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With the success rate of drugs for CNS indications at an all-time low, new approaches
are needed to turn the tide of failed clinical trials. This paper reviews the history of
CNS drug Discovery over the last 60 years and proposes a new paradigm based
on the lessons learned. The initial wave of successful therapeutics discovered using
careful clinical observations was followed by an emphasis on a phenotypic target-
agnostic approach, often leading to successful drugs with a rich pharmacology. The
subsequent introduction of molecular biology and the focus on a target-driven strategy
has largely dominated drug discovery efforts over the last 30 years, but has not
increased the probability of success, because these highly selective molecules are
unlikely to address the complex pathological phenotypes of most CNS disorders.
In many cases, reliance on preclinical animal models has lacked robust translational
power. We argue that Quantitative Systems Pharmacology (QSP), a mechanism-
based computer model of biological processes informed by preclinical knowledge and
enhanced by neuroimaging and clinical data could be a new powerful knowledge
generator engine and paradigm for rational polypharmacy. Progress in the academic
discipline of computational neurosciences, allows one to model the effect of pathology
and therapeutic interventions on neuronal circuit firing activity that can relate to clinical
phenotypes, driven by complex properties of specific brain region activation states. The
model is validated by optimizing the correlation between relevant emergent properties of
these neuronal circuits and historical clinical and imaging datasets. A rationally designed
polypharmacy target profile will be discovered using reverse engineering and sensitivity
analysis. Small molecules will be identified using a combination of Artificial Intelligence
methods and computational modeling, tested subsequently in heterologous cellular
systems with human targets. Animal models will be used to establish target engagement
and for ADME-Tox, with the QSP approach complemented by in vivo preclinical models
that can be further refined to increase predictive validity. The QSP platform can also
mitigate the variability in clinical trials with the concept of virtual patients. Because the
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QSP platform integrates knowledge from a wide variety of sources in an actionable
simulation, it offers the possibility of substantially improving the success rate of CNS
R&D programs while, at the same time, reducing both cost and the number of animals.

Keywords: computer modeling, symptomatic treatment, psychiatry, disease modification, neurodegenerative
diseases

INTRODUCTION

The success rate of drug discovery projects in CNS disorders
is at an all-time low with only single digit probability of
success in clinical trials. The late-stage failure rate has been
so prominent and costly, that many large pharmaceutical
companies have abandoned neuroscience as a therapeutic area
(Hyman, 2014a). Undoubtedly, these developments are due
to a number of factors (Geerts, 2009) such as our current
poor understanding of the pathophysiology underlying most of
CNS disorders, posing significant hurdles to the development
of appropropriate preclinical models in which to effectively
translate findings into clinical efficacy. In addition, many
drugs – especially antibodies – fail to engage the molecular
target or, as will be discussed, targets, appropriately. CNS
disorders are undoubtedly complex and the dissolution of the
concept of the single target for these disorders has become
increasingly evident.

The majority of drugs that were introduced in the 1950s
and 1960s for CNS indications such as schizophrenia and
depression were successfully developed in a period without high-
technological molecular tools (Figure 1) nor were the drug
discovery efforts driven by a target-centric focus. The resulting
compounds usually had a rich pharmacology, i.e., they interacted
in with a multitude of targets, most of which were not even
known at that time. A major figure of psychoactive drug discovery
and development between 1955 and 1990 is Dr. Paul Janssen,
founder of Janssen Pharmaceutica, who developed 75 successful
drugs over the span of 40 years, with eight of them on the WHO
List of Essential Medicines. We will review the strategy that
was used to develop powerful and successful CNS medications
during this time.

