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Development of computer science has led to the blooming of artificial intelligence (AI),

and neural networks are the core of AI research. Although mainstream neural networks

have done well in the fields of image processing and speech recognition, they do not

perform well in models aimed at understanding contextual information. In our opinion,

the reason for this is that the essence of building a neural network through parameter

training is to fit the data to the statistical law through parameter training. Since the

neural network built using this approach does not possess memory ability, it cannot

reflect the relationship between data with respect to the causality. Biological memory

is fundamentally different from the current mainstream digital memory in terms of the

storage method. The information stored in digital memory is converted to binary code

and written in separate storage units. This physical isolation destroys the correlation of

information. Therefore, the information stored in digital memory does not have the recall

or association functions of biological memory which can present causality. In this paper,

we present the results of our preliminary effort at constructing an associative memory

system based on a spiking neural network. We broke the neural network building process

into two phases: the Structure Formation Phase and the Parameter Training Phase. The

Structure Formation Phase applies a learning method based on Hebb’s rule to provoke

neurons in the memory layer growing new synapses to connect to neighbor neurons as

a response to the specific input spiking sequences fed to the neural network. The aim of

this phase is to train the neural network tomemorize the specific input spiking sequences.

During the Parameter Training Phase, STDP and reinforcement learning are employed to

optimize the weight of synapses and thus to find a way to let the neural network recall the

memorized specific input spiking sequences. The results show that our memory neural

network could memorize different targets and could recall the images it had memorized.

Keywords: spiking neural network, artificial intelligence, associative memory system, Hebb’s rule, STDP

1. INTRODUCTION

Development of computer science has led to the blooming of artificial intelligence (AI). Research
on AI has become extremely popular these days due to the ever-growing demands from
application domains such as pattern recognition, image segmentation, intelligent video analytics,
autonomous robotics, and sensorless control (Rowley et al., 1996; Lecun et al., 1998; Zaknich, 1998;
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Egmont-Petersen et al., 2002). Neural networks are the core of
AI research. Deep-learning neural networks (DNNs), the second
generation of artificial neural networks (ANNs), have become the
research hotspot of neural networks (Schmidhuber, 2014) and
have won numerous contests against people, including the most
famous one: recently, Google’s AlphaGoDNNdefeated Lee Sedol,
a famous professional I-go player.

To date, many studies have been conducted on DNN, focusing
on development of the learning and training methods (Jennings
and Wooldridge, 2012; Yoshua et al., 2013; Lecun et al., 2015)
of DNN. Researchers studying DNN typically use a fixed neural
network structure and train their DNN using a large amount of
data to optimize the weight of the connections/synapses.

Although the mainstream neural networks have done well in
the fields of image processing and speech recognition, they do
not perform well in models aimed at understanding contextual
information. In our opinion, the reason for this is that the essence
of building a neural network through parameter training is to fit
the data to the statistical law through parameter training. Since
the neural network built using this approach does not possess
memory ability, it cannot reflect the relationship between data
with respect to the causality. Recurrent neural networks (RNNs)
use a special network structure to address this issue, but the
complexity of its structure also leads to many limitations.

Spiking neural networks (SNNs) are the third generation of
ANNs. Compared with DNNs, SNNs are more similar to the
biological neural network; SNNs use spiking neurons, which
emit spiking signals when activated. The generated spiking trains
(sequences of spiking signals) are used to communicate between
neurons. Spiking train expresses time dimension information
naturally; therefore, SNNs offer an advantage when dealing with
information having string contextual relevance. However, due
to the lack of effective training algorithms, SNNs have not yet
been applied to many domains. Many studies on SNNs have
been published, but most of these involve using SNNs to perform
simple classification or image recognition.

Neural networks in organisms can perform many complex
functions, including memory. Since SNNs are more similar
to the biological neural network, we endeavored to use it to
construct a bionic memory neural network. Biological memory
is fundamentally different from the current mainstream digital
memory in terms of the storage method. The information stored
in digital memory is converted to binary code and written
in separate storage units. This physical isolation destroys the
correlation of information. Therefore, the information stored in
digital memory does not have the recall or association functions
of biological memory which can present causality.

The great capability and potential of biological neural network
fascinates us. So in this paper, we present our preliminary effort
at constructing an associative memory neural network based
on SNN. We present our method which could guide the grow
process of the memory neural network. We present our method
to optimize the weight of synapses of the neural network. And
through our experimental results, we show that the memory
neural network built using our method could possess memory
and recall ability after only undergoing a small scale of training.

