data (Bishop,
2006). In fact, multiple behavioral analysis methods based
on machine learning have been reported in the last decade
(Baek et al., 2002; Stephens et al., 2008; Branson et al., 2009;
Dankert et al., 2009; Brown et al., 2013; Kabra et al., 2013;
Vogelstein et al., 2014; Wiltschko et al., 2015; Robie et al.,
2017; Mathis et al., 2018). Most of these studies have classified
behavioral states based on detailed analyses of animal postures as
observed in video images (Dell et al., 2014); the classification of
behavioral states into classes, such as foraging, sleeping, chasing,
or fighting, is considered to be critical for efficient behavioral
analysis, as each of the behavioral feature varies differently across
different behavioral states (Patterson et al., 2008; Jonsen et al.,
2013; Egnor and Branson, 2016). Although these methods have
worked successfully for the analysis of behavioral videos of
worms, fruit flies, and rodents in laboratories, they have some
limitations. First, these methods are not suitable for analyzing
relatively long-distance navigation given their requirement of
recording reasonably large and detailed images of animals
in the video frame. Second, the extraction of behavioral
features from a state, as opposed to just state classification, is
more critical in understanding how environmental information
and/or brain activities trigger transitions among states for a
behavioral response.

To analyze relatively long-distance navigation behavior
comprehensively, we developed a method for the estimation

of behavioral states and extraction of relevant behavioral
features based only on the trajectories of animals. For
estimating behavioral states, we used an unsupervised learning
method involving the expectation maximization (EM) algorithm
(Dempster et al., 1977) because it is difficult for the human eye
to classify behavior into distinct states without using posture
images. For extracting salient behavioral features, we used
information gain, an index used for a supervised learning method
(the decision tree analysis) (Quinlan, 1986), and compared the
features between two different experimental conditions (e.g., with
or without certain stimulus). It is because supervised learning
is considered advantageous in the extraction of characteristic
behavioral features and comparing them among multiple
conditions. We named this hybrid supervised/unsupervised
machine learning approach as the state estimation and f eature
extraction (STEFTR) method (Figure 1).

Because the STEFTR method only uses trajectory information
for the analysis, it becomes possible to analyze the movement
behavior of various animals regardless of the spatiotemporal
scale of movement. As proof-of-principle experiments, we
analyzed the trajectories of worms, flies, rats, and bats
in laboratories and those of penguins and flying seabirds
in the wild; these experiments involved a spatiotemporal
scale ranging from mm to 1,000 km in space and from
sub-seconds to days in time. The behavioral states of worms and
penguins estimated by the STEFTR method were in reasonable
conformation with the ones described in previous literature,
supporting the reliability of our method. We further extracted
learning-dependent behavioral features from a behavioral state
of worms, in which one of the behavioral features is correlated
with learning-dependent changes in neural activities. We also
analyzed the behavioral features of mutant strains of worms
and found that the patterns of features are correlated with
gene function, suggesting that comprehensive feature extraction
may enable us to estimate unknown functions of a gene
product. We were also able to extract learning-dependent
features from bats and pheromone-dependent features from fruit
flies. Taken together, our findings indicate that the STEFTR
method allows us to estimate internal state, neural activity,
and gene function related to animal behavior only from
movement trajectories, regardless of the recording method or the
spatiotemporal scales.

MATERIALS AND METHODS

Overview of Behavioral State Estimation
For the analysis of trajectory information of an animal obtained
from video images or from the GPS device attached to an
animal, approximately 1/1,000 and 1/100 of the median recording
time across animals were used as a unit for time frame and
the time window for moving average, respectively (Table 1).
These values were used to draw the eight histograms of the
averages (Ave) and the variances (Var) of velocity (V), bearing
(B), time-differential of V (dV) and B (dB) as the basic behavioral
features. The time window for moving average was critical to
reduce noise and to detect relatively long trends of behavior
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FIGURE 1 | A workflow of the STEFTR method. Trajectory data of animals are used to calculate eight basic behavioral features, and one of them is analyzed by the
EM algorithm to estimate behavioral states (upper panels). From a behavioral state, behavioral features are comprehensively evaluated by using information gain
(lower panels).

TABLE 1 | Summary of recording and analysis conditions of animal behavior.

Animal Worms Penguins Flying
seabirds

Rats Flies Bats

Condition Naive, mock,
preexposed

1 1 1 With or without
pheromone

With or without
learning

Animal #/condition 50 each 11 54 1 27, 30 3 each

Trajectory #/condition 50 each 11 54 45 27, 30 9 each

Recording time (min–max) 600 s 1,626–2,787 min 484–8,293 min 1,031–3,194 s 16 s 1.67–2.53 s

Recording time (median) 600 s 2,279 min 972 min 1,822 min 16 s 1.95 s

Time unit 1 s 1 min 1 min 1 s 0.25 s 0.008 s

Time window for moving average 12 s 20 min 10 min 20 s – –

Feature used for clustering dB_Var V_Ave B_Var V_Var – –

Length unit mm m km cm a.u. m

Approx. distance (min–max) 5–30 mm 1–10 km 100–2,000 km 180 × 180 cm 1–500 mm 6 m

(see section “Discussion”). Each histogram was regarded as a
mixture of normal distributions, and EM algorithm was used
to estimate the number of clusters (i.e., normal distributions)
and their boundaries. We then calculated how many individual
clusters in a histogram were well-separated using the separation
index, and a histogram with the best separation index was chosen
for further analysis (for details, see the following sections). The
individual clusters in the chosen histogram are considered to
be corresponding to different behavioral states. In the case of
worms, the EM analysis was performed with specifying the
maximum cluster number of 20. In other cases, maximum
cluster number 5 was predetermined based on the knowledge
that the number of basic behavioral states are several in general
(Patterson et al., 2008).

The EM algorithm assigns a cluster label to each time
frame although the clustering results should be smooth in time
because each cluster should reflect a behavioral state of an
animal. To smooth out the clustering results and removing
outlying results, moving average was again applied to the cluster
labels, which resulted in clusters resemble to the human-labeled
behavioral states.

When the value of a basic behavioral feature changes suddenly
and largely, the influence of the change may extend over a
wide range. For example, if an animal moving straightly initiates
local search suddenly, dB value will be 0◦, 0◦, 0◦, 0◦, 0◦, 0◦,
180◦, 0◦, 90◦, 0◦, 270◦, etc. If moving average with ±5 time
frame is applied, the value change occurs from −5 time frame
of the sudden value change, which should be compensated.
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Because worm’s clusters 0 and 1 corresponded to this case, the
beginning and the end of each cluster 0 was extended by the
half of time window.

The cluster labels obtained as described above were mapped
to the corresponding trajectory position with colors. We used a
custom-made python program for calculating basic behavioral
features, Weka data mining software (the University of Waikato,
New Zealand) (Frank et al., 2016) for EM calculation, and Excel
(Microsoft) for others.

EM Algorithm for Cluster Analysis
A set of values of the ith basic behavioral feature Fi (e.g.,
V_Ave), which were extracted from trajectories of interest, and
the number of clusters N were given. We employed the EM
algorithm to cluster Fi into N clusters, i.e., a mixture of N
Gaussians. The probability distribution of the Gaussian mixtures
MN is represented as follows:

p(fi|MN) =

N∑
n=1

πnN(fi,µn, σn),

where f i is one of the feature values among Fi, πn is the
mixture weight of the nth Gaussian, µn is the mean of the nth
Gaussian, and σn is the standard deviation of the nth Gaussian.
The EM algorithm was used to estimate the cluster parameters:
πn, µn, and σn.

Determination of Cluster Number Using
Log-Likelihood for Model
To find the best cluster number N, we evaluated a set of clusters
obtained by the EM algorithm using log-likelihood of a set of
feature values Fi under model Mn (n shows the cluster number).
That is, (i) we performed the EM algorithm to obtain the cluster
parameters for each n, which increased from 1 by 1. (ii) If the
log-likelihood of Fi for Mn was increased compared with that
for Mn−1, n was further increased. (iii) If not, the best N was
determined as n−1. The Weka software (Frank et al., 2016) was
used for this process.

Automatic Selection of Basic Behavioral
Feature by Separation Index
To choose a histogram that best represents multiple behavior
states, we calculated the “separation index” based on the
following two criteria: (i) the distances among clusters were
large and (ii) a peak of each cluster was apparent. The first
criterion was calculated based on the overlapping area of different
clusters. The second criterion was designed based on an idea
that, when behavior clusters are not separated, the histogram
(mixture of the clusters) seems to have no apparent peaks. Based
on the above criteria, the separation index of a histogram was
calculated as follows:

s(H) = (1−Ov(MN))+
min(N,Mx(H))

N
,

where Ov(MN) represents the proportion of overlapping
area of adjacent Gaussian distributions in MN , and Mx(H)

represents the number of local maxima in the histogram H.
To calculate local maxima, we first estimated the probability
density function of H using the kernel density estimation and
then calculated the derivative of the function. Note that, to
eliminate noise local maxima, we ignored local maxima smaller
than 0.1%. A histogram with the largest index was selected for
further analysis.

Feature Extraction With Information Gain
We leverage information gain to evaluate the classification ability
of each feature, i.e., its ability to identify a characteristic of a state
(cluster). Information entropy is used to compute the ambiguity
of a set of data points according to the following formula:

H = −
N∑

n=1

pn log2 pn,

where pn is the proportion of data points belonging to the
nth cluster. Given that we classify all the data points into two
groups (i.e., two experimental conditions) using a particular
threshold related to a specific feature, the feature is considered
to be a characteristic feature (in that it classifies the data points
well) if the ambiguity within the two groups is lower than
that of the original data set. Thus, we evaluated features in
terms of their ability in ambiguity reduction upon classification
(information gain).

For worm odor avoidance behavior, we extracted behavioral
features that have positive information gain in naive versus
pre-exposed worms or in mock-treated versus pre-exposed
worms (see below). Next, we chose the extracted features that
were common for both comparisons; these features were termed
as “features modulated in a learning-dependent manner.” For
flies, behavioral features were compared between with or without
pheromone tapping. For bats, behavioral features were compared
between unfamiliar flights (1st–3rd) and familiar (10th–12th)
flights. The Weka software was used for these calculations.

Behavioral Parameters Included in a
Feature Vector
For the machine learning analysis of worm’s odor avoidance
behavior, the following behavioral features were calculated for
each cluster 0 segment from the coordinates of the centroid
of the trajectory: velocity (V), bearing (B), odor concentration
the worm experienced during the run (C), the time differential
values for these (dV, dB, and dC), directedness (Dir) (Gorelik
and Gautreau, 2014), curvature (called weathervane; WV) (Iino
and Yoshida, 2009), and durations of cluster 0 and 1 (Clst0Dur
and Clst1Dur, respectively). For V, dV, B, dB, C, dC, and Dir, the
average (Ave) and median (Med) values for at the initiation (Ini),
middle (Mid), termination (Ter), and all (All) periods of a cluster
0 segment were calculated. A total of 333 features was calculated
by combining all these features.

For analyzing changes in the flight of bats, the following
behavioral features in each flight were calculated from the
coordinates of the bats and obstacles: three-dimensional flight
velocity (V), horizontal and vertical bearings of the flight (B_hori
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and B_vert, respectively), distance (R_obs) and bearing (B_obs)
of the bat to the nearest edge point of the obstacle chain
array, longitudinal directional distance to the frontal chain array
(R_x), and lateral directional distance to the inside pitch of the
chain array (R_y). Time-differential values were calculated for
V (dV), B (dB), dB (ddB), and the flight height (dH), which
were calculated with frame units of the high-speed video cameras
(1/125 s). All flight trajectories were divided into three segments:
early, middle, and late terms. The time window for the analysis
of each behavioral feature was 0.1, 0.2, or 0.3 s before or while
(t = 0) passing through the chain array. A total of 42 features was
calculated by combining all these features.