Molecular biology became a mature science from 1990 onward
and generated a large number of powerful tools, such as deep
sequencing, cloning of targets, and various sophisticated versions
of transgene rodent models. Together with advanced imaging
techniques with PET tracers and various MRI sequences.,
these developments have generated an enormous amount of
information (“Big Data”) for which powerfull algorithms have
been developed. The strategy underlying these approaches was
based on the concept of “one gene, one protein, and one disease,”
resulting in the identification of single targets that were supposed
to be associated with a certain disease. Subsequent screening
using high-throughput capabilities and powerful SAR driven
medicinal chemistry resulted in highly potent and selective drugs.
Unfortunately, there have been almost no new breakthrough
drugs for CNS disorders discovered (Hyman, 2008, 2014b).
This is particularly unfortunate for even the most widely
used antidepressants successfully manage this condition in only
60% of the patients and there are really no effective drugs

for the treatment of neurological disorders. For example, in
Alzheimer’s Disease, the last 240 clinical development projects
were all unsuccessful and the last approved medication –
memantine – already dates from 2004 (Cummings et al., 2014).
The relative success of rational target selection enjoyed in other
indications such as oncology and inflammation has not occurred
for CNS disorders.

In order to turn the tide of clinical trial failures, it is
of interest to revisit the strategy that earlier drug hunters
applied to develop successful drugs and to combine theses
approaches with relatively recent developments to generate
new insights and tools for CNS drug discovery. We propose
an advanced computer modeling based phenotypic strategy
that rests on our current understanding of how neuronal
circuits drive human behavior, pharmacological mechanisms
and data derived from clinical trials. This necessitates an
integration of information derived from different disciplines,
such as basic neurobiology, neuropharmacology, clinical data
and neuroimaging, potentially leading to a much greater
understanding of a polypharmacological profile with a greater
positive impact on clinical outcome. We will give examples
how this approach can help target validation, support rational
multi-target drug discovery, even extrapolate findings from
human induced pluripotent stem cells (hIPSC) to more elaborate
neuronal circuitry and clinical candidate selection. In clinical
development, this approach could help in identifying functional
biomarkers for target engagement, optimal dose finding and
quantifying the pharmacodynamic interaction with genotypes,
disease state and co-medications.

PHENOTYPICALLY DRIVEN DRUG
DISCOVERY

The golden age of psychoactive drug discovery in the 1950s
and 1960s witnessed the successful introduction of several CNS-
active drugs, many of which are still widely used today or which
have served as starting points for subsequent modifications. This
relatively brief phase in the history of psychopharmacology was a
remarkable period when novel and therapeutically effective drugs
were introduced into clinical practice to treat schizophrenia,
depression and anxiety. In none of these cases was there
any mechanistic or pathophysiological understanding of these
disorders. The identification of potential clinical utility was based
on clinical observations of phenotypic changes that served as the
basis for phenotypic drug screening and for the development
of several animal models that attempted to capture clinical
phenotypes with those in preclinical assays.

The discovery of haloperidol is a prime example of smart
clinical observations with a phenotypical mind-set. Clinical
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FIGURE 1 | Schematic representation of the history of CNS R&D. Before
1990, drugs were discovered using a combination of phenotypic assays and
smart clinical observation in the absence of any modern technological tools
provided by molecular biology resulting in compounds with rich pharmacology
that affected sufficient targets for a substantial clinical benefit. Often targets
were found long after the molecules were on the market. From 1990 the
emphasis shifted to rational single targets, based on insights and tools
generated from molecular biology. Using high-throughput screening on cellular
systems expressing these targets, very potent but highly selective drugs were
identified. These drugs, however, did not shift the needle enough in the
complex neuronal circuits to generate a clinical benefit. As a possible solution,
novel CNS R&D strategies return to the basic principle of phenotypic assays
either based on behavior observations in preclinical animal models or on
models informed by neuronal circuits rather than single targets.

observations on patients with schizophrenia noted that the
symptoms were exacerbated when using drugs of abuse such
as amphetamines. These observations led to the development
of preclinical assays in rodents administered high doses
of amphetamine producing some of the same heightened
stereotyped behavior seen often in schizophrenic patients. As
an early and insightful example of bedside-to-bench reasoning,
this assay (amphetamine-induced stereotypy) is still being used
to characterize new antipsychotics. On February 15, 1958,
haloperidol (R1625) was synthesized in the Janssen labs and was
found to block the effects of amphetamine on locomotor activity.
It was approved by the FDA in 1967. Since then, more than 21,000
papers have been published on this drug which, without doubt,
has been one of the most successful antipsychotic drugs.

