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Memory loss, one of the most dreaded afflictions of the human condition, presents

considerable burden on the world’s health care system and it is recognized as a

major challenge in the elderly. There are only a few neuromodulation treatments for

memory dysfunctions. Open loop deep brain stimulation is such a treatment for

memory improvement, but with limited success and conflicting results. In recent years

closed-loop neuroprosthesis systems able to simultaneously record signals during

behavioral tasks and generate with the use of internal neural factors the precise timing

of stimulation patterns are presented as attractive alternatives and show promise in

memory enhancement and restoration. A few such strides have already been made

in both animals and humans, but with limited insights into their mechanisms of action.

Here, I discuss why a deep neuromimetic computing approach linking multiple levels

of description, mimicking the dynamics of brain circuits, interfaced with recording and

stimulating electrodes could enhance the performance of current memory prosthesis

systems, shed light into the neurobiology of learning and memory and accelerate the

progress of memory prosthesis research. I propose what the necessary components

(nodes, structure, connectivity, learning rules, and physiological responses) of such a

deep neuromimetic model should be and what type of data are required to train/test its

performance, so it can be used as a true substitute of damaged brain areas capable

of restoring/enhancing their missing memory formation capabilities. Considerations

to neural circuit targeting, tissue interfacing, electrode placement/implantation, and

multi-network interactions in complex cognition are also provided.

Keywords: deep learning, neuromimetic architecture, neuromimetic computing, closed loop stimulation, memory

implants

Memory is important in our lives. It is our brain’s filing system. Without memory we are unable
to remember our past experiences and our loved ones, yet be able to think about the future.
Without memory we cannot learn anything. Loss of ability to remember is one of the most dreaded
afflictions of the human condition and presents considerable and rising social and economic costs
on the world’s health and social care systems in the context of the increasing aging of the world’s
population. Brain disorders such as Alzheimer’s disease (AD) and Traumatic Brain Injury (TBI)
lead to profound memory deficits and are recognized as major challenges and one of the most
important causes of disability in the elderly.

Unfortunately, there are only a few non-pharmacological neuromodulation treatments
(Guo et al., 2002; Sjögren et al., 2002; Solé-Padullés et al., 2006; Mannu et al., 2011;
Suthana et al., 2012) which alter the course and symptoms of these brain disorders.
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Direct deep-brain stimulation (DBS) has emerged in the last
decade as a neuromodulation technique to treat memory
dysfunctions (Hu et al., 2009; Arrieta-Cruz et al., 2010; Laxton
et al., 2010; Stone et al., 2011; Boggio et al., 2012; Lyketsos et al.,
2012; Suthana et al., 2012; Fell et al., 2013; Hardenacke et al.,
2013; Hescham et al., 2013a, 2015; Lee D. J. et al., 2013; Suthana
and Fried, 2014; Sweet et al., 2014; Lee et al., 2015; Sankar et al.,
2015; Zhang et al., 2015; Jacobs et al., 2016; Lozano et al., 2016;
Rezai et al., 2016), but with limited success and contradicting
results. A review of all DBS studies is beyond the scope of this
article. Interested readers should refer to Bick and Eskandar
(2016); Khan et al. (2019); Curot et al. (2017); Ezzyat and Rizzuto
(2018) for excellent extensive reviews of the effects of DBS on
all memory-related brain areas. Below I briefly review a few of
these conflicting studies. In one study DBS at 50Hz applied to
human entorhinal cortex (EC) enhanced spatial memory, while
hippocampal stimulation did not affect performance (Suthana
et al., 2012), whereas in another study DBS at 50Hz application
to both human EC and hippocampus (HC) disrupted spatial and
verbal memory (Jacobs et al., 2016). In both studies DBS was
applied during the encoding phase, and recall performance was
tested when stimulation was off. In another study when 50Hz
DBS was applied between the encoding and recall periods in the
left medial temporal lobe (MTL) of patients, then memory recall
was impaired (Merkow et al., 2017). Direct electrical stimulation
at 50Hz in HC, parahippocampal regions, prefrontal cortex and
lateral temporal cortex (LTC) found that high gamma activity
induced by word presentation was decreased in regions where
stimulation decreased memory performance, and increased in
LTC where memory enhancement was observed (Kucewicz et al.,
2018). In other studies, memory impairment was observed
when both hippocampi were stimulated simultaneously (Lacruz
et al., 2010), but the type of impairment depended on which
hippocampus was stimulated (Coleshill et al., 2004). Theta-burst
micro-stimulation with physiologic level currents in the right
EC during learning significantly improved memory specificity
for novel portraits as well as recognition of previously-viewed
photos, but not for similar lures (Titiz et al., 2017). On the other
hand, theta-burst stimulation of human MTL resulted in spatial
memory retrieval impairment (Kim et al., 2018). Theta-burst
stimulation in amygdala or fornix (FX) in humans led to visuo-
spatial memory enhancement (Miller et al., 2015; Inman et al.,
2018). Chronic DBS at 130–450Hz for several months showed
no significant or subtle improvement in memory (Velasco et al.,
2007; McLachlan et al., 2010; Boëx et al., 2011; Miatton et al.,
2011). Bilateral 20Hz DBS of nucleus basalis of Meynert (NBM)
showed memory improvement when stimulation was applied at
an earlier stage of dementia and a younger age cohort (Kuhn
et al., 2015). Bilateral DBS of anterior thalamic nucleus (ATN)
of an epilepsy patient cohort showed greater subjective memory
impairment when the stimulation was on and improved word
fluency and verbal memory (Fisher et al., 2010; Oh et al., 2012).