Excel and Visual C# (Microsoft) were used for the calculations,
while the Beeswarm package for R (The R Project) was used to
obtain a scatter plot of the data.

Worms
The culture and handling of Caenorhabditis elegans
strains were performed according to techniques described
previously (Brenner, 1974). Wild-type Bristol strain
RRID:WB-STRAIN:N2_Male and mutant strains RRID:WB-
STRAIN:MT1219 egl-3(n589), RRID:WB-STRAIN:VC671
egl-3(ok979), RRID:WB-STRAIN:KP2018 egl-21(n476),
RRID:WB-STRAIN:CX4544 ocr-2(ak47), RRID:WB-
STRAIN:JC1636 osm-9(ky10), and RRID:WB-STRAIN:FK127
tax-4(p678), RRID:WB-STRAIN:MT6308 eat-4(ky5), and
RRID:WB-STRAIN:IK105 pkc-1(nj1) were obtained from the
Caenorhabditis Genetics Center at the University of Minnesota,
United States. The RRID:WB-STRAIN:KDK1 dop-3(tm1356)
strain was originally obtained from the National BioResource
Project (Japan) and back-crossed with the wild-type N2
strain five times.

A 2-nonanone avoidance assay was performed according to
the protocol described previously (Kimura et al., 2010; Yamazoe-
Umemoto et al., 2015). Briefly, two to three young adult
hermaphrodite worms grown synchronously were placed in the
center of a 9-cm nematode growth media (NGM) plate. Worm
behavior was recorded for 12 min after 2-µL of 30% 2-nonanone
(cat. no. 132-04173; Wako, Japan) diluted in 99.5% ethanol (cat.
no. 0057-00456; Wako, Japan) were placed at two spots on the
surface of the NGM plate. This assay was performed under the
following three conditions: (1) Naive—the worms cultivated on
6-cm NGM plates with the RRID:WB-STRAIN:OP-50 bacteria as
food were briefly washed with NGM buffer and subjected to the
assay; (2) Pre-exposed—the worms were subjected to the assay
after being pre-exposed to 0.6 µL of 15% 2-nonanone spotted
on the lid of a 6-cm NGM plate for 1 h without food; and
(3) Mock—the worms were subjected to the assay after being
pre-exposed to ethanol similarly to the pre-exposed condition.
We added the mock-treated control group to ensure that the
starvation itself did not affect the odor avoidance behavior of
worms and to extract behavioral features modulated by odor
pre-exposure compared with the naive and mock-treated control
groups. Images of worms on the 9-cm NGM plate during the odor
avoidance assay were acquired by a high-resolution USB camera
(DMK 72AUC02; The Imaging Source, United States) with a lens
(LM16JC5MW; Kowa, Japan) at 1 Hz for 12 min. The coordinates

of individual animals’ centroids were acquired from the recorded
images using the Move-tr/2D software (Library Co., Ltd., Tokyo,
Japan) and used for the STEFTR analysis.

Similar to the other sensory behaviors of the worms,
trajectories in the 2-nonanone avoidance behavior can be divided
into two states: (1) “run”—a relatively long period of straight
movement, and (2) “pirouette”—a period of short movements
interrupted by frequent reversals and turns (Pierce-Shimomura
et al., 1999; Kimura et al., 2010). The angular change per second
was calculated from the centroid coordinates, and movements
of 1 s with angular changes larger than 90◦ were classified as
a turn. The histogram of turn intervals could be fitted to two
exponentials, suggesting that the turn intervals are regulated by
two probabilistic mechanisms (Pierce-Shimomura et al., 1999;
Yamazoe-Umemoto et al., 2015). The time point at which the
two exponentials intersected was defined as tcrit and turn intervals
longer or shorter than the tcrit were classified as runs or included
in pirouettes, respectively. The tcrit was calculated for the control
(i.e., naive and mock-treated) condition for wild-type and mutant
strains. Excel (Microsoft) was used for the above calculations.
The odor concentrations that the worms experienced at specific
spatiotemporal points were calculated according to the dynamic
odor gradient model based on the measured odor concentration
(Tanimoto et al., 2017; Yamazoe-Umemoto et al., 2018).

Statistical analyses were performed with Prism ver. 5.0 for
Mac OSX (GraphPad Software, CA, United States) and R (The R
Project). The sample size was determined based on the previous
report (Yamazoe-Umemoto et al., 2015). A part of the original
data used in this study had already been analyzed and published
previously (Yamazoe-Umemoto et al., 2015), and re-analyzed
with the STEFTR method.

Penguins
Fieldwork was performed on chick-rearing Adélie penguins
Pygoscelis adeliae at Hukuro Cove colony (69◦13′ S, 39◦38′ E) in
Lützow-Holm Bay, East Antarctica. GPS-depth loggers (GPL380-
DT or GPL400-D3GT, weighing 55–85 g; Little Leonardo, Japan)
were deployed among 11 penguins during the period between
27 December 2016 and 10 January 2017 and recovered from all
the birds after 1–2 days. While the loggers were set to record
GPS positions and depth every second, they could not record
GPS positions when the penguins were diving. Therefore, we
linearly interpolated the data, when necessary, to obtain GPS
positions every 1 min before further analysis. See Kokubun et al.
(2015) for methodological details. This fieldwork was carried out
in accordance with the recommendations of the Law relating to
Protection of the Environment in Antarctica. The protocol was
approved by the Ministry of the Environment, Government of
Japan. The sample size was not predetermined.

Flying Seabirds
Fieldwork was performed on streaked shearwater Calonectris
leucomelas at Funakoshi-Ohshima Island (39◦24′ N, 141◦59′ E)
between August and September in 2011, 2012, 2013, and 2015.
We attached GPS loggers (GiPSy-2, 37 × 16 × 4 mm or GiPSy-
4, 37 × 19 × 6 mm; TechnoSmArt, Rome, Italy) to the back
feathers of chick-rearing streaked shearwaters with Tesa R© tape
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(Beiersdorf AG; GmbH, Hamburg, Germany) and cyanoacrylate
glue (Loctite R©401; Henkel Ltd., Hatfield, United Kingdom).
The loggers were housed in waterproof heat-shrink tubing
and set to record one fix per minute. The total mass of the
unit was 25 g, which was less than 5% of the mean mass
of the birds in accordance with the suggested load limit for
flying seabirds. After approximately 2 weeks of deployment, we
recaptured and retrieved the loggers. See Yoda et al. (2014) for
methodological details. The study was carried out in accordance
with the recommendations of the guidelines of the Animal
Experimental Committee of Nagoya University. The protocol was
approved by the Animal Experimental Committee of Nagoya
University. Fieldwork was conducted with permission from the
Ministry of the Environment and Agency for Cultural Affairs,
Japan. The sample size was not predetermined. A part of the
original data used in this study had already been analyzed and
published previously (Yoda et al., 2014), and re-analyzed with
the STEFTR method.

Rats
Locomotion data of an adult male Long Evans rat were
obtained from the Collaborative Research in Computational
Neuroscience (CRCNS; RRID:SCR_005608) data sharing
website1 (Hippocampus, hc-3 dataset, ec013 rat) (Mizuseki
et al., 2014). The rat foraged for randomly dispersed water
or foods on an elevated open field (180 cm × 180 cm) for
17–53 min. The rat’s position was tracked by monitoring two
light-emitting diodes mounted above the head with an overhead
video camera at 30 Hz. The 30-Hz tracking data were resampled
to 39.0625 Hz for offline processing. This study was carried out
in accordance with the recommendations of the Regulations on
Animal Experiments at Osaka City University. The protocol was
approved by the Animal Care and Ethics Committee of Osaka
City University. The sample size was not predetermined. The
original data used in this study had already been analyzed and
published previously (Diba and Buzsáki, 2008; Mizuseki et al.,
2009, 2014), and re-analyzed with the STEFTR method.

Flies
Fruit flies D. melanogaster were raised on standard yeast-based
media at 25◦C and 40–60% relative humidity under a 12-h
light/dark cycle. Canton-S flies aged between 6 and 8 days
after eclosion were used as wild-type. After eclosion, the males
were housed singly, while females were housed in groups
until the experiment.

The locomotion measurement was performed as described
previously with minor modifications (Kohatsu et al., 2011;
Kohatsu and Yamamoto, 2015). Briefly, a male fly was tethered
with a metal wire on its dorsal thorax and positioned over
an air-supported Styrofoam ball (diameter, c. a. 6 mm). The
locomotion trajectory of the fly was recorded by monitoring the
rotations of the Styrofoam ball using an optical computer mouse
sensor (BSMRU21BK; Buffalo Inc., Nagoya, Japan). The sensor
detected the movements of the ball in the horizontal (1x) and
vertical (1y) directions, which correspond to lateral and forward
movements of the male fly, respectively. The 1x and 1y values,

1https://crcns.org/data-sets/hc/hc-3

together with timestamps, were sent to a computer at 60 Hz via
an Arduino Due microcontroller (Switch Science, Japan) with a
custom sketch program. The 60-Hz data were down-sampled to
4-Hz data for the information gain analysis. The measurements
were obtained at 25 ± 1◦C and 50 ± 10% relative humidity and
within 4 h after light onset.

Female pheromones were applied to the male fly by placing the
female’s abdomen in contact with the male’s foreleg at the onset
of the measurement. A manipulator (M-3333, Narishige, Tokyo,
Japan) actuated a pipette with a volume of 200 µL (FUKAEKASEI
Co., Ltd., China), in which a live female with her abdomen
exposed toward a male fly was captured. We manually controlled
the position of the manipulator to contact the female’s abdomen
to the male’s foreleg. This contact procedure was omitted in the
control experiments.

Visual stimulus was applied directly after pheromone
application by starting horizontal movements of the female fly in
front of the male fly as described (Kohatsu et al., 2011). The visual
stimulus consisted of ten left-right horizontal movements of the
female that lasted for 40 s. Each movement started with the female
fly in the front of the male fly (i.e., center) and continued as the
female fly moved left until it reached the left end of the rail (i.e.,
5 mm away from the center), then moved right until it reached
the right end of the rail (i.e., 5 mm away from the center), and
ended when it came back to the center with a constant velocity of
5 mm/s. This movement was driven by a stepper motor (42BYG
Stepper Motor, Makeblock Co., Ltd., Shenzhen, China) controlled
by a custom sketch program (processing software version 3.3.7).
We defined one round (4 s in total) as the movement related to
the female starting to move away from the center, reaching the
left end of the rail, passing the center, moving away to reach the
right end of the rail, and coming back to the center again. Each of
the “moving away” and “coming back” periods lasted for 1 s.

The 1x and 1y values with timestamps obtained in the
final eight rounds were used for the analysis. To detect the
characteristic parameters for the chasing behavior, we used 1x
and 1y values during the period when the female was moving
away from the male (2 s/round). We set the angle of the chasing
behavior as 0 degree when the male moved forward. Angles
between 0 and 90 degrees indicate that the male fly is moving
toward the female that was moving away from the male.

As the parameters (velocity, bearing, and their
time-differential values) were not normally distributed
(Shapiro–Wilk test; see Supplementary Table 13), their
values were compared between conditions (with/without
pheromone) using the Mann–Whitney U test followed by
Bonferroni correction for multiple comparisons. We used the
Steel–Dwass test to compare values of the parameters between
rounds. Statistical analyses were conducted using R software
version 3.4.4. No statistical methods were used to pre-determine
sample sizes, but our sample sizes are similar to those in previous
studies (Kohatsu et al., 2011; Kohatsu and Yamamoto, 2015).

