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Adenosine A2A receptors (A2ARs) have attracted considerable attention as an important
molecular target for the design of Parkinson’s disease (PD) therapeutic compounds.
Here, we studied the transcriptional regulation of the A2AR gene in human peripheral
blood mononuclear cells (PBMCs) obtained from PD patients and in the striatum of
the well-validated, 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We report
an increase in A2AR mRNA expression and protein levels in both human cells and
mice striata, and in the latter we could also observe a consistent reduction in DNA
methylation at gene promoter and an increase in histone H3 acetylation at lysine 9. Of
particular relevance in clinical samples, we also observed higher levels in the receptor
gene expression in younger subjects, as well as in those with less years from disease
onset, and less severe disease according to clinical scores. In conclusion, the present
findings provide further evidence of the relevant role of A2AR in PD and, based on the
clinical data, highlight its potential role as disease biomarker for PD especially at the
initial stages of disease development. Furthermore, our preclinical results also suggest
selective epigenetic mechanisms targeting gene promoter as tool for the development
of new treatments.

Keywords: Parkinson’s disease, adenosine A2A receptor, 6-hydroxydopamine, peripheral blood mononuclear
cells, DNA methylation, histone modifications

INTRODUCTION

Parkinson’s disease (PD), the second most common neurodegenerative disorder after Alzheimer’s
disease, affects approximately 1% of the population over 60 (Ozansoy and Basak, 2013). The
pathological hallmark of PD is the degeneration of nigrostriatal dopaminergic neurons and the
consequent loss of dopaminergic input to the basal ganglia, which gives rise to well-defined motor
symptoms, including bradykinesia, rigidity, muscular stiffness, tremor, poor posture and balance,
and sensory motor integration deficits (Marsden, 2000; Obeso et al., 2000). Epidemiological studies
reveal that less than 10% of PD cases are familial, while most are sporadic. The etiology of the
disease remains poorly understood and is likely the result of an intricate interplay between genetic,
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epigenetic, and environmental factors, among others. At present,
there are no FDA-approved disease-modifying treatments.

Nowadays, dopamine replacement treatments represent the
best therapy available to alleviate PD symptoms. The dopamine
precursor L-3,4-dihydroxyphenylalanine (L-DOPA) is the most
efficacious and commonly prescribed anti-parkinsonian drug.
However, its prolonged use is limited by the occurrence of a
number of debilitating side effects (LeWitt, 2015).

Among the different possible targets for symptomatic
treatments, the adenosine A2ARs have attracted considerable
interest. A2ARs are enriched in the medium spiny neurons
(MSN) of the striatum, which is the main component of the basal
ganglia (Jarvis and Williams, 1989; Svenningsson et al., 1997;
Rosin et al., 1998). Importantly, A2ARs are selectively expressed
on the MSNs of the indirect striatopallidal pathway (Schiffmann
et al., 1991; Fink et al., 1992), where they antagonize dopamine
D2 receptor-mediated transmission (Schiffmann et al., 2007).

In line with these findings, several preclinical and clinical
studies point to A2ARs antagonists as a promising non-
dopaminergic therapy for PD (Feigin, 2003; Pinna et al.,
2005; Schwarzschild et al., 2006). Moreover, oral administration
of the A2ARs antagonist KW-6002 showed a significant
neuroprotective effect in a rat model of PD characterized by
dopamine depletion achieved by administration of the toxin
6-hydroxydopamine (6-OHDA) (Ikeda et al., 2002).

Adenosine A2A receptors gene expression was found to be up-
regulated in the striata of rats with a 6-OHDA lesion (Pinna et al.,
2002), and in the putamen and peripheral blood mononuclear
cells (PBMCs) of PD and mild cognitive impairment patients
(Calon et al., 2004; Varani et al., 2010; Casetta et al., 2014).
These observations were confirmed by PET studies, showing
enhanced striatal A2ARs levels in PD patients (Ramlackhansingh
et al., 2011). However, others have reported a reduction of
A2ARs in the anterior and posterior caudate nucleus and anterior
dorsal putamen of individuals with PD (Hurley et al., 2000),
or no changes in the striata of rats with a 6-OHDA lesion
(Kaelin-Lang et al., 2000; Tomiyama et al., 2004).