Similar conflicting results have been observed in animal
studies. Intermittent stimulation in NBM in adult monkeys
enhanced working memory, but continuous stimulation led to
memory impairment (Liu et al., 2017). EC stimulation in rats
promoted neurogenesis in dentate gyrus and enhanced spatial

memory in a water maze task in a manner dependent on
neurogenesis (Stone et al., 2011). Chronic DBS in Alzheimer’s
disease (AD) mice improved performance in Morris water
maze task with AD-DBS mice spending more time at the
novel object and location than with AD-no stimulation mice
(Mann et al., 2018). EC, FX, and region CA1 stimulation
during a spatial memory study restores performance in a
rat scopolamine injection dementia model (Hescham et al.,
2013b, 2015), whereas in another study DBS of EC and FX
showed significant HC-dependent spatial memory improvement
in Morris water maze than in ATN DBS (Zhang et al., 2015).
HC-independent recognition memory was also enhanced by EC
and FX DBS, but not with ATN DBS (Zhang et al., 2015). Low-
current stimulation of rostral intralaminar thalamic nuclei in
rats just prior to memory retrieval in a delayed match-to-sample
task improved performance, whereas high-current stimulation
impaired it (Mair and Hembrook, 2008).

These conflicting results are due to methodological
differences across human and animal studies including but
not limited to details in participants (age, cognitive, and
neurologic abnormalities), animal species (rats, mice, monkeys),
behavioral task design, electrode characteristics (e.g., electrode
geometry), electrode placements (location), stimulation
parameters (amplitude, impedance, frequency, duration,
charge density), timing of stimulation (during encoding phase,
during retrieval phase, in-between encoding, and retrieval),
mode of stimulation (intermittent, chronic, continuous) and
statistical analysis methods (Montgomery and He, 2016; Suthana
et al., 2018). Open-loop DBS generates only pre-programmed
high frequency electrical stimulations without being able to
receive feedback from the current brain state. Because of its
therapeutic effectiveness, clinical innervations have so far
preceded the scientific understanding of its mechanisms of
action (McIntyre et al., 2004).

Future advances inmemory prosthesis technology should thus
address fundamental questions on its therapeutic mechanisms
of action. They should also be closed-loop (i.e., receive
feedback from the current brain state), capable of online self-
adaptation to time-varying environments, and amenable to low-
power hardware implementations for memory restoration and
rehabilitation (Senova et al., 2018). They should be able to
simultaneously record neural signals during behavioral tasks
and then with the use of internal factors of the neural state
determine the precise timing of stimulation (e.g., stimulating
at a particular phase of an ongoing endogenous neural
oscillation), or make the decision whether to stimulate at all
(Hampson et al., 2013; Deadwyler et al., 2017; Ezzyat et al.,
2018). Developments toward the latter direction have already
been attempted (Berger et al., 2008, 2011; Deadwyler et al.,
2017; Ezzyat et al., 2017, 2018). The Ramp project (Ramp
project)1 examined the efficacy of a biohybrid architecture of
tightly coupled natural and neuromorphic hardware neurons.
CoroNet (Coronet FP7 project)2 developed the scientific and
technological foundations for future “bio-hybrid” devices that