Bats
Three adult Japanese horseshoe bats (Rhinolophus
ferrumequinum nippon, body length: 6–8 cm, body mass:
20–30 g) were captured from natural caves in the Hyogo
and Osaka prefectures in Japan as previously described
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(Yamada et al., 2016). The bats were housed in a temperature-
and humidity-controlled colony room [4 m (L) × 3 m (W) × 2
m (H)] with a 12-h light/dark cycle at Doshisha University in
Kyoto, Japan, and were allowed to fly freely and given access
to mealworms and water. Captures were conducted under
license and in compliance with current Japanese law. This study
was carried out in accordance with the recommendations of
Principles of Animal Care [publication no. 86-23 (revised 1985)
of the National Institutes of Health] and all Japanese laws. The
protocol was approved by the Animal Experiment Committee of
Doshisha University.

Methods for acoustic navigation measurement in bats
have been described elsewhere (Yamada, 2017). Briefly, the
experiments were conducted in a flight chamber constructed
using steel plates [9 (length) × 4.5 (width) × 2.5 m (height)]
under lighting with red filters (>650 nm) to avoid visual effects
on the bats. An obstacle environment was constructed using
plastic chains (diameter: 4 cm) suspended from the ceiling
of the chamber. The chains were arranged at 15-cm intervals
along the x-axis and at 22-cm intervals along the y-axis so
that the bat was forced to fly in an S-shaped pattern without
passing between chains. Three naive bats were observed for 12
continuous repeated flights so that their echolocation behavior in
unfamiliar and familiar spaces could be compared. In this study,
the first three flights were defined as unfamiliar flights, while the
last three flights were defined as familiar flights.

The flight behavior of the bats was recorded at 125 frames/s
using two digital high-speed video cameras (MotionPro X3;
IDT Japan, Inc., Japan) placed in the left and right corners
of the flight chamber. Based on a direct linear transformation
technique, the successive 3D positions of the flying bats, as
well as the locations of other objects, were reconstructed using
motion analysis software (DIPPMotionPro ver. 2.2.1.0; Ditect
Corp., Japan). The statistical calculations were performed with
SPSS version 23 (IBM Corp.).

Calcium Imaging of Worm’s Neurons
Calcium imaging of the worms’ ASH neurons was performed
according to the previous method with some modifications
(Tanimoto et al., 2017). Briefly, transgenic strains expressing
GCaMP3 (Tian et al., 2009) and mCherry (Shaner et al., 2004)
in ASH sensory neurons under the sra-6 promoter (KDK70034
and KDK70072; 20 ng/µl of sra-6p::GCaMP3, 20 ng/µl of
sra-6p::mCherry, 10 ng/µl of lin-44p::GFP, 50 ng/µl of PvuII-cut
N2 genomic DNA as a carrier in N2 background) were placed
on an NGM agar plate on a robotic microscope system, OSB2
(Tanimoto et al., 2017). Although these transgenic worms were
immobilized with the acetylcholine receptor agonist levamisole
(Lewis et al., 1980) for high-throughput data acquisition through
simultaneous imaging of multiple worms, the previous study
revealed that the ASH activity is essentially unaffected by
levamisole-treatment (Tanimoto et al., 2017). A constant gas
flow of 8 mm/min was delivered, in which the mixture rate
of 2-nonanone gas with air was changed to create a temporal
gradient of odor concentration. The temporal change in odor
concentration was measured by a custom-made semiconductor
sensor before and after the series of calcium imaging experiments

on each day. The fluorescence signals of GCaMP3 and mCherry
in ASH neurons were divided into two channels using W-View
(Hamamatsu, Japan), an image splitting optic, and captured
by an electron multiplying charge-coupled detector (EM-CCD)
camera (ImagEM; Hamamatsu, Japan) at 1 Hz. The intensities
of fluorescence signals from cell bodies were extracted and
quantified by ImageJ (NIH) after background subtraction. The
average ratio over 30 s prior to the odor increase was used as
a baseline (F0), and the difference from F0 (δF) was used to
calculate the fluorescence intensities of GCaMP3 and mCherry
(F = δF/F0). The ratio between florescence intensities of GCaMP
and mCherry (GCaMP/mCherry) was used in the figure.

RESULTS

Estimation of Behavioral States
As the first part of the analysis, we classified the trajectory into
several behavioral states based on the distribution of a basic
behavioral feature. The behavior of animals consists of several
states (Patterson et al., 2008; Jonsen et al., 2013), where basic
behavioral features such as speed and direction change are likely
distributed probabilistically with a center value that is optimal
for each state. Thus, behavior can be more easily characterized
when the behavioral features are analyzed for each state rather
than for the entire behavior as a whole. In fact, classifying the
trajectory into several states is one of the essential preprocessing
steps in trajectory mining of people and vehicles in data science
(Zheng, 2015).

For the state classification, we calculated the averages (Ave)
and variances (Var) of four basic behavioral features: velocity (V),
temporal changes in velocity (i.e., acceleration, dV), bearing (B),
and temporal changes in bearing (dB). These eight features were
represented in the form of histograms. Based on our hypothesis
that values of basic behavioral features are likely distributed
probabilistically in each state, we considered that histogram peaks
may correspond to different behavioral states. One histogram was
then regarded as a mixture of Gaussian distributions, and EM
algorithm, an iterative method to estimate model parameters that
maximize the likelihood of the model (Dempster et al., 1977),
was used to estimate the average and variance values of each
cluster. The separations of clusters in a histogram were evaluated
by the separation index (see section “Materials and Methods”),
and the best-separated histogram was chosen for further analysis.
The individual clusters in the histogram were considered to
correspond to different behavioral states. As proof-of-principle
experiments, we analyzed the trajectories of worms and penguins,
whose behavioral states have been studied previously using other
methods (Pierce-Shimomura et al., 1999; Yoda et al., 2001).

The roundworm Caenorhabditis elegans has been used as
a model animal for quantitative behavioral analysis owing to
the ease of tracking behavior (movement for a few cm on
agar surface can be easily recorded with an inexpensive high-
resolution camera), optical monitoring neural activities, and
genetic analyses and manipulations (De Bono and Maricq, 2005).
Further, the neuronal wiring in C. elegans has been described in
complete detail (White et al., 1986). In this study, we focused
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on the avoidance behavior to the repulsive odor of 2-nonanone
(Figure 2A, left) (Bargmann et al., 1993; Kimura et al., 2010).
We chose this behavioral paradigm for the proof-of-principle
experiment because the odor avoidance behavior has been
quantitatively, although not fully, analyzed previously (Kimura
et al., 2010; Yamazoe-Umemoto et al., 2015). The behavior
of the worms was recorded with a USB camera for 12 min,
and the position of each worm’s centroid was extracted every
second (Table 1).

We calculated the separation index in 8 basic features, and
the variance values for bearing change with five clusters turned
out to be the best (dB_Var, Figures 2B,C). Upon mapping
the clusters on to the trajectories, we found that cluster 0
corresponds to relatively straight part, while the other clusters
correspond to more complex parts (Figure 2D, upper panel).
Cluster 0 and clusters 1–4 mainly corresponded to “run” and
“pirouette,” respectively, which are the classic two behavioral
states of worms and have been found in multiple types of

FIGURE 2 | State estimation of worms. (A) Examples of the trajectories of three worms before (left) or after odor learning (right) in 12 min of 2-nonanone avoidance
assay, overlaid on a schematic drawing of a 9 cm plate. One of the trajectories is magnified below. (B) The histograms of eight basic behavioral features. Horizontal
and vertical axes indicate the values and the density of each feature. The numbers in each panel indicate the separation indices. The red and yellow rectangles
indicate the first and second best separation indices, respectively. (C) Clustering dB_Var by the EM algorithm. Each cluster distribution (cluster 0, 1, 2, 3, and 4 are
indicated by purple, blue, green, orange, and red dashed lines, respectively, similarly to the following figures) and the sum of clusters (red solid line) are shown. Inset
is a magnified view. (D) Comparison of the cluster 0 and 1 (upper panel; purple and green, respectively) with run and pirouette (lower panel; blue and red,
respectively) on a trajectory. The initial 2 min (gray in both panels) were excluded from the analyses because worms do not avoid the odor during the period (Kimura
et al., 2010). (E) Event numbers of cluster 0 (left) and 1 (right) in run and pirouette. (F) Matching matrix of the state estimation shows the followings: sensitivity =
TP/(TP + FN), false positive rate = FP/(FP + TN), false negative rate = FN/(FN + TP), specificity = TN/(TN + FP), accuracy = (TP + TN)/(TP + TN + FP + FN), where TP,
true positive; TN, true negative; FP, false positive; FN, false negative.
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sensory behavior (Figure 2D, lower panel) (Pierce-Shimomura
et al., 1999; Lockery, 2011). “Run” constitutes a relatively straight
movement, while “pirouette” is characterized by short, straight
movement divided by frequent large changes in angle (turns
and reversals). Runs and pirouettes are usually classified based
on a threshold value for the duration between consecutive
large angle changes (Pierce-Shimomura et al., 1999), unlike in
this method. We collectively regarded clusters 1–4 as “cluster
1” because the positional information of worms does not
appropriately reflect their actual locations during pirouettes due
to insufficient spatiotemporal resolution of the recording system
for relatively long-distance navigation, such as odor avoidance
behavior (Yamazoe-Umemoto et al., 2015). We found that more
than 90% of the cluster 0 and 1 corresponded with the run
and pirouette, respectively (Figures 2E,F and Supplementary
Figure 1A). Therefore, we concluded that the STEFTR method
properly classified the odor avoidance behavior into distinct
behavioral states. Although some cluster(s) do not appear to
be Gaussian distributed (Figure 2C), the high matching rate
supports the legitimacy of this method (see also the following
sections for penguins).

Next, we applied the same process to the trajectories of
penguins obtained using GPS devices. Penguins are good model
wild animals for studying long-distance navigation given their
relatively large body size and their habit of returning to a colony,
which make the attachment and the recovery of GPS data easy
(Yoda et al., 2001; Yoda, 2018). In this study, GPS and depth
sensors were attached to 11 penguins from a colony in the
Antarctic Continent; the depth sensors were used to evaluate the
accuracy of state estimation (see below). The penguins moved
by walking and swimming about 10 km for feeding, and each
dataset contained up to 2 days of data recordings (Table 1 and
Figure 3A). Like in the case of worms, 8 basic behavioral features
were extracted from the penguin trajectory data and represented
as histograms. We chose the average velocity (V_Ave) as it showed
the highest separation index (Figure 3B). The EM algorithm
classified it into five clusters (Figures 3C–E, upper panel).

Interestingly, the clusters exhibited significantly different
distributions in multiple behavioral features. For example, the
values for the duration of each bout were much longer in cluster 0
than in clusters 1, 2, and 3 (Figure 3E, middle panel). In addition,
although the clusters were classified only based on the horizontal
velocities, the depths for cluster 0 and 1 were significantly closer
to zero than those for clusters 2, 3, and 4 (Figure 3E, lower
panel). These results are consistent with the idea that each cluster
reflects a behavioral state that is a complex function of multiple
behavioral features.