In our method, we broke the neural network building
process into two phases: the Structure Formation Phase and
the Parameter Training Phase. The Structure Formation Phase
applies a learning method based on Hebb’s rule to provoke
neurons in the memory layer to new synapses to connect to
neighbor neurons as a response to the specific input spiking
sequences fed to the neural network. The aim of this phase
is to train the neural network to memorize the specific input
spiking sequences. During the Parameter Training Phase, STDP
and reinforcement learning are employed to optimize the weight
of synapses and thus find a way let the neural network recall the
memorized specific input spiking sequences.

The remaining text is organized as follows: section 2
discusses related work, section 3 mentions our motivation,
section 4 provides the study background, and section 5 discusses
our method to implement the memory neural network; the
experimental results are reported and discussed in section 6. The
conclusion is provided in section 7.

2. RELATED WORKS

Neural network construction has a long history, and many
algorithms have been proposed (Śmieja, 1993; Fiesler, 1994;
Quinlan, 1998; Perez-Uribe, 1999).

As the second generation of ANNs, DNNs have many
advantages. However, they rely heavily on data for training. With
the construction of DNN becoming increasingly complex and
powerful, the training process requires an increasing number of
computations, which has become a great challenge. Each session
of training becomes increasingly time and resource consuming,
which may become a bottleneck for DNNs in the near future.
Now, an increasing number of researchers are turning their
attention to SNNs.

In 2002, Bohte et al. (2000) derived the first supervised
training algorithm for SNNs, called SpikeProp, which is
an adaptation of the gradient-descent-based error-back-
propagation method. SpikeProp overcame the problems
inherent to SNNs using a gradient-descent approach by allowing
each neuron to fire only once (Wade et al., 2010). In 2010, Wade
et al. presented a synaptic weight association training (SWAT)
algorithm for spiking neural networks (SNNs), which merges
the Bienenstock-Cooper-Munro (BCM) learning rule with spike
timing dependent plasticity (STDP) (Wade et al., 2010).

In 2013, Kasabov et al. (2013) introduced a new model called
deSNN, which utilizes rank-order learning and Spike Driven
Synaptic Plasticity (SDSP) spike-time learning in unsupervised,
supervised, or semi-supervised modes. In 2017, they presented
a methodology for dynamic learning, visualization, and
classification of functional magnetic resonance imaging (fMRI)
as spatiotemporal brain data (Kasabov et al., 2016). The
method they presented is based on an evolving spatiotemporal
data machine of evolving spiking neural networks (SNNs)
exemplified by the NeuCube architecture (Kasabov, 2014), which
adopted both unsupervised learning and supervised learning in
different phases.
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FIGURE 1 | Traditional Memory and CAM.

In 2019, He et al. (2019) proposed a bionic way to implement
artificial neural networks through construction rather than
training and learning. The hierarchy of the neural network is
designed according to analysis of the required functionality,
and then module design is carried out to form each hierarchy.
The results show that the bionic artificial neural network built
through their method could work as a bionic compound eye,
which can achieve the detection of an object and its movement,
and the results are better on some properties, compared with the
Drosophila’s biological compound eyes.

Some studies have already attempted to design neural
networks that behave similar to a memory system. Lecun et al.
(2015) proposed RNNs for time domain sequence data; RNNs
use a special network structure to address the aforementioned
issue, but the complexity of their structure also leads to
many limitations.

Hochreiter and Schmidhuber (1997) presented the long
short-term memory neural network, which is a variant of
RNNs. This neural network inherits the excellent memory ability
of RNNs with regard to the time series and overcomes the
limitation of RNN, that is, difficulty in learning and preserving
long-term information. Moreover, it has displayed remarkable
performance in the fields of natural language processing and
speech recognition. However, the efficiency and scalability of long
short-term memory is poor.

Hopfield (1988) has established the Hopfield network,
which is a recursive network computing model for simulating
a biological neural system. The Hopfield network can simulate
the memory and learning behavior of the brain. The successful
application of this network to solve the traveling salesman
problem shows the potential computing ability of the neural
computing model for the NP class problem. However, the

network capacity of the Hopfield network model is determined
by neuron amounts and connections within a given network, thus
the number of patterns that the network can remember is limited.
Also, since patterns that the network uses for training (called
retrieval states) become attractors of the system, repeated updates
would eventually lead to convergence to one of the retrieval
states. Thus, sometimes the network will converge to spurious
patterns (different from the training patterns). And when the
input patterns are similar, the network cannot always recall the
correct memorized pattern, which means the fault-tolerance is
affected by the relationship between input patterns.