It has been suggested that DNA methylation, an epigenetic
mark associated with gene repression (Jones, 2012), might have
a key role in regulating A2AR gene transcription (Buira et al.,
2010a,b). In line with this hypothesis, reduced DNA methylation
in the 5′UTR region of A2AR gene was observed in advanced
PD cases (Villar-Menéndez et al., 2014). Another well-studied
mechanism of epigenetic regulation is the post-translational
modification of histone tails. Increased histone acetylation has
also been observed in experimental models of PD as well as in the
brain of PD patients (Park et al., 2016), leading to the hypothesis
that drugs that affect histone acetylation would have therapeutic
effects (Song et al., 2011; Harrison and Dexter, 2013). So far,
there are no studies that selectively focus on the role of histone
modifications on A2AR gene transcription regulation in PD.

Based on this background, the present study deeply
investigates the A2AR gene transcriptional regulation via
epigenetic mechanisms in PD. To this aim, we employed
a multidisciplinary approach, based on the use of clinical
(PBMCs of PD patients) and preclinical samples (brain tissue of
6-OHDA-lesioned mice).

EXPERIMENTAL PROCEDURES

Subjects
For this study we enrolled 73 outpatients attending the
Neurological Clinic in La Sapienza University, Rome, on stable
pharmacological treatment. Diagnosis of sporadic PD was
based on clinical symptoms according to the United Kingdom.
Brain Bank Criteria for PD (Hughes et al., 1992). Patients
showing a comorbid substance or alcohol abuse in the previous
2 months were ruled out. Exclusion criteria included signs
of atypical parkinsonism, diagnosis of mental retardation or
dementia (Mini-Mental State Examination score <23.8). The
variables collected included: smoking habit, age at onset
of PD, clinical form (Tremor-dominant TD, Non-Tremor-
dominant NTD), motor disability by means of the Unified
Parkinson’s Disease rating Scale-subset III (UPDRS III), disease
stage according to Hoehn & Yahr scale, duration of disease,
levodopa equivalent daily dose (LEDD) calculated according
to Tomlinson (Tomlinson et al., 2010). We also selected sex
and age-matched healthy subjects as a control group. The
exclusion criteria were: alcohol and substance abuse, neurological
disorders, family history of movement disorders. Subjects
suffering from metabolic disorders, severe hypertension or
systemic autoimmune diseases were also excluded. No statistical
difference between patients and control groups emerged in either
hypertension or dyslipidemia cases. The study was approved
by the local ethics committee. Written informed consent was
obtained from all study participants. Demographic and clinical
characteristics for the study samples are shown in Table 1.

Animals
Male C57BL/6J mice (25–30 g; Taconic, Tornbjerg, Denmark)
were housed under a 12 h light/dark cycle with food and water
ad libitum. Experiments were carried out in accordance with the
guidelines of Research Ethics Committee of Karolinska Institutet,

TABLE 1 | Demographic and clinical characteristics of PD patients and controls.

Characteristic Controls n = 32 PD n = 73

Male (%) 16 (50%) 40 (55%)

Smokers (%) 11 (34%) 23 (31%)

Age (yrs, mean ± SD) 71.5 ± 6.8 68.8 ± 7.2

Age at Onset (yrs, mean ± SD) NA 62.3 ± 7.7

Disease duration (yrs, mean ± SD) NA 7.6 ± 11.6

LEDD at last visit (mg/die, mean ± SD) NA 509.5 ± 35

UPDRS III score NA 14.1 ± 5.8

H&Y scale (mean ± SD) NA 1.78 ± 0.5

1 21

1.5 3

2 36

2.5 12

3 1

Tremor dominant (%) NA 30 (41%)

H&Y, Hohen &Yahr scale; UPDRS III, unified Parkinson’s disease rating scale-subset
III; LEDD, levodopa equivalent daily dose.
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Swedish Animal Welfare Agency and European Communities
Council Directive 86/609/EEC.