To evaluate whether the clusters actually reflect different
behavioral states, we compare the results with the typical manual
classification into four states (resting, transit by walking, transit
by swimming, and diving), based on diving depth (from depth
sensor), movement velocity, and distance from the colony (both
calculated from the GPS positional information) (Yoda et al.,
2001; Watanabe et al., 2012). Penguins stayed and rested at the
colony (location does not change much; depth is zero), moved
on land and ice mainly by walking (location changes relatively
slowly; depth is near-zero), swim in the sea to go to the foraging

area (location changes quickly; depth is relatively shallow in
general and sometimes increases when they are moving toward
the foraging area), dive deeply at the foraging area (location does
not change much; dives occur continuously in bouts), and then
come back to the colony by swimming and walking. The resting
at the colony and swimming correlated with clusters 0 and 4,
respectively (Figures 3F,G and Supplementary Figure 2A). In
addition, most of clusters 1 and 2 correlated with walking, while
about 50% of cluster 3 corresponded to diving (Figure 3G and
Supplementary Figure 2A). Thus, when a behavioral state is
classified to a cluster other than cluster 3, the penguin is likely to
be resting, walking, or swimming. If a behavioral state is classified
to cluster 3, which is ∼10% of all the behavior recorded, the
penguin is either diving or swimming. Remarkably, although the
clustering is only based on the trajectories of 11 penguins for a few
days, the false positive rates were less than 10% and the sensitivity
of the analysis was greater than 90% in all the cases (Figure 3H).
Thus, we concluded that the STEFTR method can reasonably
estimate different behavioral states only based on trajectory data.

In order to verify the evaluation process by the separation
index, we compared the results of the state estimation with the
first and second best-separated histograms for the worms and the
penguins (indicated by red and yellow rectangles, respectively, in
Figures 2B, 3B). In both animal species, the estimated behavioral
states based on the second best separation index exhibited a
similar tendency to those of the best separation index, although
the correlations between clusters and behavioral states were
less clear (Supplementary Figures 1B–E, 2B–D). These results
strongly support the selection of the basic behavioral feature by
the separation index.

The STEFTR method was also applied to the trajectories
of flying seabirds in the wild and rats in the laboratory. The
seabirds, Calonectris leucomelas, traveled ∼100 times longer
distances (up to 1,000 km) with ∼10 times the speeds compared
to penguins (Yoda et al., 2014; Matsumoto et al., 2017). For
the animals, the variance of bearing (B_Var) with four clusters
were chosen (Figures 4A–C). In the case of rats, the variance
of velocity change (dV_Var) with four clusters was chosen
(Figures 4E–G). In both animal species, significant differences
among clusters were observed in duration and directedness, for
example (Figures 4D,H). Such information can help ecologists
estimate the candidates for feeding areas where fishes may be
more densely distributed and discover biologically important
marine areas. It can also help neuroscientists in estimating
candidate conditions to further explore specific neural activities.

Comprehensive Extraction of Behavioral
Features Modulated by Learning
As a second part of the STEFTR method, comprehensive feature
extraction was performed by comparing a specific behavioral
state in two different conditions, such as cluster 0 of worms before
and after learning. Comprehensive semi-automated analysis can
be very helpful to compare behavioral features in two conditions.
This is because even when the overall result of behavioral
responses is different in two conditions, it is still difficult
to quantitatively determine which part of the trajectories are
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FIGURE 3 | State estimation of penguins. (A) The trajectories of 11 penguins (black lines) on the Antarctic Continent (gray area; white area is the sea). Horizontal and
vertical axes indicate longitude and latitude, respectively. Base topography map for Figures 3A,D was downloaded from: http://antarctic.gsi.go.jp/download_
01_25000.html#mapLayout. (B) The histograms of eight basic behavioral features (upper panels) and the classification by the EM algorithm. The numbers in each
panel indicate the separation indices. The red and yellow rectangles indicate the first and second best separation indices, respectively. (C) Clustering V_Ave into five
clusters. (D) Mapping of the five clusters on the trajectory. (E) Differences in velocity, duration, and depth among the clusters. Each dot represents a cluster bout,
and the bars represent the median and the first and third quartiles. Significant differences among clusters suggest that the clusters correspond to different behavioral
states. Statistical values were calculated using Kruskal–Wallis test with post hoc Dunn’s test. ∗∗p < 0.01, ∗∗∗p < 0.001. (F) An example of comparison of the
clusters from the STEFTR analysis with the behavioral states by manually classified labels, which is based on diving depth, movement speed recorded from GPS
data, and distance from the colony. (G) Event numbers of each cluster. (H) Matching matrix of the state estimation. The statistical details are described in
Supplementary Table 1.
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FIGURE 4 | State estimation of flying seabirds in the Pacific Ocean (A–D) and rats in the open maze (E–H). (A) Eight basic features of flying seabirds. (B) Clustering
B_Var into 4 clusters. (C) Mapping of the clusters on the trajectory. The gray region is the northern part of Japan (Tohoku and Hokkaido area), while the white region
is the sea. (D) Significant differences were observed in duration (left) and directedness (right). (E) Eight basic features of rats. (F) Clustering V_Var into four clusters.
(G) An example of trajectories of one rat. (H) Significant differences were observed in duration (left) and directedness (right). Each dot represents a cluster bout, and
the bars represent the median and the first and third quartiles. Statistical values were calculated using Kruskal–Wallis test with post hoc Dunn’s test. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. The statistical details are described in Supplementary Table 1.
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different (Figure 2A, left and right, for example). Furthermore,
even if several behavioral features are found to be different, it is
possible that other more prominent feature differences may exist.
We considered that learning-dependent changes in behavior
should be one of the best models for comprehensive feature
extraction because the differences in behavioral features should
reflect learning-dependent changes in neural/brain activities.

As a useful index for feature extraction, we chose information
gain, the index for decision tree analysis (Quinlan, 1986).
Binary decision tree analysis is for splitting a dataset into two
sub-groups by automatically selecting the best feature and its
parameter showing the largest information gain (i.e., difference
of uncertainty, or “information entropy,” between before and
after division). Each data point is then classified into one of
the sub-classes based on whether it has a larger or smaller
value than an automatically determined threshold. When applied
for binary classification, decision tree analysis automatically
evaluates the classification performance of a large number of
features as designed by the researchers. This analysis results in the
extraction of certain features, allowing us to easily understand the
utility of particular features in the classification. This approach
is substantially different from those that employ support vector
machines and/or deep neural networks, wherein the relationships
between the classification and the features of the data cannot be
easily discerned.

We first analyzed learning-dependent changes in worm
odor avoidance behavior. Worm odor avoidance behavior
is enhanced by pre-exposure to the odor as a type of
non-associative learning, and pre-exposed worms migrate
significantly longer distances from the odor source than control
worms do during the same period (Figure 2A) (Kimura
et al., 2010). This phenomenon is interesting because prior
exposure to a stimulus generally causes a reduction, instead
of enhancement, of the response to the stimulus through
adaptation or habituation. Although this is a simple form
of learning, this odor learning is modulated by multiple
neuromodulators, including dopamine, octopamine (the worm
counterpart of mammalian noradrenaline), and neuropeptides

(Kimura et al., 2010; Yamazoe-Umemoto et al., 2015). Previous
quantitative analyses have shown that the enhanced odor
avoidance behavior is not caused by changes in speed, but mostly
by increases in run duration (Yamazoe-Umemoto et al., 2015).
However, this did not rule out the possibility that other behavioral
features play more profound effects.

As an example of comprehensive feature extraction from a
behavioral state, we focused on learning-dependent changes in
cluster 0 (run) because the values of their centroid migration
are quantitatively more reliable than cluster 1 (pirouette) as
mentioned above. In addition to the basic behavioral features
used for the estimation of behavioral states (V, dV, B, and dB), we
also calculated directedness (Dir) (Gorelik and Gautreau, 2014),
and the odor concentration (C) and temporal change in odor
concentration (dC) that each worm experienced during the odor
avoidance behavior; C and dC were calculated based on actual
measurements of the dynamic odor gradient (Tanimoto et al.,
2017; Yamazoe-Umemoto et al., 2018). For these, we calculated
the initiation (Ini), middle (Mid), termination (Ter), and all
(All) values of a cluster 0 segment (Figure 5A). In addition,
different time windows (1–6 s in this case) were used to calculate
these values because a behavioral feature could be apparent only
within a specific temporal window [for example, velocity of run
(i.e., cluster 0) starts decreasing 2 s before the end of a run
(Pierce-Shimomura et al., 1999)]. We also calculated durations
(Dur) of cluster 0 and 1, and the weathervane index (WV) (Iino
and Yoshida, 2009). Information gain for each of these features
was compared between naive/mock and pre-exposed conditions
(Figure 5B, for example). The information gain values for each of
the features have been summarized in Table 2, and the details are
described in Supplementary Tables 2–11.

Through this analysis, we were able to find new as
well as previously known behavioral features that exhibited
learning-dependent changes. First, we found that the duration
of each cluster 0 (Clst0Dur) exhibited higher information
gain (Table 2), which corresponded to significantly increased
cluster 0 duration (Figures 6A,B). This result is consistent
with the findings from previous reports (Kimura et al., 2010;

FIGURE 5 | Feature extraction of worm behavior. (A) Schematic drawing of the behavioral features. (B) One example (V_Ini; average of time window 2) of calculation
of information gain.
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TABLE 2 | Learning-dependent features extracted from cluster 0 in odor avoidance behavior of wild-type worms.

Time Value Clst0
Dur

Clst1
Dur

V dV B dB Dir C dC WV

All All All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All Ini Mid Ter All

− Ave 0.098 0.057 − − − − − − − − − 0.072 − − − − − − 0.163 − − − 0.088 − − −

− Med − − 0.040 − − − − − − − − − 0.102 − − − − − − − 0.160 − − − 0.088 − − −

− Q1st − − − − − − − − − − − 0.065 − − − − − − − 0.164 − − − 0.107 − − −

− Q3rd − − − − − − − − − − − 0.083 − − − − − − − 0.161 − − − 0.080 − − −

− Var − − − − − − − − − − − − − − − − − − − − − 0.080 − − −

− 1 %ile − − − − − − − − − − − − − − − − − − 0.163 − − − 0.090 − − −

− 5 %ile − − − − − − − − − − − − − − − − − − 0.165 − − − 0.100 − − −

− 95 %ile − − − − − − − − − − − − − − − − − − 0.153 − − − 0.108 − − −

− 99 %ile − − − − − − − − − − − − − − − − − − 0.148 − − − 0.060 − − −

1 Ave − − − 0.114 − − − − − − − − 0.147 0.162 0.162 − 0.116 0.093 0.104 −

2 Ave − − − 0.120 0.049 − − − 0.048 − − 0.148 0.166 0.163 − 0.111 0.105 0.122 −

3 Ave − − − 0.109 − − − 0.049 − − 0.151 0.163 0.162 − 0.110 0.099 0.128 −

3 Med − − − 0.100 0.039 − − − − − − − − 0.149 0.162 0.162 − 0.114 0.089 0.134 −

3 Var − − − − − − − − − − − 0.111 0.087 0.041 − 0.060 0.050 −

4 Ave − − − 0.099 − − − 0.050 − − 0.147 0.166 0.165 − 0.082 0.098 0.122 −

4 Med − − − 0.100 − − − − − − − − 0.149 0.166 0.165 − 0.085 0.097 0.145 −

4 Var − − − − − − − − − − − 0.102 0.083 0.040 − 0.057 0.082 0.082 −

5 Ave − − − − − − 0.048 − − 0.146 0.163 0.166 − 0.090 0.112 0.148 −

5 Med − − − 0.078 − − − − − − − − 0.148 0.162 0.165 − 0.093 0.110 0.125 −

5 Var − − − − − − − − − − − 0.097 0.092 0.054 − 0.061 0.112 0.078 −

6 Ave − − − 0.072 − − − 0.056 − − 0.148 0.164 0.146 − 0.083 0.112 0.169 −

6 Med − − − 0.075 − − − − − − − − 0.148 0.166 0.147 − 0.085 0.111 0.149 −

6 Var − − − − − − − − − − − 0.089 0.095 0.060 − 0.116 0.081 −

Numbers are the sum of information gains obtained from the comparisons of naive vs. preexp. and mock. vs. preexp. Darker and lighter colors correspond to larger and smaller values, respectively. Blank cells, no value
for information gain was obtained. −, not calculated.
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Yamazoe-Umemoto et al., 2015), highlighting the reliability of
this method. We also found that the velocity at the beginning of
each cluster 0 (V_Ini) consistently exhibited higher information
gain in the average and median values in multiple time windows
(Table 2); these values were also significantly different in
the pre-exposed worms as compared to the control worms
(Figure 6C). The previous study has not identified this
difference as only average values per run (i.e., cluster 0)
have been calculated in the study (Yamazoe-Umemoto et al.,
2015). Although the contribution of this behavioral feature to
enhanced odor avoidance is unclear at present, our results
indicate that the STEFTR method can reveal characteristic
feature(s) under specific conditions, which is difficult for human
analyses to accomplish.