1Ramp project. Available online at: http://www.rampproject.eu
2Coronet FP7 Project. Available online at: http://www.coronet-project.eu
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will combine biological and artificial nervous tissues. DARPA’s
RAM project (DARPA RAM project)3 aims to develop and
test a wireless, fully implantable neural-interface medical device
for human clinical use. The Human Brain Project (Human
Brain Project)4 although not directly contributing in the
biohybrid/implant direction, it indirectly contributes to it with
its neuromorphic hardware (1Mio cores Spinnaker machine) and
brain simulation platform.

The first stride toward a closed-loop implantable memory
prosthesis system was conducted by Berger et al. (Song et al.,
2009; Berger et al., 2010, 2011; Hampson et al., 2012) as
an artificial bridge between the chemically lesioned CA3 and
CA1 synaptic connections in a rat’s hippocampus, when the
animal was trained to perform a delayed non-matched sample
(DNMS) task. The chip consisted of three components: (1)
a recording multi-electrode array (MEA), (2) a very large
scale integration (VLSI) implemented multi-input multi-output
(MIMO) prediction model of neural activity based on the
recorded neural signals, and (3) a stimulating MEA driven by
the MIMO predicted neural activities. The MIMO predicted
spiking neural activity was based on five electrophysiological
mechanisms: (i) a feedforward process transforming the input
MEA recorded spike train to a synaptic potential, (ii) a feedback
process generating an after-potential caused by the output spike,
(iii) an intrinsic neuronal noise, (iv) a subthreshold potential
dynamics, and (v) a threshold function to generate each output
spike. When the chip was tested against the damaged CA3-CA1
connection in the lesioned rat, the animal was able to successfully
perform the DNMS task with a success rate of over 90% (the
success rate for a lesioned rat without the prosthetic device was
<50%), demonstrating the chip as a viable memory enhancement
device. A second stride towardmemory improvement by the chip
was made by the same group in non-human primates trained
in a delayed match-to-sample (DMS) task (Deadwyler et al.,
2017). Despite the chip’s successes, it had several limitations.
First, it was tested against a single behavioral task on a well-
trained animal. That meant the model was “trained” to perform
a single input-output mapping. Furthermore, the model was
non-adaptive (hard-wired), unable to improve its performance
through experience according to a prescribed learning rule.
Initial attempts toward the latter direction have been recently
made by the same group by incorporating a phenomenological
spike timing-dependent plasticity (STDP) rule in an updated
MIMO model (Song et al., 2014). However, its synaptic plasticity
rule was far too simplistic to capture the complex molecular and
biochemical dynamics of synaptic plasticity in vivo (Froemke
and Dan, 2002; Froemke et al., 2005; Wang et al., 2005). Both
MIMOmodels were completely blind to the CA3 circuit memory
computations and processes during their therapeutic courses
of action.

A third stride toward a closed-loop memory
enhancement/restoration stimulation system was recently

3DARPA’s RAM project. Available online at: http://www.darpa.mil/program/

restoring-active-memory
4Human Brain Project. Available online at: https://www.humanbrainproject.eu/

en/

made by Ezzyat et al. (2017, 2018) using a machine learning
(ML) approach. A set of stimulation-free trials with neural
data and labels indicating memory performance was collected
from 25 neurosurgical patients undergoing clinical monitoring
for epilepsy while they participated in a delayed free recall
memory task. A multivariate classifier model was then trained to
discriminate patterns of neural activity during encoding for each
particular participant. The resulting weight codes from training
were then used during testing to map features of iEEG activity to
an output probability value, which in turn generated appropriate
stimulation patterns during a later word recall phase. Improved
memory recall performance was demonstrated particularly when
stimulation was timed to periods of poor memory function.
Despite its memory improvement success, the closed-loop
stimulation system was completely “blind” to the neurobiology
of learning and memory offering no insights into the biophysical
mechanisms of action of DBS stimulation of the human lateral
MTL when participants perform a memory recall task.