3. MOTIVATION

In traditional memory, as shown in the left part of Figure 1, when
we input an address, the memory outputs data stored in that
address. In content addressable memory (CAM), as shown in the
right part of Figure 1, when we input data, the address of that
data is outputted.

In biological memory systems, both input and output are
contents (Figure 2). Traditional memory and CAM can be
cascaded to expand, as shown in Figure 3. However, due to
the designing and addressing method of CAM, it is difficult to
implement very large scale CAM. So, it is not able to implement
cascaded CAM with large capacity in this way.

Biological memory systems are built on a neural network,
which is composed of neurons. This kind of memory has a simple
structure, large capacity, and can be easily expanded to a very
large scale (Figure 3).

Therefore, the goal of this study was to build a bionic memory
neural network.
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4. BACKGROUND

4.1. Neuron Model
The leaky integrate and fire neuron model was used in this
study (Indiveri, 2003). It is one of the most widely used models
due to its computing efficiency. This model’s behavior can be
described as Equation 1.

V(t) =

{

β · V(t − 1)+ Vin(t) when V < Vth

Vreset and set a spike when V ≥ Vth

where V(t) is the state variable and β is the leaky parameter;
Vth is the threshold state and Vreset is the reset state. Once V(t)
exceeds the threshold Vth, the neuron fires a spike and V(t) is
reset to Vreset .

4.2. Spiking Neural Networks
SNNs are inspired by the manner in which brain neurons
function: through synaptic transmission of spiking trains.
Spiking encoding integratesmultiple aspects of information, such

FIGURE 2 | Three different mechanism of memory.

as time, space, frequency, and phase. It is an effective tool for
complex space-time information processing. In addition, because
SNNs contain time dimension information, its information
processing ability is stronger than that of the previous two
generations of neural networks, especially in the processing of
information with strong contextual relevance.

There are many kinds of SNNs. In SNNs, all the information
is encoded in spiking signals. Spiking trains, consisting of
sequences of spiking signals, are transmitted in the neural
network to implement communication between neurons.

4.3. Spike-Timing-Dependent Plasticity
Spike-timing-dependent plasticity (STDP) is one of the most
important unsupervised learning rules in the SNNs. As a
biological process, it describes the regulatory mechanism of
synapses between neurons in the brain. In our method, STDP is
used to guide the adjustment of the weight of synapses during the
training of SNNs.

Let us suppose that there is a synapse from neuron Npre

to neuron Nsuc in an SNN, and the firing time of Npre is t1
while that of Nsuc is t2. According to STDP, if t1 < t2, then
the weight of the synapse from Npre to Nsuc should increase; if
t1 > t2, then the weight of the synapse from Npre to Nsuc should
decrease; if t1 = t2, then nothing should happen. The value of the
increase/decrease in weights depends on the difference between
t1 and t2.

4.4. Hebb’s Learning Rule
The structure of a biological neural network is neither regular
nor completely disordered, which is the result of the reflection
to the input spiking sequences it receives. Or, we can say
that it is the input spiking signals that define the structure
of a biological neural network through learning and training.
For example, in biological auditory systems, the structure
of neural networks is related to their sensitivity to different
frequencies of sound. However, the relationship between network
structure and external stimulation is difficult to describe using a
mathematical formula.

In our algorithm, we have applied a learning method based on
Hebb’s rule to form the structure of the memory neural network
as a response or reflection of the input spiking sequences. Hebb’s

FIGURE 3 | Memory’s cascading mechanism.
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learning rule (Hebb, 1988) is a neuropsychological theory put
forward by Donald Hebb in 1949. According to Hebb’s learning
rule (Hebb, 1988), when an axon of cell A is sufficiently close to
excite a cell B, and repeatedly or persistently takes part in firing it,
some growth-related process or metabolic changes take place in
one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.