Odor stimuli during runs, which likely drive the worms’ odor
avoidance behavior, were also found to be consistently modulated
(Table 2). In fact, odor concentration (C) was significantly
lower, and the temporal change in odor concentration
(dC) was significantly closer to zero (i.e., shallower) in a
learning-dependent manner (Figures 6D,E). Because the
previous study demonstrated that worm odor avoidance
behavior depends on dC rather than C at least in the naive
condition (Tanimoto et al., 2017), one possibility is that the
changes in the responsiveness of worms to dC are the underlying
reason for the enhanced odor avoidance. However, it is also
possible that the odor-experienced worms were somehow located
farther away from the odor source than the unexperienced
worms, and hence, sensed lower odor concentrations and
shallower odor concentration change than the latter.

Responsiveness of Sensory Neurons to
Odor Increase Was Modulated by the
Odor Learning
If the change in sensitivity to dC/dt is the reason underlying
enhanced odor avoidance behavior, it should be associated with
changes in neural activity. Thus, we analyzed the responsiveness
of a likely candidate, ASH nociceptive neurons (Kaplan, 1996;
Bargmann, 2006). Previously, we have established the OSB2
microscope system that allows for in vivo calcium imaging of
C. elegans neurons in the presence of odor stimuli resembling
those that the worms experience during the odor avoidance
behavior in the plates (Figure 7A) (Tanimoto et al., 2017).
Using the OSB2 system, we found that ASH neurons are the
major sensory neurons to cause pirouettes upon increases in
2-nonanone concentration (Tanimoto et al., 2017). However,
whether the ASH response is modulated by 2-nonanone
experience has not yet been studied.

We found that ASH responses were indeed modulated by
prior odor experience. When the worms were stimulated with
a 5 nM/s odor increase rate, which is the lowest rate of change
to cause the threshold-level behavioral response in the previous
study (Tanimoto et al., 2017), ASH neurons in naive as well
as mock-treated worms exhibited robust responses (Figure 7B).
However, the ASH responses were significantly reduced in the
pre-exposed worms (Figures 7B,C). This suggests that prior odor
experience causes a reduction in the neuronal response to a slight

increase in odor concentration, subsequently causing longer run
durations and enhanced odor avoidance behavior (Figure 7D).

Extracted Behavioral Features of Mutant
Strains Correspond to Gene Function
Next, we comprehensively analyzed learning-dependent
behavioral changes in the mutant C. elegans strains. Many
mutant strains of C. elegans showing impaired learning have
already been isolated and characterized (Bargmann, 2006;
Sasakura and Mori, 2013), and the behavioral abnormalities
observed in these mutants should reflect the role of the causal
genes in neural function. In fact, we have previously shown that
two different groups of genes involved in the enhanced odor
avoidance behavior cause different abnormalities in behavioral
features when mutated (Yamazoe-Umemoto et al., 2015).
However, as the behavioral features exhibited by a mutant strain
could be different from one another, identification of abnormal
behavioral features is often laborious and time-consuming.

In addition to studying the previously described mutants with
defective enhanced odor avoidance behavior (egl-3 and egl-21
for neuropeptide biosynthesis, and dop-3 for dopamine receptor)
(Kass et al., 2001; Suo et al., 2004; Yamazoe-Umemoto et al.,
2015), we also analyzed mutant strains found to be involved in
the phenomenon in this study (ocr-2 and osm-9 for TRP channels;
tax-4 for CNG channel; eat-4 for vesicular glutamate transporter;
pkc-1 for protein kinase) (Land et al., 1994; Komatsu et al., 1996;
Colbert et al., 1997; Lee et al., 1999; Tobin et al., 2002) (Table 3).

Neuropeptide mutant strains did not exhibit
learning-dependent changes in behavioral features, except
for the velocity of egl-3(ok979). This result is consistent with
the previous finding that neuropeptide signaling is required
for the acquisition of odor memory (Yamazoe-Umemoto et al.,
2015). egl-3(ok979) may have exhibited stronger phenotypes
than egl-3(n589) because they are non-sense and missense
mutants, respectively. Also consistent with the previous report
(Yamazoe-Umemoto et al., 2015), the dop-3 mutants exhibited
abnormalities in direction-related behavioral features (B and
Dir) while the changes in cluster 0 durations and velocities are
similar to those of wild-type worms (Table 3). Furthermore,
with respect to the newly added mutant strain, similar patterns
are observed in ocr-2 and osm-9 mutants of the TRP channel
involved in sensory perception. On the other hand, tax-4, which
is also involved in sensory perception but expressed in a different
set of sensory neurons (Komatsu et al., 1996; Tobin et al.,
2002), and eat-4 and pkc-1 mutants showed different patterns
of abnormalities. Taken together, our results suggest that the
patterns of features extracted from mutant strains may reflect
functional groupings of the mutated genes. Thus, profiling and
classification of extracted mutant features of unknown genes
may be useful in the estimation of their physiological functions.

Feature Extraction of Fly Sexual Behavior
Next, we applied the technique to comprehensive feature
extraction of animal behavior under specific situations in
two different conditions—heterosexual chasing behavior of
Drosophila melanogaster with or without pheromone sensation.
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FIGURE 6 | Extracted features modulated by the odor learning. (A) Enhanced odor avoidance behavior in worms caused by odor pre-exposure. Left: End-points of
25 worms in each condition plotted on a schematic representation of the assay plate. Right: Avoidance distance (distance between the center line of the plate and
the end-point of the behavior) of each worm. Each dot represents a worm. Significant differences were observed between the pre-exposed worms and the naive and
mock-treated worms (∗∗∗p < 0.001, Kruskal–Wallis test with post hoc Dunn’s test). (B–E) Distributions of extracted features. Duration (B), the initial value of velocity
(C; average of time window 2), the average odor concentration (D), and the average odor concentration change (E) of each run (∗∗∗p < 0.001, Kruskal–Wallis test
with post hoc Dunn’s test). Each dot represents a cluster bout, and the bars represent the median and the first and third quartiles. The statistical details are
described in Supplementary Table 1.
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FIGURE 7 | Sensory responses to slight increases in odor concentration were reduced by pre-exposure to the odor. (A) A schematic drawing of calcium imaging of
neural activity of worms under odor stimuli. Several immobilized worms were simultaneously exposed to an odor flow whose concentration was changed by
controlling syringe pumps. (B) Responses (GCaMP/mCherry) of ASH neurons in naive (n = 25), mock-treated (n = 29), and pre-exposed (n = 26) worms. Thick lines
with gray shadows indicate mean ± standard error of the mean, while thin lines indicate individual responses. (C) Distributions of peak values during the
odor-increasing phase (t = 40–80 s) shown in (B). The bars represent the median (∗∗∗p < 0.001, Kruskal–Wallis test with post hoc Dunn’s test). (D) A model
relationship between odor concentration change and behavioral response during navigation along the odor gradient. When naive and mock-treated worms sensed a
slight increase in the odor concentration, which is a sign of migrating in the wrong direction, they stopped a run and started a pirouette to search for a new direction.
In contrast, the pre-exposed worms did not respond to a slight increase in odor concentration, leading to longer run durations (and shorter pirouette durations in
total as a consequence), which likely contribute to the enhanced avoidance distance. The statistical details are described in Supplementary Table 1.
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.

On an experimental tracking system (Figure 8A), male flies
chased the target female flies’ abdomens after tapping them with
their forelegs to sense the cuticular pheromone, although males
do not show such chasing behavior before tapping (Kohatsu et al.,
2011). While this pheromone-driven behavior has been generally
used for the observation of neural activity during courtship
behavior in fruit flies, the behavioral features have not yet been
elucidated comprehensively.

In this study, we used a tracking system as described in
previous studies, where a male exhibited the moving female
abdomen with eight times left-right round trip after a pheromone
sensation (Figure 8A) (Kohatsu et al., 2011). We detected positive
information gains in the velocity, changes in velocity, bearing,
and changes in bearing in a pheromone sensation-dependent
manner (Figure 8B). Unexpectedly, the information gains of
velocity were higher in the earlier round trips and decreased over
the trips (Figure 8B). This suggests that the pheromonal effect
promoting chasing behavior decreases over time. To confirm
the result of the STEFTR method, we re-analyzed the speed
of the male locomotion along with time-series. Consistent with
the STEFTR result, the velocity of males that had tapped the
female significantly decreased over the trips (orange group in
Figure 8C; significant differences between rounds 1, 4, and 8),
whereas that of control flies (gray group in Figure 8C) remained
mostly unchanged (significant difference only between rounds 1
and 5). Thus, the STEFTR method can even uncover behavioral
features that fluctuate over time. The decreased tracking velocity
may reflect a decrease in motivation in the fly brain, which can be
assessed directly by observing the temporal changes in neuronal
activity related to the courtship-motivation circuit in the fly brain
(Yamamoto and Koganezawa, 2013; Zhang et al., 2018).

Feature Extraction of
Learning-Dependent Modulation of
Acoustic Navigation in Bats
To further demonstrate the general applicability of the method,
we examined features of acoustic navigation in bats. We have
previously reported that bats improve their flight trajectory in
an indoor space with obstacles in a learning-dependent manner
(Yamada, 2017). Here, we optimized features such as velocity
(V), distance to the obstacle chain array (R_obs and R_x), and
horizontal bearing of the flight (B_hori) for the experimental
paradigm (Figures 9A,B). Interestingly, although the velocity
(V) itself was modulated by flight experience, the change in
velocity (dV) was not (Figures 9C,D), suggesting that bats
determine flight speed before initiating navigation, but not
during navigation, at least in this experimental condition. As
the vocalizations of bats reflect their attention or decisions
(Moss and Surlykke, 2010), our results suggest that the STEFTR
method can be used to elucidate such higher brain functions
during navigation.