With the advent of new and more advanced experimental
techniques (Boyden, 2015; Grosenick et al., 2015; Grossman et al.,
2017; Kim et al., 2017; Chen et al., 2018; Hardt and Nadel,
2018; Lee and Brecht, 2018), a wealth of knowledge about the
anatomical, physiological, molecular, synaptic and connectivity
properties of the various cell types in memory-related circuits
has accumulated (Cutsuridis et al., 2010a, 2019; Prager et al.,
2016; Sprekeler, 2017; Lucas and Clem, 2018). Apart from the
numerous different identified classes of interneurons targeting
specific parts of excitatory cells (Freund and Buzsáki, 1996;
Markram et al., 2004; Klausberger and Somogyi, 2008; Ehrlich
et al., 2009; Karnani et al., 2014; Prager et al., 2016; Tremblay
et al., 2016; Sprekeler, 2017; Krabbe et al., 2018) and a complex set
of intra- and extra-areal excitatory inputs targeting them (Witter,
2019) there is also increasing evidence on the important role of
inhibition between interneurons (Chamberland and Topolnik,
2012) in sculpting their activity and entraining them to fire with
respect to ongoing network oscillations (Somogyi et al., 2013;
Roux and Buzsáki, 2015; Cardin, 2018). Synapses on excitatory
and inhibitory cells have been shown to undergo various forms
of long-term plasticity (LTP/LTD/STDP, branch potentiation,
clustered plasticity, metaplasticity) across different timeframes
(ms, seconds, minutes, hours, days, longer) (Govindarajan et al.,
2006; Citri and Malenka, 2008; Losonczy et al., 2008; Froemke,
2015; Hattori et al., 2017; Hennequin et al., 2017; Lamsa
and Lau, 2019). Hippocampal oriens interneurons display anti-
Hebbian long term potentiation, which depends on cholinergic
modulation via nicotinic acetylcholine receptors (Griguoli et al.,
2013; Rozov et al., 2017). Experimental investigations and
compartmental modeling has predicted inhibition of dendritic
Ca2+ transients modulate the sign and magnitude of synaptic
plasticity like long-term potentiation (LTP) or long term
depression (LTD) (Cutsuridis, 2011, 2012, 2013; Gidon and
Segev, 2012; Jadi et al., 2012; Camiré and Topolnik, 2014) The
interaction mechanisms of such molecular, synaptic and cellular
components form complex neural circuitries firing at different
phases of neuronal oscillations, externally paced or internally
generated (Cobb et al., 1995; Buzsaki, 2002; Montgomery et al.,
2009), which support different functionalities in health and

Frontiers in Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 667

http://www.darpa.mil/program/restoring-active-memory
http://www.darpa.mil/program/restoring-active-memory
https://www.humanbrainproject.eu/en/
https://www.humanbrainproject.eu/en/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Cutsuridis Deep Neuromimetic Memory Prosthesis

disease of memory and learning (Marín, 2012; Hangya et al.,
2014; Wester and McBain, 2014; Caroni, 2015; Prager et al.,
2016; Maffei et al., 2017; Villette and Dutar, 2017; Lucas and
Clem, 2018; Vargova et al., 2018). Only by linking this wealth
of information into coherent theoretical frameworks (Cutsuridis
and Wenneckers, 2009; Cutsuridis et al., 2010b, 2011; Cutsuridis
and Hasselmo, 2012; Pendyam et al., 2013; Bezaire et al., 2016)
light will be shed into the therapeutic mechanisms of action
of any memory enhancement/improvement system. Thus, with
the recent exponential increase in computational power, it is
thus imperative for the experimental including medical and
computational communities to communicate with each other
more closely, in order to decipher the molecular, synaptic,
cellular, circuit, and systems mechanisms by which closed-loop
neuromodulation system operates in memory enhancement,
restoration, and rehabilitation and accelerate the progress in
memory prosthesis research.