6-OHDA Lesion and Brain Dissection
Mice were anesthetized with a mixture of Hypnorm R©

(VetaPharma Ltd., Leed, United Kingdom), midazolam
(5 mg/ml) (Hameln Pharmaceuticals GmbH, Hameln, Germany),
and water (1:1:2 in a volume of 10 ml/kg) and mounted in a
stereotaxic frame (David Kopf Instruments, Tujunga, CA,
United States). 6-OHDA was dissolved in 0.02% ascorbic acid
in saline at the concentration of 3.0 g of freebase 6-OHDA/l.
Each mouse received two unilateral injections of vehicle
(Sham, unlesioned) or 6-OHDA (2 µl/injection) into the right
dorsal striatum as previously described (Santini et al., 2007),
according to the following coordinates (in mm) (Franklin and
Paxinos, 2008): anterior-posterior +1, medial-lateral −2.1,
dorsal-ventral −3.2 and anterior-posterior +0.3, medial-lateral
−2.3, and dorsal-ventral −3.2. Three weeks after surgery,
the mice were killed by decapitation, their heads were cooled
in liquid nitrogen for 6 s and striata were dissected out on
an ice-cold surface and snap frozen in liquid nitrogen. The
success of the lesion was assessed at the end of the experiments
by measuring striatal levels of tyrosine hydroxylase (TH)
in Sham vs unlesioned mice by Western Blot (see below).
The success of the lesion was defined by ≥80% TH decrease
and only the mice that met these criteria were included
in the analysis.

Molecular Biology Studies
To evaluate regulation of A2ARs transcription, we analyzed
mRNA and protein levels, as well as epigenetic modifications
at A2AR gene promoter such as DNA methylation and histone
modifications (Figure 1).

Real-Time Quantitative PCR (RT-qPCR)
Peripheral blood mononuclear cells were isolated from the
peripheral blood of control subjects and PD patients by
Fycoll-Paque PLUS density gradient medium according to
manufacturer’s instructions (GE Healthcare, Bio-Sciences AB
Uppsala-Sweden). Total RNA was extracted from PBMCs and
single striatum samples (Chomczynski and Sacchi, 2006) and
checked for integrity by electrophoresis. RNA concentrations
were then measured by spectrophotometry and just samples
reporting an OD 260:280 ratio >2 were subjected to DNAse
treatment and converted to cDNA with a commercially available
kit (Thermo Fisher Scientific, Waltham, MA, United States).
Diluted cDNAs were thus used to assess A2AR mRNA relative
abundance by RT-qPCR, using SensiFast No-Rox Kit (Bioline)
using the DNA Engine Opticon-2 detection system (Biorad,
CA, United States). β-actin and GAPDH genes, properly
validated to confirm that in our experimental conditions their
expression was not affected, were used as reference genes to
normalize the data.

Sequences of the primers used for PCR amplification are listed
in Table 2. In a final volume of 15 µl, we used 2 µl of cDNA,
7,5 µl of SensiFAST SYBR, and 10 pmol of each primer. Duplicate
samples were run and PCR conditions were: 95◦C for 10 s, 60◦C

for 30 s, and 72 for 30 s. A2ARs relative expression was calculated
by Delta-Delta Ct (11CT) method and converted to 2−11Ct for
statistical analysis (Livak and Schmittgen, 2001).

DNA Methylation Analysis by
Pyrosequencing
Genomic DNA, obtained from human PBMCs and striatum
tissues, was bisulfite-treated according to manufacturer’s
instructions (Zymo Research, Irvine, CA, United States).
Methylation status of human and mouse A2AR GENE was
assessed using pyrosequencing of the bisulfite-converted DNA as
previously reported (Cifani et al., 2015; Pucci et al., 2015).