DISCUSSION

Measuring and analyzing behavior is one of the most
prominent steps in understanding brain function. In order
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FIGURE 8 | Pheromone-driven responses of male fruit flies decreased over time. (A) A schematic drawing of the experimental setup. A female fly was actuated
leftward and rightward in front of the male fly. The locomotion of the male fly was monitored by an optical sensor, which recorded lateral (1x) and forward (1y)
movements at 4 Hz. (B) Information gain. Darker and lighter colors mean larger and smaller values, respectively. (C) Distribution of velocity in the chasing behavior of
male flies. Control (without female tapping, gray dots) and experimental (with female tapping, orange dots) groups are shown. Solid and dotted lines represent the
median and the first and third quartiles, respectively. Asterisks indicate the statistical significance between the control and test groups (Mann–Whitney U test followed
by Bonferroni test for multiple comparison correction, p < 0.05). Different characters in each group indicate statistical significance among rounds (Steel–Dwass test,
p < 0.05). The statistical details are described in Supplementary Tables 12, 13.

to utilize “behavioral big data,” we developed a hybrid
supervised/unsupervised technique, the STEFTR method,
to estimate behavioral states and to efficiently extract behavioral
features solely from the trajectories of animal movement. The
behavioral states of worms and penguins estimated with the

STEFTR method were in reasonable agreement with the ones
based on previous knowledge, highlighting the validity of our
method. In addition, one of the learning-dependent behavioral
features extracted from worms corresponded to a change in
neural activity. Furthermore, we were able to identify temporally
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FIGURE 9 | Learning-dependent changes in bat acoustic navigation. (A) The experimental setup for monitoring the 3D flight trajectory of a bat during obstacle
avoidance flight in a chamber. (B) Representative flight trajectories of a bat in the horizontal plane during repeated flights in the obstacle course. The figure on the top
combines the first three (red) and last three (blue) flight trajectories. Each behavioral feature was collected in three segments: earlier, middle, and later terms. The
figure on the bottom shows an expanded view of the earlier term in the first flight. Definition of the horizontal bearing of the flight (B_hori), distance (R_obs), and
bearing (B_obs) of the bat to the nearest edge point of the obstacle chain array, longitudinal directional distance to the frontal chain array (R_x), and lateral directional
distance to the inside pitch of the chains array (R_y) are indicated. Time windows for the analysis of each behavioral feature were 0.1, 0.2, or 0.3 s before or while
(t = 0) passing through the chain array. (C) A list of extracted features of bat acoustic navigation modulated by flight experience. (D) Distributions of V(–0.3) and
dV(–0.3) are plotted. The bars represent the median and the first and third quartiles (∗p < 0.05, Kruskal–Wallis test with post hoc Dunn’s test). The statistical details
are described in Supplementary Table 1.
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dynamic changes through feature extraction from fly courtship
behavioral data.

One of the advantages of the STEFTR method is its versatility.
Multiple methods have been reported for the behavioral analysis
of specific animals under specific conditions (Baek et al., 2002;
Stephens et al., 2008; Branson et al., 2009; Dankert et al., 2009;
Brown et al., 2013; Kabra et al., 2013; Vogelstein et al., 2014;
Wiltschko et al., 2015; Robie et al., 2017; Mathis et al., 2018).
However, the animals and experimental conditions for which
each of these methods can be applied are rather limited. For
example, it is still not easy to effectively and robustly extract an
animal’s posture from a video image, especially in the wild. Even
in laboratories, the parameters generally need to be adjusted again
when imaging conditions changed (Dell et al., 2014; Egnor and
Branson, 2016). In contrast to these methods, our method allows
for behavioral analysis based on positional information that can
be extracted from animal video images as well as from different
methods such as a GPS device.

As a first step of the STEFTR method, we estimated behavioral
states from animal trajectories. State estimation is one of the
critical processes of movement analysis of animals in the wild as
well as of cars and people in ecology and data science, respectively
(Patterson et al., 2008; Jonsen et al., 2013; Zheng, 2015; Egnor
and Branson, 2016). However, the analytical methods that can
be applied to the analysis of various types of animals (and cars
and people) are still in debate (Zheng, 2015; Gurarie et al.,
2016). In the STEFTR method, we aimed to analyze behavior
without previous knowledge of the animal and/or experimental
condition and independent of the spatiotemporal scale of the
behavior. For this purpose, we analyzed migratory velocity and
direction, the most fundamental elements of moving objects, with
appropriate moving-averaged data. Because different types of
behavioral features are observed in different temporal scales from
milliseconds to days or months (Buhusi and Meck, 2005), we
assumed that different levels of behavioral states will be extracted
with different temporal resolution. We further hypothesized
that a proper combination of recording time, time unit, and
temporal resolution may determine the type of behavioral state
to be extracted. Our results suggest that the ratio among total
recording time, time unit, and temporal window used in this
study were proper to extract well-known behavioral states in
worms and penguins (Figures 2D–F, 3F–H). Furthermore, when
we used ∼0.15% temporal window for analysis of worms, the
clusters obtained from the analysis did not match to run and
pirouette (Supplementary Figure 1E). This result also supports
the idea that a proper temporal window is required to extract
certain behavioral states. Still, those clusters with 0.15% temporal
window may reflect other behavioral states of worms, which have
not been studied yet.

State estimation based only on trajectory analysis using the
STEFTR method is not perfect, as shown in the case of penguins
(Figures 3F–H). However, the estimated behavioral states likely
provide us with important information for further experiments,
such as when and where in the spatiotemporal behavioral profile
of the animal behavior should be analyzed in detail, especially in
the case where the behavior has not been studied intensively in
a quantitative manner. For example, relatively small movements

at places distant from their nest in the wild may correspond
to the feeding area. For neurobiological/physiological analysis,
the transition from one state to the other could be triggered by
a specific change in the sensory stimulus and associated with
specific neural activities. It should also be noted that the STEFTR
method allows semi-automatic STEFTR, which is suitable for
large-scale behavioral analysis of mutant strains of laboratory
model animals (Table 3).

Estimation of behavioral states (or behavioral modes) based
on animal trajectories have been performed previously by various
methods. The Expectation-Maximization binary Clustering
(EMbC) method is the most similar to our method (Garriga
et al., 2016). In the EMbC method, a few behavioral features,
such as velocity and turn angle, were classified into two groups
based on higher (H) or lower (L) values compared to a threshold,
and the trajectories were segmented using combinations of the
classifications (e.g., HH, HL, LH, or LL for velocity-turn angle).
In that study, bat trajectories were analyzed by the EMbC
method and compared with the labels by experts. True positive
rates (TPR) for roost, forage, and commute were 9%, 94%,
and 91%, respectively, which were at least comparable with the
TPR of our method for worms and penguins (“sensitivity” in
Figures 2F, 3H). When state estimation from trajectory data with
classic methods (first passage time, speed-tortuosity threshold,
Hidden Markov Model, etc.) or with machine learning methods
(linear discriminant analysis, classification and regression trees,
support vector machine, etc.) were systematically compared with
ground truth data, TPR of the classic methods were about 30–
80%, and 80–90% for machine learning (Nathan et al., 2012;
Bennison et al., 2017). Furthermore, even in a study that classified
the behavioral state of Drosophila or mice based on high content
video data with machine learning analysis, about 4–5% errors
were observed (Kabra et al., 2013). This comparison of our
method with earlier methods is not accurate as these studies
used data different from ours. Still, we consider that our STEFTR
method is one of the efficient methods to estimate behavioral
states from animal trajectories.

For comprehensive feature extraction, we used information
gain, an index used in decision tree analysis. Decision tree
analysis is one of the machine learning techniques used for
classification. Classification analysis involves classifying new,
unlabeled data into appropriate classes using characteristic
features and the parameters that have been extracted from
the known class-labeled data. In the present study, however,
the classification itself was not meaningful because the data
were already classified (with/without learning or with/without
sex pheromone). Instead, we focused on the procedure in the
classification that identifies features useful for distinguishing
between the two classes. In other words, behavioral features
that are different between two classes (i.e., conditions) should
be able to effectively classify the behavioral data of animals in
two conditions. To our knowledge, our STEFTR method is the
first pipeline to comprehensively extract behavioral features of a
behavioral state in two different conditions.

Although the STEFTR method does not directly provide
information about brain/neural activity underlying animal
behavior, it provides us with clues required to formulate
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hypotheses related to the experimental investigation of the
neural activity, as shown in the case of learning-dependent
changes in behavioral features and neural activity (Figure 7).
For example, animals in the wild experience continuously
changing visual, auditory, and olfactory stimuli, each of which
contains multi-dimensional information (color, shape, tone,
different chemical compounds, etc.). Therefore, it is difficult
to identify which aspect(s) of the particular stimulus actually
triggers a change in animal behavior. Estimation of behavioral
states using the STEFTR method will allow us to identify
the behavior-triggering stimulus by focusing on the timing
and/or place of the behavioral transition. Similarly, large-scale
recording of neural activities from moving animals in the
laboratory itself is difficult to interpret. However, STEFTR of
the behavior will greatly facilitate the identification of neural
activities that are associated with behavioral transitions and/or
specific behavioral features.

ETHICS STATEMENT

Penguins
This study was carried out in accordance with the
recommendations of Bioscience Program Committee of Japanese
Antarctic Research Expedition and the Law relating to Protection
of the Environment in Antarctica. The protocol was approved
by Bioscience Program Committee of Japanese Antarctic
Research Expedition and the Ministry of the Environment,
Government of Japan.

Flying Seabirds
This study was carried out in accordance with the
recommendations of the guidelines of the Animal Experimental
Committee of Nagoya University. The protocol was approved
by the Animal Experimental Committee of Nagoya University.
Fieldwork was conducted with permission from the Ministry of
the Environment and Agency for Cultural Affairs, Japan.

Rats
This study was carried out in accordance with the
recommendations of the Regulations on Animal Experiments in
Osaka City University. The protocol was approved by the Animal
Care and Ethics Committee of Osaka City University.

Bats
This study was carried out in accordance with the
recommendations of Principles of Animal Care [publication no.

86-23 (revised 1985) of the National Institutes of Health] and
all Japanese laws. The protocol was approved by the Animal
Experiment Committee of Doshisha University.

AUTHOR CONTRIBUTIONS

SJY, TM, and KDK designed the experiments. SJY, KO, KI, NK,
TK, DT, YY, YoI, FH, KF, YT, AY-U, KH, KS, KY, AT, YuI,
AK, SH, and KDK performed the experiments. SJY and TM
analyzed the data. SJY and KDK wrote the manuscript. All
authors reviewed the manuscript.

FUNDING

This work was supported by the Interdisciplinary graduate school
program for systematic understanding of health and disease (for
SJY), by the Tohoku Ecosystem-Associated Marine Science (for
KS), by 58th Japanese Antarctic Research Expedition (for KI, NK,
and AT) by KAKENHI JP16K16185 (for NK), JP25249020 and
JP16H06536 (for KH), JP24681006, JP16H01769, JP16H06541
(for KY), 17H05983 (for AT), JP16H04655, JP18H05069, and
JP17K19450 (for AK), JP16H06542 (for SH), JP16H06539 (for
TM), JP16H06545 (for KDK) from the MEXT, by PRESTO
11008 (for SH) by JST, and by the Osaka University Co-Creation
Program (for TM and KDK).