5. METHOD TO CONSTRUCT BIONIC
MEMORY NEURAL NETWORK

Our method for constructing the bionic memory neural network
consists of four major phases:

1. Initialization phase: Initialize the input spiking sequences and
initialize the neural network;

2. Structure Formation phase: Applies a learning method based
on Hebb’s rule to provoke neurons in the memory layer
growing new synapses to connect to neighbor neurons as
a response to the specific input spiking sequences fed to
the input layer of the neural network, until the connection
between the memory layer and the output layer is completed;

3. Parameter Training phase: STDP and reinforcement learning
are employed to optimize and adjust the weight of synapses in
the neural network;

4. Pruning phase: Comply with biological rules to
delete unnecessary connections, thus enhancing the
energy efficiency.

The detail process of our method is described in Algorithm 1.
In this work, the MNIST dataset (Lecun and Cortes, 2010)

was selected to test our proposed method. The MNIST is a
widely used dataset for optical character recognition, with 60,000
handwritten digits in the training set and 10,000 in the testing set.
The size of handwritten digital images in this dataset is 28× 28.

As stated in Algorithm 1, during the parameter training phase,
we would test the memory neural network if it could recall
the image it has already memorized. We would present one
image fromMNIST (already been processed and transferred into
spiking sequence) to the input layer for a certain time duration.
The input spiking sequence would be transferred to the memory
layer. Neurons in the output layer would receive responses from
the memory layer and fire if necessary, thus we could record the
firing sequence from the output layer. Since one image would
only be fed to the input layer for a limited time duration, after
a while, there would be no more firing in the output layer, which
indicates the end of the firing sequence. Then we will decide the
meaning of this firing sequence by the majority votes method.

5.1. Initialization Phase
5.1.1. Initialize the Input Spiking Sequences
Since the input to our memory neural network should be spiking
sequences, the MNIST images should first be transferred into
the spiking sequence. When the input spiking sequences are
initialized, a data preprocessing process is designed to convert the
MNIST images into spiking sequences.

Algorithm 1: Experiment Process

Input:

Input Image Set, S;
Original Memory Neural Network, NN;

Output:

Trained Memory Neural Network, NN;
1: Initialize the Input Spiking Sequences by employing the data

preprocessing process to convert S into spiking sequences set
SS;

2: Initialize the memory neural network;
3: Set the turn mark of the Structure Formation phase, TMSF =

0;
4: while (TMSF < 2) do
5: Set the training set of the Structure Formation phase, S1 =

SS;
6: while (S1 6= φ) do
7: Pick one input spiking sequence R from S1, and delete it

from S1;
8: Feed R to the memory neural network, and perform

Structure Formation phase;
9: end while

10: TMSF = TMSF + 1;
11: end while

12: Set the training set of the Parameter Training phase, S2 = SS;
13: while (S2 6= φ) do
14: Pick one input spiking sequence R from S2;
15: Feed R to the memory neural network;
16: if Result of the output layer is correct then
17: Delete R from S2;
18: else

19: Perform the Parameter Training phase for R;
20: end if

21: end while

The data preprocessing process is shown in Figure 4.
The convolution layer and the pooling layer are added to

abstract the features of the MNIST images, thus reducing the
amount of information our memory neural network needs
to memorize. Four 4 × 4 convolution kernels are used in
the convolution layer, which are shown in Figure 5. MNIST
images would be first processed by the four convolution kernels
separately, then the result of the four convolution kernels would
be processed by the pooling layer. The pooling layer employs 2×2
max_pooling operation.

The conversion layer is used to convert the images outputted
by the pooling layer into spiking sequences according to
the spiking encoding method. There are many kinds of
encoding methods in literature. The principle of priority
transmission of important information in the ROC (Rank
Order Coding) coding method (Thorpe and Gautrais, 1998)
is used to help design the encoding method in this paper.
The spiking encoding method used in this paper converts the
pixel value of the image into the delay time of the spiking
signal, and the higher the pixel value is, the shorter the
delay time is.
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FIGURE 4 | Data preprocessing process for initializing MNIST images into input spiking sequences.

FIGURE 5 | Four convolution kernels used in our method.

Suppose the set of pixels in an image is D, then for each
pixel d ∈ D, min_max normalization would first be employed
to avoid the singular sample data affecting the convergence
of the network:

R(d) =
d − dmin

dmax − dmin
(1)

where dmax and dmin are the maximum and minimum value
in D, respectively.

Four different spiking encoding methods have been designed
in this paper:

Method 1: Linear encodingmethod, where S(d) = Tmax−R(d)×
(Tmax − Tmin);
Method 2: Exponential encoding method, where S(d) =

(0.5R(d)−1 − 1)× (Tmax − Tmin)+ Tmin;
Method 3: Inverse encoding method, where S(d) = ( 2

R(d)+1
−

1)× (Tmax − Tmin)+ Tmin;

Method 4: Power encoding method, where S(d) = (R(d)−1)2×
(Tmax − Tmin)+ Tmin.

where Tmax and Tmin are the stop time and start time of the
spiking sequence for that image, while S(d) is the converted
spiking time for pixel d.