It is important to note the chronology of this and related
developments. Around the time of the synthesis of haloperidol,
techniques for measuring dopamine were just being developed
(Carlsson and Waldeck, 1958) and assays for the establishment
of dopamine levels in the rodent brain became available the
year after (Carlsson, 1959). Ironically, in the years following it’s
discovery, haloperidol was used as a powerful tool to investigate
the neurophysiology and neuropharmacology of the dopamine
system in vivo. Binding of radio-active haloperidol allowed
for the identification of a dopamine binding site in the mid-
1970s (Snyder et al., 1975) that was followed eventually by
the identification of this target after cloning of the D2 mRNA
(Guennoun and Bloch, 1991). This approach also led to the
development of an original method in the mid-1970s to study
the effect of candidate drugs on other neurotransmitter systems
in the absence of binding to cloned receptors. In the “ATN assay”

(Niemegeers et al., 1977) behavioral effects were monitored after
amphetamine (for the dopamine systems), tryptamine (5-HT
system), and norepinephrine (NE). The different dose-responses
for the challenges allowed to better dissect the interaction of
multi-target pharmacology drug candidates.

Paul Janssen went on to develop many more antipsychotics
with different profiles, some of them also acting on the
serotonergic system (pimozide) and, therefore, could be classified
as early atypical antipsychotics. Similar strategies were used in
the field of analgesia and antifungals. It is without doubt that
Janssen Pharmaceutica was a successful Drug Discovery and
Development engine without having access to any of the current
tools of molecular biology. So it is useful to explore the reasons
for its success. Dr. Paul always talked about his 4 C’s : concept,
concentration, commitment, and creativity.

Drug Discovery projects need to be concept-driven (biology-
chemistry) rather than technology driven. Starting out with a
very specific question, it is essential to identify the necessary
techniques and tools – even if they are so basic, like pharmacology
or enzymology. Avoid the “nice-to-have” and sexy technologies
if they don’t contribute to the solution. Drug Discovery and
Development has a different agenda than basic academic
research. In addition, in order to address the complexities
of the human brain, an integrative approach, rather than a
reductionistic approach is essential for success.

A drug discovery project needs to be laser-sharp and
concentrated on the end-goal which is to identify the best
molecule for a given disease indication. In line with this, short
feedback cycle times and early and continuous management
buy-in are essential for success. Back in the days before
e-mail, Webex and remote meetings due to the dispersion
of research groups across different sites in pharma, Dr. Paul
took the time to personally stop by in the labs to discuss the
latest findings with the bench scientists. It was not unusual
for Janssen scientists to be able to discuss the results of
an interesting scientific finding with him on the same day.
Besides the scientific feedback, it gave this approach a personal
motivational push that allowed individuals to perform beyond
what they thought were their limitations. A focused research
organization is also not geographically dispersed. Almost all
of the successful research at Janssen was performed on site in
Beerse, Belgium.

Dr. Paul committed the necessary resources for a project; he
believed research rhythms are different from economical, market,
technology or grant cycles. Because he was so successful with
his earlier products, he had the capability to think strategically.
Long-term stability in the research environment is a major
driver for success.

Like any biotech nowadays, creativity is a key driver of success;
dare to go where nobody else has gone before. The Janssen
laboratoria essentially created the market of antifungals and anti-
helmintica, thanks to a number of veterinarians returning from
the Belgian colony of Congo in the early 1960s. He also believed
there is no basic or applied research; there is only good research
and that the market is driven by quality drugs, not the other
way around. By focusing on providing quality care for patients,
benefits for other stakeholders will follow naturally.
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Lastly, it cannot be emphasized too much that having a
scientist as CEO was a major contributor to the success of a
company (Leadership buy-in). That person needs to be able
to see the challenges and opportunities of drug discovery
beyond the mere numbers and metrics, and be driven by the
motivation to make a difference for patients. In summary,
many of these characteristics can be found in start-up biotech
companies nowadays; however, the major difference was that
Janssen Pharmaceutica at that time was a mature company with
17,000 employees in 30 countries.