ACKNOWLEDGMENTS

We thank Drs. André Brown, Katsuyoshi Matsushita, Ken-ichi
Hironaka, Takuma Degawa, Daisuke Yamamoto, Soh Kohatsu,
and KDK laboratory members for suggestions and comments on
this work. Nematode strains were provided by the Caenorhabditis
Genetics Center (funded by the NIH Office of Research
Infrastructure Programs P40 OD010440) and by the National
BioResource Project funded by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00626/full#supplementary-material

REFERENCES
Alivisatos, A. P., Chun, M., Church, G. M., Greenspan, R. J., Roukes, M. L.,

and Yuste, R. (2012). The Brain Activity Map Project and the Challenge of
Functional Connectomics. Neuron 74, 970–974. doi: 10.1016/j.neuron.2012.
06.006

Anderson, D. J., and Perona, P. (2014). Toward a Science of
Computational Ethology. Neuron 84, 18–31. doi: 10.1016/j.neuron.2014.
09.005

Baek, J.-H., Cosman, P., Feng, Z., Silver, J., and Schafer, W. R. (2002). Using
machine vision to analyze and classify Caenorhabditis elegans behavioral
phenotypes quantitatively. J. Neurosci. Methods 118, 9–21. doi: 10.1016/s0165-
0270(02)00117-6

Bargmann, C. I. (2006). Chemosensation in C. elegans. WormBook 1–29.
doi: 10.1895/wormbook.1.123.1

Bargmann, C. I., Hartwieg, E., and Horvitz, H. R. (1993). Odorant-selective genes
and neurons mediate olfaction in C. elegans. Cell 74, 515–527. doi: 10.1016/
0092-8674(93)80053-h

Frontiers in Neuroscience | www.frontiersin.org 21 June 2019 | Volume 13 | Article 626

https://www.frontiersin.org/articles/10.3389/fnins.2019.00626/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00626/full#supplementary-material
https://doi.org/10.1016/j.neuron.2012.06.006
https://doi.org/10.1016/j.neuron.2012.06.006
https://doi.org/10.1016/j.neuron.2014.09.005
https://doi.org/10.1016/j.neuron.2014.09.005
https://doi.org/10.1016/s0165-0270(02)00117-6
https://doi.org/10.1016/s0165-0270(02)00117-6
https://doi.org/10.1895/wormbook.1.123.1
https://doi.org/10.1016/0092-8674(93)80053-h
https://doi.org/10.1016/0092-8674(93)80053-h
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00626 June 27, 2019 Time: 15:17 # 22

Yamazaki et al. Automated Analysis of Animal Trajectories

Bennison, A., Bearhop, S., Bodey, T. W., Votier, S. C., Grecian, W. J., Wakefield,
E. D., et al. (2017). Search and foraging behaviors from movement data: A
comparison of methods. Ecol. Evol. 8, 13–24. doi: 10.1002/ece3.3593

Berman, G. J. (2018). Measuring behavior across scales. BMC Biol. 16:23.
doi: 10.1186/s12915-018-0494-497

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Delhi: Springer
Verlag.

Branson, K., Robie, A. A., Bender, J., Perona, P., and Dickinson, M. H. (2009).
High-throughput ethomics in large groups of Drosophila. Nat Methods 6,
451–457. doi: 10.1038/nmeth.1328

Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71–94.
Brown, A. E. X., and de Bivort, B. (2018). Ethology as a physical science. Nat. Phys.

14, 653–657. doi: 10.1038/s41567-018-0093-90
Brown, A. E. X., Yemini, E. I., Grundy, L. J., Jucikas, T., and Schafer, W. R.

(2013). A dictionary of behavioral motifs reveals clusters of genes affecting
Caenorhabditis elegans locomotion. Proc. Natl. Acad Sci. U.S.A. 110, 791–796.
doi: 10.1073/pnas.1211447110

Buhusi, C. V., and Meck, W. H. (2005). What makes us tick? Functional
and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765.
doi: 10.1038/nrn1764

Colbert, H. A., Smith, T. L., and Bargmann, C. I. (1997). OSM-9, a novel
protein with structural similarity to channels, is required for olfaction,
mechanosensation, and olfactory adaptation in Caenorhabditis elegans.
J. Neurosci. 17, 8259–8269. doi: 10.1523/jneurosci.17-21-08259.1997

Dankert, H., Wang, L., Hoopfer, E. D., Anderson, D. J., and Perona, P. (2009).
Automated monitoring and analysis of social behavior in Drosophila. Nat. Meth.
6, 297–303. doi: 10.1038/nmeth.1310

De Bono, M., and Maricq, A. V. (2005). Neuronal substrates of complex behaviors
in C. elegans. Annu. Rev. Neurosci. 28, 451–501. doi: 10.1146/annurev.neuro.27.
070203.144259

Dell, A. I., Bender, J. A., Branson, K., Couzin, I. D., de Polavieja, G. G., Noldus, L. P.,
et al. (2014). Automated image-based tracking and its application in ecology.
Trends Ecol. Evol. 29, 417–428. doi: 10.1016/j.tree.2014.05.004

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. J. Royal Stat. Soc. B 39, 1–38.
doi: 10.2307/3315718

Diba, K., and Buzsáki, G. (2008). Hippocampal network dynamics constrain the
time lag between pyramidal cells across modified environments. J. Neurosci. 28,
13448–13456. doi: 10.1523/JNEUROSCI.3824-08.2008

Egnor, S. E. R., and Branson, K. (2016). Computational analysis of behavior. Annu.
Rev. Neurosci. 39, 217–236. doi: 10.1146/annurev-neuro-070815-13845

Frank, E., Hall, M. A., and Witten, I. H. (2016). The WEKA Workbench Online
Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”.
Burlington, MA: Morgan Kaufmann.

Garriga, J., Palmer, J. R. B., Oltra, A., and Bartumeus, F. (2016). Expectation-
Maximization binary clustering for behavioural annotation. PLoS One
11:e151984. doi: 10.1371/journal.pone.0151984

Gomez-Marin, A., Paton, J. J., Kampff, A. R., Costa, R. M., and Mainen, Z. F. (2014).
Big behavioral data: psychology, ethology and the foundations of neuroscience.
Nat. Neurosci. 17, 1455–1462. doi: 10.1038/nn.3812

Gorelik, R., and Gautreau, A. (2014). Quantitative and unbiased analysis of
directional persistence in cell migration. Nat. Protoc. 9, 1931–1943. doi: 10.
1038/nprot.2014.131

Gurarie, E., Bracis, C., Delgado, M., Meckley, T. D., Kojola, I., and Wagner, C. M.
(2016). What is the animal doing? Tools for exploring behavioural structure in
animal movements. J. Anim. Ecol. 85, 69–84. doi: 10.1111/1365-2656.12379

Iino, Y., and Yoshida, K. (2009). Parallel use of two behavioral mechanisms for
chemotaxis in Caenorhabditis elegans. J. Neurosci. 29, 5370–5380. doi: 10.1523/
JNEUROSCI.3633-08.2009

Jonsen, I. D., Basson, M., Bestley, S., Bravington, M. V., Patterson, T. A., Pedersen,
M. W., et al. (2013). State-space models for bio-loggers: a methodological road
map. Deep Sea Res II Top. Stud. Oceanogr. 8, 34–46. doi: 10.1016/j.dsr2.2012.
07.008

Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S., and Branson, K. (2013).
JAABA: interactive machine learning for automatic annotation of animal
behavior. Nat. Methods 10, 64–67. doi: 10.1038/nmeth.2281

Kaplan, J. M. (1996). Sensory signaling in Caenorhabditis elegans. Curr. Opin.
Neurobiol. 6, 494–499. doi: 10.1016/s0959-4388(96)80055-9

Kass, J., Jacob, T. C., Kim, P., and Kaplan, J. M. (2001). The EGL-3
proprotein convertase regulates mechanosensory responses of Caenorhabditis
elegans. J. Neurosci. 21, 9265–9272. doi: 10.1523/jneurosci.21-23-09265.
2001

Kimura, K. D., Fujita, K., and Katsura, I. (2010). Enhancement of odor avoidance
regulated by dopamine signaling in Caenorhabditis elegans. J. Neurosci. 30,
16365–16375. doi: 10.1523/JNEUROSCI.6023-09.2010

Kohatsu, S., Koganezawa, M., and Yamamoto, D. (2011). Female contact
activates male-specific interneurons that trigger stereotypic courtship
behavior in Drosophila. Neuron 69, 498–508. doi: 10.1016/j.neuron.2010.
12.017

Kohatsu, S., and Yamamoto, D. (2015). Visually induced initiation of Drosophila
innate courtship-like following pursuit is mediated by central excitatory state.
Nat. Commun. 6, 6457. doi: 10.1038/ncomms7457

Kokubun, N., Lee, W. Y., Kim, J.-H., and Takahashi, A. (2015). Chinstrap penguin
foraging area associated with a seamount in Bransfield Strait. Antarctica. Polar
Sci. 9, 393–400. doi: 10.1016/j.polar.2015.10.001

Komatsu, H., Mori, I., Rhee, J. S., Akaike, N., and Ohshima, Y. (1996). Mutations
in a cyclic nucleotide-gated channel lead to abnormal thermosensation and
chemosensation in C. elegans. Neuron 17, 707–718. doi: 10.1016/s0896-
6273(00)80202-0

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., and Poeppel,
D. (2017). Neuroscience needs behavior: correcting a reductionist bias. Neuron
93, 480–490. doi: 10.1016/j.neuron.2016.12.041

Land, M., Islas-Trejo, A., and Rubin, C. S. (1994). Origin, properties, and regulated
expression of multiple mRNAs encoded by the protein kinase C1 gene of
Caenorhabditis elegans. J. Biol. Chem. 269, 14820–14827.

Landhuis, E. (2017). Neuroscience: big brain, big data. Nature 541, 559–561.
doi: 10.1038/541559a

Lee, R. Y., Sawin, E. R., Chalfie, M., Horvitz, H. R., and Avery, L.
(1999). EAT-4, a homolog of a mammalian sodium-dependent inorganic
phosphate cotransporter, is necessary for glutamatergic neurotransmission in
Caenorhabditis elegans. J. Neurosci. 19, 159–167. doi: 10.1523/jneurosci.19-01-
00159.1999

Lewis, J. A., Wu, C. H., Berg, H., and Levine, J. H. (1980). The genetics of
levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95,
905–928.

Lockery, S. R. (2011). The computational worm: spatial orientation and its
neuronal basis in C. elegans. Curr. Opin. Neurobiol. 21, 782–790. doi: 10.1016/j.
conb.2011.06.009

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1–12. doi: 10.1038/s41593-018-
0209-y

Matsumoto, S., Yamamoto, T., Yamamoto, M., Zavalaga, C. B., and Yoda, K. (2017).
Sex-related differences in the foraging movement of streaked shearwaters
Calonectris leucomelas breeding on Awashima Island in the sea of Japan.
Ornithol. Sci. 16, 23–32. doi: 10.2326/osj.16.23

Mizuseki, K., Diba, K., Pastalkova, E., Teeters, J., Sirota, A., and Buzsáki, G.
(2014). Neurosharing: large-scale data sets (spike, LFP) recorded from the
hippocampal-entorhinal system in behaving rats. F1000Res 3:98. doi: 10.12688/
f1000research.3895.1

Mizuseki, K., Sirota, A., Pastalkova, E., and Buzsáki, G. (2009). Theta Oscillations
Provide Temporal Windows for Local Circuit Computation in the Entorhinal-
Hippocampal Loop. Neuron 64, 267–280. doi: 10.1016/j.neuron.2009.
08.037

Moss, C. F., and Surlykke, A. (2010). Probing the natural scene by echolocation in
bats. Front. Behav. Neurosci. 4:33. doi: 10.3389/fnbeh.2010.00033

Nathan, R., Spiegel, O., Fortmann-Roe, S., Harel, R., Wikelski, M., and Getz, W. M.
(2012). Using tri-axial acceleration data to identify behavioral modes of free-
ranging animals: general concepts and tools illustrated for griffon vultures.
J. Exp. Biol. 215, 986–996. doi: 10.1242/jeb.058602

Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., and Matthiopoulos, J.
(2008). State-space models of individual animal movement. Trends Ecol. Evol.
23, 87–94. doi: 10.1016/j.tree.2007.10.009

Pierce-Shimomura, J. T., Morse, T. M., and Lockery, S. R. (1999). The fundamental
role of pirouettes in Caenorhabditis elegans chemotaxis. J. Neurosci. 19,
9557–9569.