The relationship between the pixel value and the spiking time
for those four methods is compared in Figure 6. In the graph,
the horizontal coordinates represent the pixel values, while the
vertical coordinates are the encoded spiking times. According
to the comparison, we can conclude that the power encoding
method could emit more important information in an earlier
time, thus we chose the power encoding method as the spiking
encoding method for this paper.

The pixel value range of the MNIST images is [0,255]. After
being processed by the conversion layer, an image from the
MNIST set would be converted into an input spiking sequence
with spiking signals in a time range of [0, 100 ms].
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5.1.2. Initialize the Neural Network
Our memory neural network consists of three layers: the input
layer, the memory layer and the output layer, as shown in
Figure 7. The input layer is in charge of receiving input spiking
sequences and feeding the input spiking sequences into the
memory layer. The memory layer would grow new connections
as a response of input spiking sequences to remember them, then
through proper training recall them and output the correct result
through the output layer. The output layer exists because we not
only want our neural network to possess memory ability, but also
to be able to output recall result. The number of neurons in the
output layer is set as the same as the number of targets that the
memory neural network needs to be memorized.

The task of this initialization phase is to initialize all three
layers and initialize the connections between the input layer and
the memory layer. The number of neurons in the input layer is
determined by the size of the target to be memorized. As shown
in Figure 9, neurons in the input layer are connected to neurons

FIGURE 6 | Comparison of the four encoding methods.

in the memory layer with a one-to-one style. So, the number
of neurons in the memory layer is same as the input layer. The
weight of synapses in this work is set in the range [0, 100]. In
order to provoke enough responses in the memory layer to allow
the learning method based on Hebb’s rule to work, the initialized
weight of connection from the input layer to the memory layer
should be strong enough, and is set as 50 in this work.

Since the original MNIST image is 28×28, after the operation
of the four convolution kernels in the convolution layer, the result
is 4 parts each with sizes of 25 × 25, and after the pooling layer,
the result is 4 parts each with sizes of 12×12. Since the result after
the pooling layer is 4 parts each with sizes of 12×12, there are 576
spiking signals in the spiking sequence in total after the process
of the conversion layer. Thus, in this work, we set 576 neurons
in the input layer of our memory neural network. Each spiking
signal in the spiking sequence would feed into one of the input
neurons. And since the connection style between input layer and
memory layer is one-to-one, there are also 576 neurons in the
memory layer in this work.

Ten images, each of different number (that is one image of
each from 0 to 9), are chosen from MNIST to form the Input
Image Set S of this work, as shown in Figure 8. Thus the number
of neurons in the output layer is 10, corresponding to the 10
images needed to be memorized.

FIGURE 8 | Input Image Set S.

FIGURE 7 | Structure of our memory neural network.
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FIGURE 9 | Different delay for each connection from input layer to memory layer to capture spatial information.

Each neuron in the input layer and memory layer will be
assigned a coordinate, as shown in Figure 9. The coordinates
of neurons in the memory layer would be used to calculate the
distance between them in later course of our algorithm.

As stated before in the paper, we use MNIST images as the
input. There are two kinds of information in a Mnist image.
The value of the pixel, and the location of that pixel. We use
the power encoding method to convert the value of the pixel
into the spiking time of that pixel. And in order to capture the
spatial information of the pixels, we have implemented a spatial-
to-temporal mechanism to decide the delay of a connection from
neurons in the input layer to neurons in the memory layer, as
shown in Figure 9. The delay of a connection from neuron i(x,y)
in a p× q input layer to neuronm(x,y) in a p× qmemory layer is
calculated as:

delayim(x,y) = x ∗ p+ y+ 1 (2)

here (x, y) is the coordinate of that neuron.
This acts as a way to encode spatial information into temporal

information, which then could be captured by SNNs.

5.2. Structure Formation Phase
During the structure formation phase, input spiking sequences
would be fed to the input layer of the memory neural network,
which would then be fed to the memory layer through
connections between the input layer and the memory layer.
The behavior of all the neurons in the memory layer would be

recorded. Additionally, a learning method is conducted to direct
the growing of new connections in the memory layer.