Pyrosequencing primers were designed to focus on a series
of CpG dinucleotides part of the CpG island located in
two different regions both in clinical samples and in mice
brain tissues (see Figure 1 and Table 2 for details). Bisulfite-
treated DNA was amplified by PyroMark PCR Kit (Qiagen,
Germany) under these PCR conditions: 95◦C for 15 min;
45 cycles of 94◦C for 30 s; 56◦C for 30 s; 72◦C for
30 s; and final step of 72◦C for 10 min. Following PCR
products verification by agarose electrophoresis, pyrosequencing
methylation analysis was conducted using the PyroMark Q24
Software (Qiagen, Germany), which allows for each CpG site
quantitative comparisons of the methylation percentage.

Chromatin Immunoprecipitation (ChIP)
Dahl and Collas protocol, with minor modifications, was used
to prepare chromatin from mice frozen tissues as previously
described (Dahl and Collas, 2007). Briefly, to cross-link proteins
to DNA, formaldehyde was added at a final concentration of
1% in phosphate buffer saline containing a broad-range protease
inhibitor cocktail (PIC) (Sigma, St. Louis, MO, United States)
and sodium butyrate (Sigma, St. Louis, MO, United States),
for 10 min at room temperature. Glycine, used to quench
the reaction, was added to a final concentration of 0.125 M
and incubating for 5 min at room temperature. Following
washing, the samples were lysed using 120 µl of a lysis
buffer (50 mM Tris–HCl, pH 8, 10 mM EDTA, 1% SDS)
containing PIC and sodium butyrate (20 mM). The samples were
incubated on ice and sonicated for 30 s for 6 times, with 30 s
pause intervals each sonicated. The lysates were centrifuged at
12,000 g for 10 min at 4◦C and the supernatants transferred
into a chilled tube, leaving around 30 µl of buffer with the
pellet. Lysis buffer (30 µl) was added. DNA fragments ranging
in size from 200 to 500 bp were analyzed by agarose gel
electrophoresis. 20 µl aliquot was used as “input” DNA, for
each immunoprecipitation. Chromatin was diluted in 90 µl of
RIPA buffer (10 mM Tris–HCl, pH 7.5, 1 mM EDTA, 0.5 mM
EGTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate,
140 mM NaCl) plus PIC and incubated overnight by rotation
with either antibody previously coated with Protein A beads
(Invitrogen, Carlsbad, CA, United States), Histone 3 acetylation
at Lysine 9 (H3K9Ac) (PA5 17868, Thermo Fisher Scientific,
Carlsbad, CA, United States), or Histone 3 trimethylation at
Lysine 27 (H3K27me3) (PA5 17173, Thermo Fisher Scientific,
Carlsbad, CA, United States). The beads and associated immune
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FIGURE 1 | Schematic representation of (A) mouse and (B) human A2AR gene promoters and the 5′ upstream region. Translation start code (ATG), exons and
introns, CpG island, and histone modifications studied are depicted. In mouse A2AR gene promoter, two regions (region 1 in black and region 2 in green) localized in
the same CpG island. Orange bold text indicates the CpG sites analyzed.

complexes were washed three times with RIPA buffer and
once with Tris–EDTA buffer. The immune complexes were
eluted with elution buffer (20 mM Tris–HCl, 5 mM EDTA,
50 mM NaCl) containing proteinase K (50 µg/ml) (Qiagen,
Valencia, CA, United States) at 68◦C for 2 h, and DNA was
recovered by NucleoSpin TriPrep (Macherey-Nagel, Germany).
Thereafter, to quantify A2AR gene sequences associated with
the immunoprecipitated proteins, RT-qPCR was carried out
using primers designed with Primer 3 software (Rozen and
Skaletsky, 2000; see Table 1). All ChIP data were normalized
to the input DNA amounts (Ct values of immunoprecipitated
samples were normalized to Ct values obtained from “input”).
In addition, results on DNA from lesioned animals were

normalized by the DNA data obtained from control animals
(control group).