Below, I provide few guidelines on how to construct such
a system. I propose that a computational deep (multi-layered)
neuromimetic circuit approach empowered with biophysically
realistic learning rules mimicking the neural dynamics of
memory related circuits amenable to neuromorphic VLSI
hardware driven by in-vivo MEA recordings, able to decode
memory engrams and stimulate memory related populations
of neurons should be adopted to move forward the memory
prosthesis research. Model components (nodes, synapses,
connectivity) should have to mimic the operations of real
neurons, synapses and circuits. Several strides toward this
direction have already been made (Cutsuridis and Wenneckers,
2009; Cutsuridis et al., 2010b, 2011; Cutsuridis and Hasselmo,
2012; Schneider et al., 2012; Pendyam et al., 2013; Bezaire
et al., 2016; Sanjay and Krothapalli, 2019; Yu et al., 2019).
One such stride was the Cutsuridis et al. (2010b) microcircuit
model of region CA1 dynamics in encoding and retrieval of
memories. The study explored the functional roles of somatic,
axonic and dendritic inhibition during these processes. It
showed how theta modulated inhibition separated encoding
and retrieval of memories in the hippocampus into two
functionally independent processes. The study predicted: (1)
somatic inhibition allowed generation of dendritic calcium spikes
that promoted synaptic LTP, while minimizing cell output, (2)
proximal dendritic inhibition controlled both cell output and
suppressed dendritic calcium spikes, thus preventing LTP, and (3)
distal dendritic inhibition removed interference from spurious
memories during recall. Some of the Cutsurdis et al. study’s
predictions have been recently verified by experimental studies
(Siegle and Wilson, 2014). The model should also be empowered
with biophysically realistic learning rules (LTP/LTD/STDP,
branch potentiation, clustered plasticity, metaplasticity, error
driven Hebbian learning, etc) mimicking the processes and
operations of synaptic plasticity across different timeframes (ms,
seconds, minutes, hours, days, longer) in neural cells (Kastellakis
et al., 2015, 2016; Li et al., 2016). Once the model’s neural
dynamics has been extensively validated against experimental
data from multiple levels of detail (molecular, synaptic, cellular,
dendritic, micro-, meso- and macro-circuit), thus casting it
as a faithful representation of a real human/animal tissue

(memory circuit), then the model should be trained with
real MEA recording and stimulation data from humans or
animals while they are performing memory-related behavioral
tasks and with verified memory restoration/enhancement effects.
Deficits should be in the encoding and/or retrieval of declarative
memories (or specific types of declarative memories). Behavioral
memory tasks should assess performance metrics across various
timeframes (hours, days, weeks, or longer) testing different
memory specificities (e.g., memory of an object, event, or
context in which it occurs, or high-level semantics of sets of
objects/events, or an association of an object and an event linked
to one another in a memory occurring either simultaneously or
in a temporal sequence). MEA data should be split in training,
cross-validation and testing datasets. Model’s performance must
be tested across individual participants and/or the whole
participant population and it must be able to retain functionality
across time, situational contexts, and/or experimental settings
(tasks). Model robustness and generalization should be validated
within and across individual human participant and/or animal
and should be demonstrated by the ability of the model to
restore memory function when applied to different human
participants/animals and in different situational contexts.

Once the model has been computationally trained and its
performance have been extensively tested across individuals,
experimental settings, memory types and situational contexts,
then its structure and weight codes can be transferred to a
neuromorphic chip to be implanted or interfaced with indwelling
probes for recording and stimulation of human and/or animal
neural activity. At this point a number of other outstanding
technical difficulties need to be overcome and questions to
be answered:

• Electrode Placement and Implantation: The exact placement
and trajectory path for the recording and simulation electrodes
is of paramount importance to any successful implantable
neuroprosthesis system. Any slight deviation from the optimal
path to the target due to lead migration or misplacement
may result in adverse effects such as hemorrhage, seizures,
abnormal sensations, etc or tissue damage (Edwards et al.,
2017). Electrode location thus must be adjusted to maximize
therapeutic effects, while minimize adverse ones (Edwards
et al., 2017). Intra/post-operative imaging (e.g., MRI or CAT)
scans can confirm electrode placement (Edwards et al., 2017).