According to Hebb’s learning rule (Hebb, 1988), when an axon
of cell A is sufficiently near to excite a cell B, and repeatedly or
persistently takes part in firing it, some growth-related process
or metabolic changes take place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.

A learning method based on Hebb’s learning rule is designed
to direct the growing of new connections (synapses) in the
structure formation phase. According to our learning algorithm,
if the firing times of two neurons are very close, and there is no
connection between them, a connection is established between
them. In order to prevent the explosive growth of network
connections, our approach considers the coordinate of neurons
and does not establish connections when the Euclidean distance
between neurons exceeds a pre-defined threshold.

The detail description of this algorithm is provided below:

Step 1: Start the simulation, record firing behaviors of neurons
in the memory layer;
Step 2: Examine whether there exists a pair of neurons N1

and N2 in the memory layer such that both have fired during
the simulation, and the distance between neurons N1 and N2

satisfies that Dis(N1 to N2) < Disthreshold (where Disthreshold
is a pre-defined distance threshold for our algorithm). If any,
proceed to Step 3; otherwise, proceed to Step 4;
Step 3: Suppose the firing time of N1 is t1, and that of N2 is
t2. If 0 < abs(t1 − t2) < Threshold and (t1 < t2), establish
a connection from N1 to N2 with weight of 10, and proceed to
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FIGURE 10 | Different growing behavior due to different learning Threshold.
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Step 4; if 0 < abs(t1 − t2) < Threshold and (t1 > t2), establish a
connection from N2 to N1 with weight of 10, proceed to Step 4;
if abs(t1 − t2) ≥ Threshold, proceed to Step 4;
Step 4: If the stop criterion is satisfied, end the simulation;
otherwise, go to Step 2.

Since the connections in the memory layer are grown under
guidance of the learning method based on Hebb’s learning rule,

the distance threshold Disthreshold is used to control the number
of connections generated in the memory layer. If the threshold is
smaller, then there would be less connections. If the threshold is
larger, there would be more connections. The Disthreshold in this
work is set as 2.

This process continues until the stop criterion is satisfied.
Then, neurons in the memory layer are connected to the neurons
in the output layer according to their firing behavior. As we

FIGURE 11 | Different memory layer structure to memory different input images.
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have discussed in section 5.1, a spatial-to-temporal mechanism
has been introduced to decide the delay of a connection from
input layer to memory layer, since the neuron model we used
is a LIF model. In order to avoid the unnecessary reduction of
firing activity of neurons in the output layer, due to the leaking
characteristics of the LIF model, we have also implemented
a temporal-to-spatial mechanism to calculate the delay of
connection from neurons in the memory layer to neurons in the
output layer. The delay of a connection formed between neuron
m(x,y) in the memory layer and neuron oz in the output layer is
calculated as:

delaymo(x,y) = [Nm − delayim(x,y)]+ 1 (3)

where Nm is the total number of neurons in the memory layer,
while (x, y) is the coordinate of neurons in the memory layer as
shown in Figure 9.

In our opinion, if a neuron in the memory layer fired
when we fed the input spiking sequence related to a specific
target, then it has causality with the memory behavior of that
specific target. Since neurons in the output layer correspond
to the targets needed to be memorized, we connect neurons
in the memory layer which fired when we fed the input
spiking sequence related to a specific target, to the neuron
in the output layer which represents that specific target.
The initialized weight of a connection established this way
is weight/n, where weight is a pre-defined constant, and n
is the number of neurons in the memory layer which are
connected to that neuron in the output layer. This is an
approximate process. The weight of connections from neurons

in the memory layer to neruons in the memory layer or
connections from neurons in the memory layer to neurons
in the output layer would be optimized during the parameter
training phase.

5.3. Parameter Training Phase
Through structure formation phase, we have made the neural
network to memorize specific targets represented by input
spiking sequences. However, as a memory, we still need to have a
recall mechanism. When fed the specific input spiking sequence
again, which the neural network has already memorized, the
memory neural network needs to recall it and output a correct
result, represented by the correct behavior of the output
layer. During the parameter training phase, we will rely on
STDP and reinforcement learning to optimize the weight of
connections (synapses) in the neural network to implement
the recall mechanism. The weight of connections between the
input layer and memory layer would not be optimized during
this phase. In the parameter training phase, the STDP option
of NEST (the evaluation platform we used for this work) is
always on.