Western Blot
Total cellular lysates from human PBMCs and mice tissues
were prepared with different procedures. PBMCs were lysed
in RIPA buffer whereas 0.3 gr of striatum tissue sample of
lesioned and control animals were homogenized in T-PER
lysis buffer (PIERCE, Rockford, IL, United States) containing
1% NP-40 detergent solution, 5% glycerol, 1 mM EDTA
and 0.1% PIC (Sigma-Aldrich, Milan, Italy). Both human
and mouse samples were sonicated and then centrifuged at
5000 g for 30 min at 4◦C. Protein concentrations were

Frontiers in Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 683

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00683 July 8, 2019 Time: 16:7 # 5

Falconi et al. A2ARs Genes in PD

TABLE 2 | Imers employed during the quantitative polymerase chain reaction, chromatin immunoprecipitation, and DNA methylation assays.

Gene expression

Species Gene Forward Reverse

Human β-actin GCACCAGATCATGTTTGAGACCT CCATACACGATGCCAGTGGT

GAPDH CAGCCTCAAGATCATCAGCA TGTGGTCATGAGTCGTTCCA

A2AR CATCCCGCTCCGGTACAATG TGGTTCTTGCCCTCCTTTGG

Mouse β-actin AACGGGAAGCTCACTGGCAT GTCTCAAACATGATCTGGGTC

GAPDH AACGGGAAGCTCACTGGCAT AACGGGAAGCTCACTGGCAT

A2AR AGAGCAAGAGGCAGGTATCTC CCCAAAGGCTTTCTCACGGA

A2AR ChIP CAAGCACACAAGTCCCTTTA CAAGCACACAAGTCCCTTTA

DNA methylation

Region 1 Region 2

Human A2AR Forward TTTGGGTAGGGTTGGGAGTT AGGTGGAGGTTGTAGTGA

Reverse CCCAACACACCAACACATT CCACACTCCCTCTTTTCTTT

Sequencing GGTAGGGTTGGGAGTTA GGAGGTTGTAGTGAG

Mouse A2AR Forward PM00220542 Qiagen, Hilden, Germany GGAGGGGATTGAATTTGTAAGTATA

Reverse CCAAACACCCACCCTATTATC

Sequencing GAGGTAGGAGGGTTAGAT

measured according to Bradford method (1976). For each
sample, 50 µg of human proteins and 30 µg of mouse proteins
were electrophoresed (12% acrylamide gels) and transferred
to PVDF membranes (Amersham Biosciences, Piscataway, NJ,
United States). Membranes, blocked with a solution of 5% non-
fat dry milk for 20 min and with 5% BSA for 40 min at room
temperature, were incubated with a rabbit anti-A2A polyclonal
antibody (PA1-042, Thermo Fisher Scientific, Carlsbad, CA,
United States, 1:5000 in blocking solution) and a rabbit anti-
GAPDH monoclonal antibody (2118S, Cell Signaling, Danvers,
MA, United States, 1:5000 in blocking solution) overnight in
cold room. GAPDH was used to normalize samples. Antibody
against TH (Chemicon, Temecula, CA, 1:1000) was used in
mice samples to assess the severity of the 6-OHDA lesions.
Finally, the membranes were incubated with specific horseradish
peroxidase-conjugated secondary anti-rabbit antibody for 1 h
at room temperature (AP307P, Millipore, Darmstadt, Germany,
1:10000 in blocking solution). The antigen-antibody complex
was detected by enhanced chemiluminescence (ECL, Amersham
Biosciences) and the intensities of the immunoreactive bands

were quantified by densitometric analysis using the ImageJ
software (NIH, Bethesda, MD, United States).

Statistical Analysis
Non-parametric statistic (Mann-Whitney U test) was used to
compare lesioned vs. unlesioned striata, as well as the human
PD and control samples. For correlation analysis, Spearman’s
coefficient was used. p < 0.05 was considered statistically
significant. All the mentioned tests were performed using
GraphPad Prism version 6.00 (GraphPad Software, San Diego,
CA, United States).