Frontiers in Neuroscience | www.frontiersin.org 22 June 2019 | Volume 13 | Article 626

https://doi.org/10.1002/ece3.3593
https://doi.org/10.1186/s12915-018-0494-497
https://doi.org/10.1038/nmeth.1328
https://doi.org/10.1038/s41567-018-0093-90
https://doi.org/10.1073/pnas.1211447110
https://doi.org/10.1038/nrn1764
https://doi.org/10.1523/jneurosci.17-21-08259.1997
https://doi.org/10.1038/nmeth.1310
https://doi.org/10.1146/annurev.neuro.27.070203.144259
https://doi.org/10.1146/annurev.neuro.27.070203.144259
https://doi.org/10.1016/j.tree.2014.05.004
https://doi.org/10.2307/3315718
https://doi.org/10.1523/JNEUROSCI.3824-08.2008
https://doi.org/10.1146/annurev-neuro-070815-13845
https://doi.org/10.1371/journal.pone.0151984
https://doi.org/10.1038/nn.3812
https://doi.org/10.1038/nprot.2014.131
https://doi.org/10.1038/nprot.2014.131
https://doi.org/10.1111/1365-2656.12379
https://doi.org/10.1523/JNEUROSCI.3633-08.2009
https://doi.org/10.1523/JNEUROSCI.3633-08.2009
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1016/j.dsr2.2012.07.008
https://doi.org/10.1038/nmeth.2281
https://doi.org/10.1016/s0959-4388(96)80055-9
https://doi.org/10.1523/jneurosci.21-23-09265.2001
https://doi.org/10.1523/jneurosci.21-23-09265.2001
https://doi.org/10.1523/JNEUROSCI.6023-09.2010
https://doi.org/10.1016/j.neuron.2010.12.017
https://doi.org/10.1016/j.neuron.2010.12.017
https://doi.org/10.1038/ncomms7457
https://doi.org/10.1016/j.polar.2015.10.001
https://doi.org/10.1016/s0896-6273(00)80202-0
https://doi.org/10.1016/s0896-6273(00)80202-0
https://doi.org/10.1016/j.neuron.2016.12.041
https://doi.org/10.1038/541559a
https://doi.org/10.1523/jneurosci.19-01-00159.1999
https://doi.org/10.1523/jneurosci.19-01-00159.1999
https://doi.org/10.1016/j.conb.2011.06.009
https://doi.org/10.1016/j.conb.2011.06.009
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.2326/osj.16.23
https://doi.org/10.12688/f1000research.3895.1
https://doi.org/10.12688/f1000research.3895.1
https://doi.org/10.1016/j.neuron.2009.08.037
https://doi.org/10.1016/j.neuron.2009.08.037
https://doi.org/10.3389/fnbeh.2010.00033
https://doi.org/10.1242/jeb.058602
https://doi.org/10.1016/j.tree.2007.10.009
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00626 June 27, 2019 Time: 15:17 # 23

Yamazaki et al. Automated Analysis of Animal Trajectories

Quinlan, J. R. (1986). Induction of decision trees. Mach. Learn 1, 81–106.
doi: 10.1023/A:1022643204877

Robie, A. A., Hirokawa, J., Edwards, A. W., Umayam, L. A., Lee, A., Phillips, M. L.,
et al. (2017). Mapping the neural substrates of behavior. Cell 170, 393–406.e28.
doi: 10.1016/j.cell.2017.06.032

Sasakura, H., and Mori, I. (2013). Behavioral plasticity, learning, and memory
in C. elegans. Curr. Opin. Neurobiol. 23, 92–99. doi: 10.1016/j.conb.2012.
09.005

Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer,
A. E., and Tsien, R. Y. (2004). Improved monomeric red, orange and yellow
fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat.
Biotech. 22, 1567–1572. doi: 10.1038/nbt1037

Stephens, G. J., Johnson-Kerner, B., Bialek, W., and Ryu, W. S. (2008).
Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput. Biol.
4:e1000028. doi: 10.1371/journal.pcbi.1000028

Suo, S., Ishiura, S., and Van Tol, H. H. M. (2004). Dopamine receptors in C. elegans.
Eur. J. Pharmacol. 500, 159–166. doi: 10.1016/j.ejphar.2004.07.021

Tanimoto, Y., Yamazoe-Umemoto, A., Fujita, K., Kawazoe, Y., Miyanishi, Y.,
Yamazaki, S. J., et al. (2017). Calcium dynamics regulating the timing
of decision-making in C. elegans.. eLife 6:e21629. doi: 10.7554/eLife.
21629

Tian, L., Hires, S. A., Mao, T., Huber, D., Chiappe, M. E., Chalasani, S. H., et al.
(2009). Imaging neural activity in worms, flies and mice with improved GCaMP
calcium indicators. Nat. Methods 6, 875–881. doi: 10.1038/nmeth.1398

Tobin, D., Madsen, D., Kahn-Kirby, A., Peckol, E., Moulder, G., Barstead, R.,
et al. (2002). Combinatorial expression of TRPV channel proteins defines their
sensory functions and subcellular localization in C. elegans neurons. Neuron 35,
307–318. doi: 10.1016/s0896-6273(02)00757-2

Vogelstein, J. T., Park, Y., Ohyama, T., Kerr, R. A., Truman, J. W., Priebe, C. E.,
et al. (2014). Discovery of Brainwide Neural-Behavioral Maps via Multiscale
Unsupervised Structure Learning. Science 344, 386–392. doi: 10.1126/science.
1250298

Watanabe, S., Sato, K., and Ponganis, P. J. (2012). Activity time budget during
foraging trips of emperor penguins. PLoS One 7:e50357. doi: 10.1371/journal.
pone.0050357

White, J. G., Southgate, E., Thomson, J. N., and Brenner, S. (1986). The structure
of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans.
Royal Soc. B 314, 1–340. doi: 10.1098/rstb.1986.0056

Wiltschko, A. B., Johnson, M. J., Iurilli, G., Peterson, R. E., Katon, J. M., Pashkovski,
S. L., et al. (2015). Mapping Sub-Second Structure in Mouse Behavior. Neuron
88, 1121–1135. doi: 10.1016/j.neuron.2015.11.031

Yamada, Y. (2017). A Study on Cheap Robust Sensing for Obstacle Avoidance
Guidance Based on Bio-Sonar Strategy of Bats. Ph.D. thesis, Doshisha University,
Kyoto.

Yamada, Y., Hiryu, S., and Watanabe, Y. (2016). Species-specific control of acoustic
gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus
abramus, during flight. J. Comp. Physiol. A 202, 791–801. doi: 10.1007/s00359-
016-1121-1120

Yamamoto, D., and Koganezawa, M. (2013). Genes and circuits of courtship
behaviour in Drosophila males. Nat. Rev. Neurosci. 14, 681–692. doi: 10.1038/
nrn3567

Yamazoe-Umemoto, A., Fujita, K., Iino, Y., Iwasaki, Y., and Kimura,
K. D. (2015). Modulation of different behavioral components by
neuropeptide and dopamine signalings in non-associative odor learning
of Caenorhabditis elegans. Neurosci. Res. 99, 22–33. doi: 10.1016/j.neures.2015.
05.009

Yamazoe-Umemoto, A., Iwasaki, Y., and Kimura, K. (2018). Measuring
spatiotemporal dynamics of odor gradient for small animals by gas
chromatography. Bio-Protocol 8:e2797. doi: 10.21769/bioprotoc.2797

Yoda, K. (2018). Advances in bio-logging techniques and their application to study
navigation in wild seabirds. Adv. Robot. 58, 1–10. doi: 10.1080/01691864.2018.
1553686

Yoda, K., Naito, Y., Sato, K., Takahashi, A., Nishikawa, J., Ropert-Coudert, Y., et al.
(2001). A new technique for monitoring the behaviour of free-ranging Adélie
penguins. J. Exp. Biol. 204, 685–690.

Yoda, K., Shiomi, K., and Sato, K. (2014). Foraging spots of streaked
shearwaters in relation to ocean surface currents as identified using their
drift movements. Prog. Oceanogr. 122, 54–64. doi: 10.1016/j.pocean.2013.
12.002

Zhang, S. X., Miner, L. E., Boutros, C. L., Rogulja, D., and Crickmore, M. A. (2018).
Motivation, perception, and chance converge to make a binary decision. Neuron
99, 376–388.e6. doi: 10.1016/j.neuron.2018.06.014

Zheng, Y. (2015). Trajectory Data Mining. ACM Tras. Intell. Syst. Techno. 6, 1–41.
doi: 10.1145/2743025

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Yamazaki, Ohara, Ito, Kokubun, Kitanishi, Takaichi, Yamada,
Ikejiri, Hiramatsu, Fujita, Tanimoto, Yamazoe-Umemoto, Hashimoto, Sato, Yoda,
Takahashi, Ishikawa, Kamikouchi, Hiryu, Maekawa and Kimura. This is an open-
access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 23 June 2019 | Volume 13 | Article 626

https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1016/j.cell.2017.06.032
https://doi.org/10.1016/j.conb.2012.09.005
https://doi.org/10.1016/j.conb.2012.09.005
https://doi.org/10.1038/nbt1037
https://doi.org/10.1371/journal.pcbi.1000028
https://doi.org/10.1016/j.ejphar.2004.07.021
https://doi.org/10.7554/eLife.21629
https://doi.org/10.7554/eLife.21629
https://doi.org/10.1038/nmeth.1398
https://doi.org/10.1016/s0896-6273(02)00757-2
https://doi.org/10.1126/science.1250298
https://doi.org/10.1126/science.1250298
https://doi.org/10.1371/journal.pone.0050357
https://doi.org/10.1371/journal.pone.0050357
https://doi.org/10.1098/rstb.1986.0056
https://doi.org/10.1016/j.neuron.2015.11.031
https://doi.org/10.1007/s00359-016-1121-1120
https://doi.org/10.1007/s00359-016-1121-1120
https://doi.org/10.1038/nrn3567
https://doi.org/10.1038/nrn3567
https://doi.org/10.1016/j.neures.2015.05.009
https://doi.org/10.1016/j.neures.2015.05.009
https://doi.org/10.21769/bioprotoc.2797
https://doi.org/10.1080/01691864.2018.1553686
https://doi.org/10.1080/01691864.2018.1553686
https://doi.org/10.1016/j.pocean.2013.12.002
https://doi.org/10.1016/j.pocean.2013.12.002
https://doi.org/10.1016/j.neuron.2018.06.014
https://doi.org/10.1145/2743025
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	STEFTR: A Hybrid Versatile Method for State Estimation and Feature Extraction From the Trajectory of Animal Behavior
	Introduction
	Materials and Methods
	Overview of Behavioral State Estimation
	EM Algorithm for Cluster Analysis
	Determination of Cluster Number Using Log-Likelihood for Model
	Automatic Selection of Basic Behavioral Feature by Separation Index
	Feature Extraction With Information Gain
	Behavioral Parameters Included in a Feature Vector
	Worms
	Penguins
	Flying Seabirds
	Rats
	Flies
	Bats
	Calcium Imaging of Worm's Neurons

	Results
	Estimation of Behavioral States
	Comprehensive Extraction of Behavioral Features Modulated by Learning
	Responsiveness of Sensory Neurons to Odor Increase Was Modulated by the Odor Learning
	Extracted Behavioral Features of Mutant Strains Correspond to Gene Function
	Feature Extraction of Fly Sexual Behavior
	Feature Extraction of Learning-Dependent Modulation of Acoustic Navigation in Bats

	Discussion
	Ethics Statement
	Penguins
	Flying Seabirds
	Rats
	Bats

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