The algorithm for parameter training phase is
described below:

Step 1: Pick one input from the input spiking sequences
training set;
Step 2: Feed the picked input to the input layer and examine the
result sequence of the output layer;
Step 3: If the result sequence of the output layer is correct, go to
Step 1; Otherwise go to Step 4;

FIGURE 12 | Generated memory neural network with learning Threshold of 5 ms.
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Step 4: Identify the set of incorrectly firing neurons in the output
layer as SO and identify the set of firing neurons in the memory
layer as SM ;

Step 5: If neuron i is in SM , and neuron j is in SO, and there is
a connection from neuron i to neuron j, suppose the weight of

this connection isWi,j, thenWi,j = Wi,j ∗ Shrink_Coeff , and go
to Step 2;

During the parameter training phase, when a specific input
spiking sequence is fed to the input layer to train the memory
neural network, the firing behavior of the neurons in the output

FIGURE 13 | Recall response for images in the Input Image Set.
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layer would be recorded. The label corresponding to the most
frequently fired neuron in the output layer is identified as the
output result for this specific input spiking sequence. If the result
is correct, then we suppose the memory neural network could
correctly recall. If not, optimization needs to be done to establish
the right recall mechanism.

TABLE 1 | Recall test result for memory neural network.

Label Firing sequence of output neurons Output Result

0 [9 0 7 4 6 0 0 3 7 6 5 0] 0 Correct

1 [1] 1 Correct

2 [9 7 2 5 3 4 0 8 1 6 2 7 8 9 5 2 2] 2 Correct

3 [9 8 5 3 6 7 9 0 2 8 3 5 7 9 3 3] 3 Correct

4 [1 9 4 9 4 6 4 4] 4 Correct

5 [5 7 9 0 6 3 5 5] 5 Correct

6 [6 9 6 4 5 8 6 6] 6 Correct

7 [9 7 9 7 7 9 7] 7 Correct

8 [8 8 5 2 6 3 9 7 4 8 8] 8 Correct

9 [9 7 9 9 6 7 4 9] 9 Correct

As we said before, causality is the basis on which we built
our method. If a specific input spiking sequence is fed to
the input layer of the memory neural network, but the most
frequently fired neuron in the output layer is not the correct
one, it means that some of the fired neurons in the memory
layer have contributed to the result under incorrect causality
and thus need to be corrected while the contribution needs to
be weakened.

The algorithm would seek out those connections, and
STDP and reinforcement-based methods are used to
optimize the weight of those connections, as shown in the
algorithm description.

5.4. Pruning Phase
One of the most important advantages of the biological neural
network is its energy efficiency. In ourmethod, we introduced the
pruning phase to delete redundant and unnecessary connections
from the trained neural network. The method examines the
weight of all connections. If the weight of a connection is
smaller than a pre-defined threshold (set as 3 in this work),
that connection is deleted. Further, if a neuron has no output
connection, all the input connections of that neuron are also

FIGURE 14 | Verification of the association ability.
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deleted. The pruning phase helps enhance the energy efficiency
of the neural network.

6. EXPERIMENT RESULTS

6.1. Evaluation Framework
We built our simulation platform based on the neural simulation
tool NEST (Plesser et al., 2015), which is a simulation platform
specially designed for SNN research. Biological spiking neural
networks are characterized by the parallel operation of thousands
of spiking neurons and the exchange of information between
them by spiking trains sent via synapses. This mode of
functioning fits the characteristics of the message passing
interface parallel mechanism in particular. NEST supports
message passing interface parallelization. Further, NEST provides
users a method of asynchronous multi-process concurrent
execution, which makes the program execute the model
asynchronously and efficiently, and automatically synchronizes
the process during the simulation without user interaction.
Parallel computing reduces the time required and increases the
scale of operations.

We conducted two sets of experiments. In the first set
of experiments, in order to show the difference between the
structures of the memory layer when used to memorize different
targets, we used 10 identical SNNs to train 10 different images
each, numbered from “0” to “9.” In the second set of experiments,
we used 1 SNN to train on all those 10 images to test the recall
(with those 10 images it already memorized) and association
(using an image it has not seen before) ability.