RESULTS

Human Subjects
Patients and controls were age and gender matched to allow
consistent comparisons. RT-PCR analysis revealed significantly
higher A2AR mRNA levels in PD patients when compared
to healthy controls (PD: 2.84 ± 0.14; Controls: 1.13 ± 0.12

FIGURE 2 | Levels of A2AR mRNA (A) in PBMC from controls (n = 22) and PD patients (n = 25) and (B) in the striatum of Sham (n = 11) and 6-OHDA (n = 13)
animals. Bars represents 2−11Ct value calculated by Delta-Delta Ct (11Ct) method. ∗p < 0.05 and ∗∗∗∗p < 0.0001 vs. respective control groups.
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p < 0.0001 Mann Whitney test) (Figure 2A). Moreover, data
stratification analysis showed a significant correlation between
A2AR gene expression and age of the subjects (Spearman
r = −0.2931; p = 0.014), years from disease onset (Spearman
r = −0.4046; p = 0.001), as well as Hoehn & Yahr (H&Y)
(p < 0.01 score 2 vs. score 1), UPDRS (Spearman r = −0.2752;
p = 0.0211) scores, and LEDD (Spearman r =−0.3902; p = 0.001)
(Figure 3). On the other hand, no correlation was observed
between A2AR gene expression and age in controls (Spearman
r = 0.2399; p = 0.3226). Correlation analysis survived Dunn’s
multiple comparisons test for age, UPDRS score, and LEDD.
Finally, in a multiple linear regression analysis A2AR mRNA
levels were found to be related to age (p = 0.0343) and gender
(p = 0.0335), as well as LEDD (p = 0.0005).

It is interesting to note that also A2AR density, expressed
as A2AR/GAPDH ratio, was significantly higher in PD patients
when compared to controls (Controls: 100% ± 6.67; PD:
184.5% ± 13.07; p = 0.0159 Mann Whitney test) (Figure 4A).
DNA methylation analyzed at A2AR promoter in two different
CpG islands did not show any difference between PD and
controls (Table 3).

6-OHDA Mice Model
The first result we observed in mice is the reduced TH
immunoreactivity to 10.3 ± 1.22% of control Sham-lesioned
animals (100.0 ± 3.39%) (see Supplementary Figure S1).
Successively, the study of the A2AR transcriptional regulation
revealed a significant up-regulation of A2AR mRNA in the striata
of 6-OHDA lesioned mice, when compared to control (Sham)
mice (Sham: 1.02± 0.06; 6-OHDA: 1.56± 0.22; p = 0.0041 Mann
Whitney test) (Figure 2B). In agreement with these findings,

we observed a parallel increase of A2AR protein levels in 6-
OHDA-lesioned animals when compared to controls (Sham:
100.0 ± 7.89; 6-OHDA: 124.84 ± 7.39; p = 0.0425 Mann
Whitney test) (Figure 4B). See Supplementary Figure S2 for
further details about the analysis of protein levels. We also
observed a consistent reduction in DNA methylation at A2AR
gene promoter selectively in one of the two regions under study,
and specifically in the second CpG site (Sham: 5.06 ± 0.41;
6-OHDA: 4.45 ± 0.60; p = 0.025) as well as in the average
of the 6 CpG sites analyzed (Sham: 3.97 ± 0.22; 6-OHDA:
3.52 ± 0.35; p = 0.031) (Figure 5B). Notably, gene expression
and DNA methylation levels were inversely correlated in all
samples (Spearman r = −0.427, p = 0.037) (Figure 5C). No
changes were observed in region 1 (Figure 5A). Finally, we
report also a significant enrichment of H3K9Ac (a histone
mark exerting permissive action on gene transcription) at
A2AR GENE promoter, at the level of the same region studied
for DNA methylation in 6-OHDA mice (Sham: 1.06 ± 0.07;
6-OHDA: 1.52 ± 0.21; p = 0.038) (Figure 6). We also
analyzed the levels of the repressive marker, H3K27me3, but
we did not observe any significant change (Sham: 1.05 ± 0.07;
6-OHDA: 0.80± 0.11; p = 0.075 (Figure 6).