• Neural Circuit Targeting: The electrical field generated by a
DBS macroelectrode affects the three-dimensional geometry
of the surrounding to the electrode neural processes (i.e.,
axons and dendrites) (McIntyre et al., 2004). Knowing
the anatomical distribution of the DBS electric field and
controlling its shape is of utmost importance to maximize the
therapeutic effect of stimulation, minimize its adverse effects,
and get a deeper understanding of the DBS mechanisms of
action (Klooster et al., 2016; Edwards et al., 2017). Electrode
design (size, diameter, number of contacts) and directional
steering is an active experimental and theoretical research
area (Klooster et al., 2016). Mathematical models using finite
difference or finite element methods model the electric field
induced in the brain during DBS as a function of different
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stimulation parameters and delineate the effects the electric
field has on the neural tissue. The importance of specific
conductivities, encapsulation layers and steering toward the
stimulation target are some of the main focuses of these
studies (Wei and Grill, 2005; Johnson and McIntyre, 2008;
Vasques et al., 2009; Schmidt and van Rienen, 2012a,b;
Lempka and McIntyre, 2013). Recently developed neural
probes have provided precision in shaping the electrical
field generated during stimulation (Klooster et al., 2016).
One such probe is the “SureSTIM” (Martens et al., 2011),
a 64 disc-shaped electrode array arranged in 16 equally-
spaced rows, which allows for both long-term stimulation
and local field potential recording, while diminishes the
induction of adverse effects by stimulating tissue beyond the
stimulation target.

• Neural Tissue Interfacing and Longevity: Brain-chip interfaces
allow for chips and nerve tissue to establish a close physical
interaction thus allowing the transfer of information in one
or both directions (Vassanelli et al., 2012). Major operations,
like cognition including memory, are sustained by the
concurrent activity of a large number of neurons in complex
neural networks located in several interconnected brain
structures. To better understand neural circuit operations
and to develop powerful brain-machine interfaces, then an
interface between a semiconductor chip or an ensemble
of chips and the neural tissue of a living animal allowing
for bi-directional communication (not only to record but
also to control neuronal activity) and high-spatiotemporal
resolution sampling of a large number of neurons over the
networks, and simultaneously from multiple regions of the
brain is needed (Vassanelli et al., 2012). Usually small CMOS
chips featuring stimulation and recording sites integrated
at high-density implanted in one or in several brain areas,
either independently or simultaneously, can lead to an
unprecedented control of neuronal activity in the mammalian
brain (CyberRat ICT 2007 project)5 Obtaining such high
spatiotemporal resolution enables to explore and control brain
information processing with unprecedented detail. The chips
are either directly implanted into the tissue or connected
through leads that reside permanently in the brain. Wireless
transmission is desired to simplify chips connectivity with the
monitoring system and to remove interference with animals’
movements (Vassanelli et al., 2012). Several bottlenecks are
usually faced: power dissipation induced heat generation of
the chips, biocompatibility and mechanical-electrical stability,
particularly for chronic implantation in the freely behaving
animal, chip implantation (and chip design) to match at best
the 2D architecture of the array with the 3D architecture of the
neuronal networks in the brain while limiting to the minimum
tissue damage (Vassanelli, 2018).

5CyberRat ICT 2007 project. Available online at: https://www.vassanellilab.eu/

projects/cyberrat/

• Multi-Network Interactions in Complex Cognition: For a
long time, it was hypothesized that DBS worked either via
functional ablation by suppressing or inhibiting the structure
being stimulated or via activation of the stimulated structure
(McIntyre et al., 2004). It is currently accepted that DBS
changes network-wide oscillations and theremay be coherence
between cortical and subcortical brain signals (Wagle Shukla
and Okun, 2012; Lee H. et al., 2013). Are these changes
though due to a widespread DBS electric field affecting
circuits/areas/regions well beyond the stimulated one (global
effects) or due to a localized electric field affecting only the DBS
brain circuit/region/area, which in turn drives other connected
with it brain circuits/regions/areas (local effects)? A notable
study on uncovering themechanisms of whole-brain dynamics
of deep brain stimulation has shown that DBS shifts global
brain dynamics of patients toward a healthy regime with
the effect more pronounced in specific brain areas (Saenger
et al., 2017). Higher communicability and coherence in brain
areas were measured when DBS was on than then it was
off (Saenger et al., 2017).

Overall, to accelerate progress in memory prosthesis
technologies then a closed-loop deep neuromimetic
circuit computing approach empowered with biophysically
realistic learning rules mimicking the neural dynamics
of memory related circuits amenable to neuromorphic
VLSI hardware driven by in-vivo MEA recordings, able
to decode memory engrams and stimulate memory
related populations of neurons should be adopted. Such
software novelties along with multimodal neuroimaging,
electrophysiological and electrochemical monitoring
technologies and innovative neural probe engineering
advances (e.g., SureSTIM) could then act as true substitutes
(bridges) of damaged memory-related brain areas capable
of restoring/enhancing their missing memory formation
capabilities as well as deciphering their mechanisms
of action.
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