6.2. Results and Discussion
6.2.1. Growing Process of the Memory Layer
After the Initialization phase, there was no connection in the
memory layer. During the Structure Formation phase, when the
input spiking sequences are fed to the input layer of our memory
neural network, under the control of the learning method, new
connections would grow in the memory layer. An illustration
of the growing process of the memory layer during Structure
Transformation phase under different Threshold value choices is
shown in Figure 10. The 4x different subpanels in each relevant
panel correspond to the parts in the memory layer which are
the output of each kernel. The input image is a “0” from the
MNIST set. From the comparison we could conclude that, when
the Threshold is smaller, the connection in the memory layer is
more sparse, thus the memory layer could remember more due
to the larger available capacity.

6.2.2. Results of Memory Process
In order to verify that our memory neural network could
remember different targets, we conducted the first set of
experiments and built 10 memory neural networks, each fed with
a different image numbered from 0 to 9 (as shown in Figure 8).
The results of the memory layer after the Structure Formation
phase are shown in Figure 11, and the learning Threshold was
set to 5 ms. The 4x different subpanels in each relevant panel
correspond to the parts in the memory layer which are the output
of each kernel. Each memory neural network is trained with only
1 image. According to Figure 11, we could see that our memory

neural network could grow different connections in the memory
layer to memory different targets.

6.2.3. Results of Recall Process
In order to test the recall ability of our memory neural network,
we conducted the second set of experiment. First, we used all
the images in the Input Image Set S as shown in Figure 8 to
perform the Structure Formation phase. Then we used the images
in the Input Image Set S again to perform the Parameter Training
phase and the Pruning phase. The memory layer of the generated
memory neural network is shown in Figure 12. The 4x different
subpanels in each relevant panel correspond to the parts in the
memory layer which are the output of each kernel.

Figure 13 shows the firing behavior of the memory layer when
we feed the images from the Input Image Set S to the generated
memory neural network. The 4x different subpanels in each
relevant panel correspond to the parts in the memory layer which
are the output of each kernel. Different color represents different
firing time, as shown in the vertical coordinate line beside each
sub-figure. It could be seen that different images would provoke
different parts in the memory layer to respond and generate
different firing behavior. As described in section 5, when an
image is fed to the memory neural network, a firing sequence of
output neurons would be observed to decide the output result
for that image using the majority votes method. The results are
recorded in Table 1.

The results show that our memory neural network could recall
the images it has memorized.

6.2.4. Verification of the Association Ability
We also want to test whether, if we feed images that our memory
neural network has not seen before but are similar with the
images it has memorized, it has the association ability to give a
correct result. Figure 14 shows one of the example tests. The 4x
different subpanels in each relevant panel correspond to the parts
in the memory layer which are the output of each kernel. The
memory neural network used is the one generated in the second
set of experiments. The left top part is the image used in the
process to generate our memory neural network, while the right
top image is a new one to test the association ability.

The left bottom part is the recall response of the left top image,
while the right bottom part is the response of the memory layer
when the new one is fed to the memory neural network. When
the left top image is fed to the memory neural network, the firing
sequence observed in the output layer is [6 9 6 4 5 8 6 6], andwhen
the right top image is fed to the memory neural network, the
firing sequence observed in the output layer is [6 9 4 6]. So when
fed with unseen (unmemorized) but similar images, our memory
neural network could illustrate some degree of association ability.

7. CONCLUSION

In this paper, we presented our effort at constructing an
associative memory neural network through SNNs. We broke
the neural network building process into two phases: the
Structure Formation Phase and the Parameter Training Phase.
The Structure Formation Phase applies a learning method
based on Hebb’s rule to provoke neurons in the memory layer
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growing new synapses to connect to neighbor neurons as a
response to the specific input spiking sequences fed to the neural
network. The aim of this phase is to train the neural network
to memorize the specific input spiking sequences. During the
Parameter Training Phase, STDP and reinforcement learning are
employed to optimize the weight of synapses, to find a way to
allow the neural network to recall the memorized specific input
spiking sequences.

Results show that, when the input spiking sequences are
fed to the input layer of our memory neural network, under
the control of the learning method, new connections would
grow in the memory layer, and learning the Threshold value
could be used to control the sparsity of the generated memory
layer. Experiments show that our memory neural network
was able to memorize different targets and could recall the
images it has memorized. Further experimentation showed that
when fed with unseen (unmemorized) but similar images, our
memory neural network could also illustrate some degree of
association ability.

Future work might include: (1)To teach our memory neural
network to memorize more complex targets; (2) to enhance our
memory neural network’s association ability; (3) to grow our
memory neural network into a large-scale memory inference
system using our method; and (4) the goal of constructing a

memory system with causality reasoning nearly the size of a
biological brain.
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