DISCUSSION

This study shows that dopamine depletion, a characteristic trait of
PD experimentally induced in vivo by 6-OHDA, evokes in mice
striata A2AR gene up-regulation as well as increase in protein
receptor levels. The same alterations have also been observed in
PBMCs from PD patients when compared to healthy controls.

FIGURE 3 | Data stratification and correlation analysis between A2AR mRNA levels in PD human subjects and age (A, years from disease onset (B), H&Y score (C),
UPDRS score (D), LEDD (E), and LD-induced dyskinesia (F). ∗∗p < 0.01 vs. respective control groups.
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FIGURE 4 | Analysis of A2AR protein levels in PBMCs from (A) PD patients (n = 5) and controls (n = 4) and (B) Sham (n = 12) and 6-OHDA (n = 10) mice striata.
Representative immunoblots of PBMCs and striata lysates reacted with specific anti-A2AR or anti-GAPDH antibodies are shown above the bars for both mice and
humans. Values, expressed as means ± standard error of the mean (SEM), were normalized by GAPDH and taking the control and sham groups as 100, respectively
for (A,B). ∗p < 0.05 vs. respective control groups.

Our data corroborate previous studies showing increased
A2AR transcription in the striatum of dopamine-denervated rats
(Pinna et al., 2002) and in the putamen of PD patients (Varani
et al., 2010) suggesting a similar regulation in the 6-OHDA
mouse model of PD as well as in PBMCs from PD subjects. In
addition, we provide evidence that these changes are paralleled by
a significant increase in A2AR levels, confirming the same change
already observed in both 6-OHDA rat model (Bhattacharjee et al.,
2011) and clinical samples (Calon et al., 2004; Varani et al., 2010;
Ramlackhansingh et al., 2011; Casetta et al., 2014).

Notably, these clinical studies established a correlation
between L-DOPA-induced motor complications (i.e., dyskinesia)
and increased levels of A2AR. Thus, A2AR density is significantly
higher in lymphocytes and neutrophils of dyskinetic than non-
dyskinetic patients. Interestingly, L-DOPA-induced dyskinesia
is influenced by the degree of dopamine depletion, suggesting
that the increase in A2AR expression may be particularly
prominent in advanced PD (Varani et al., 2010). Our findings in
patients instead show different pattern of changes. In fact, data
stratification based on age, as well as years from disease onset,

showed higher levels in receptor gene expression in younger
patients and in subjects affected for less than a few years, as well as
in those with less severe disease even if it should be considered the
limited range of H&Y and UPDRS scores. This is in agreement
with the results from Villar-Menéndez et al. (2014) showing that
the increased A2AR occurs as an early event in PD.

Importantly, these effects in mice are accompanied by
consistent changes in two relevant epigenetic marks: a significant
reduction in DNA methylation and a significant increase in
H3K9Ac at gene promoter. DNA methylation role in A2AR
gene regulation was previously reported (Buira et al., 2010a,b;
Villar-Menéndez et al., 2014) and we here show in mice striata
a significant and selective reduction in DNA methylation clearly
correlated with the increase in gene expression.

Moreover, we observed a hitherto undiscovered increase
in H3K9Ac, a permissive epigenetic mark, in line with the
upregulation of gene expression. Global histone hyperacetylation
represents a key epigenetic change in dopaminergic neurons and
has been proposed to participate in PD pathogenesis (Villar-
Menéndez et al., 2013; Kleiveland, 2015) however this is the

TABLE 3 | DNA methylation levels (mean ± SEM) at seven cytosine-guanine dinucleotide (CpG) sites (Region 1) and at five cytosine-guanine dinucleotide (CpG) sites
(Region 2), within the human A2AR gene promoter, in PBMCs of control (n = 22), and PD subjects (n = 25).

Region 1 CpG site 1 CpG site 2 CpG site 3 CpG site 4 CpG site 5 CpG site 6 CpG site 7

CT 97.50 ± 0.07 95.89 ± 0.10 97.97 ± 0.16 100 81.81 ± 0.34 92.62 ± 0.21 93.07 ± 0.37

PD 97.45 ± 0.05 95.83 ± 0.10 97.31 ± 0.27 100 81.32 ± 0.20 93.03 ± 0.23 92.40 ± 0.31

Region 2 CpG site 1 CpG site 2 CpG site 3 CpG site 4 CpG site 5

CT 92.02 ± 1.03 94.77 ± 0.63 85.81 ± 0.47 75.81 ± 0.47 36.49 ± 4.63

PD 92.39 ± 0.76 95.51 ± 0.48 85.97 ± 0.75 74.93 ± 0.57 33.27 ± 0.98

ANOVAs and subsequent post hoc tests did not indicate any significant difference in the level of methylation at CpG sites at the two regions analyzed between PD and
control patients.
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FIGURE 5 | Percentage of DNA methylation assessed with bisulfite pyrosequencing in sham (n = 12) and 6-OHDA (n = 14) mice striata at A2AR gene promoter:
(A) Region 1 (7 CpG sites quantified). (B) Region 2 (6 CpG sites quantified). Values are expressed as means ± SEM. ∗p < 0.05 vs. Sham group. (C) Correlation
between average DNA methylation at 6 CpG sites located in Region 2 and A2AR mRNA levels in mice striata. Data were compared with non-parametric Spearman
correlation analysis. ∗P = 0.0357.

first study showing a specific change in H3 acetylation at
A2AR gene in the dopamine-depleted striatum. This finding
suggests that the reduction in DNA methylation of this gene
might be mediated by a local state of acetylation, as previously
proposed as a global effect (Cervoni and Szyf, 2001). No
changes in DNA methylation levels have been observed in
PBMCs from PD subjects when compared to controls. Instead,
others reported a reduction of DNA methylation in two
CpG sites at A2AR gene promoter in human brain samples
(Villar-Menéndez et al., 2014).

In this study we used whole blood samples composed of
different cell types with different DNA methylation profiles
(Kleiveland, 2015). Therefore, it will be necessary to extend these
findings using novel methodological approaches, such as cell-
sorting, to fully elucidate the underlying epigenetic regulation
of gene expression. However, it is important to underline that
PBMCs share with neurons several cellular components and
contain the complete epigenetic machinery present in neurons
as well as in many other tissues (Joseph et al., 2018; Sen et al.,
2018; Zhu et al., 2018). For this reason, their gene expression
profile has been recently proposed as a substitute for cerebral
markers which, on the other hand, wouldn’t provide enough
insight into biochemical detail in order to originate novel and
more effective therapeutic intervention (Woelk et al., 2011;
Arosio et al., 2014). Moreover, it would also be relevant to
evaluate the molecular outcomes in mice PBMCs and compare
them to the data obtained from mice brain samples as well as
human PBMCs.

FIGURE 6 | RT-qPCR analysis of H3K9Ac and H3K27me3
immunoprecipitated fragments at A2AR gene promoter. Bars show specific
histone modification levels, normalized to total input DNA in Sham (n = 11),
and 6-OHDA (n = 9) animals. Values are expressed as means ± SEM.
∗p < 0.05 vs. Sham group.

In conclusion, our results in mice indicate that loss
of dopaminergic innervation to the striatum results in the
upregulation of A2AR GENE expression paralleled by selective
epigenetic mechanisms, thereby providing new insights into the
role of this receptor in PD. Several clinical trials have shown
that A2AR antagonists ameliorate the dyskinesia induced by
chronic L-DOPA treatment in PD patients (Pinna et al., 2005;
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Xu et al., 2005; Mizuno and Kondo, 2013) and it is possible
that receptor silencing might be an alternative therapy to reduce
receptors activity.

Therefore, these data may offer new vistas for therapeutic
interventions in PD by targeting histone acetylation and/or DNA
methylation selectively at this gene sequence. These data also
suggest a possible role of A2AR transcriptional regulation as a
biomarker in PD on the basis of the relevant changes occurring at
early stages of disease development observed in patient samples.
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