RATIONAL TARGET SELECTION DRIVEN
PROJECTS

The Molecular Biology Revolution
From the early 1990s on, the number of molecular biology
tools has steadily increased. Cloning and amplification of
DNA started out in the early 1970s (Hershfield et al., 1974)
and biotechnology was heralded as the next revolution in
drug discovery and development 20 years later (Drews, 1995).
The underlying premise was that genetic information would
automatically “humanize” the R&D process and that therapeutic
developments aimed at the cause of the disease rather than the
symptoms could be developed. The strategy was to go from one
gene, one protein to one disease. The overriding belief was that
highly selective compounds would address the major underlying
cause of the disease, would not engender some of the untoward
side effects associated with “dirty drugs,” and would, therefore,
provide powerful targeted therapeutic treatments.

Basically the idea was to fully deconstruct human biology to
the level of genes and mutations and then build up the network
of interacting genes and proteins, cell types and relevant circuits
based on their interaction derived either from experimental data
(such as yeast 2-hybrid) or from in vitro and in vivo experiments
in rodents, leading to the concept of pathway analysis. At this
juncture, however, the link with human physiology is often lost.

This approach has worked remarkably well for a number of
diseases such as cardiovascular (see below for the story of PSCK9
inhibitors) or oncology, and for some rare diseases where the
mutation in the gene identified the biological process driving
the pathology. However, it became rapidly clear that no single
mutation could explain the full pathology of the majority of
(sporadic) CNS disorders. In most cases, such as in Alzheimer’s
Disease, only a few families presented with dominant mutations,
such as APP mutations and PS1/2 mutations in familial Early-
onset Familial AD (Hardy, 1996) (less than 0.1% of cases).

There are a number of other major issues with this approach.
First, it rapidly turned out that the findings for the familial cases
are not readily generalizable to the sporadic form of the disease.
For instance, a large number of therapeutic interventions aimed
at removing beta-amyloid in AD have failed in the clinic and have
led to questioning the amyloid hypothesis of this disease (Herrup,
2015; Karran and De Strooper, 2016). Second, for a number of
genetic risk factors with high impact it has been very difficult
to identify and characterize the relevant biology and to generate
appropriate insights on the nature and properties of possible

targets. For example, while the APOE gene was identified in
Corder et al. (1993), it is still not clear what aspect of the biology
drives the clinical phenotype and how to identify duggable targets
(Lopez et al., 2014). Third, almost all proteins are subject to a
myriad of posttranslational modifications which are often cell-
dependent and dynamic in nature and are not reflected in the
genetic or transcriptomic information.

The Success Story of Genetically Driven
Rational Drug Discovery
The poster child for a success story of genetically driven drug
discovery and development is without doubt the development of
proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors
in cardiovascular diseases. Here the timeline from discovery
of the gene to approval of two drugs is an amazingly short
12 years. Mutations in the PCSK9 gene that cause autosomal
dominant hypercholesterolaemia were discovered in Abifadel
et al. (2003) and 4 years later the crystal structure was determined
(Piper et al., 2007). Clinical trial results for the first inhibitors
evolucumab (Dias et al., 2012) and alirocumab (Stein et al., 2012)
were published in 2012 and approval was granted by the FDA
in 2015. Commercial success of the drugs has somewhat been
limited due to the high price and the competition with generic
cholesterol lowering drugs.

Rare diseases also benefit from genetic studies as the cause
of the disease is very well known and often the pathway can
be affected either by small molecules or other more advanced
techniques such as oligonucleotides. These success stories include
Kalydeco and Orkambi treatments for cystic fibrosis and the first
ever FDA approval of the oligonucleotide Nusinersen for Spinal
Muscular Atrophy.

Highly Selective Drugs in CNS Disorders
Based on the observations that certain genes were involved
in different aspects of schizophrenia, a number of highly
selective drugs have been developed and subsequently tested
in schizophrenia, notably to address the cognitive impairment
and negative symptoms associated with schizophrenia. For
instance, the finding that CHRNA7, the alpha7 nAChR gene,
was associated with the clinical phenotype of schizophrenia
(Leonard and Freedman, 2006), led to extensive clinical testing
of a large number of alpha7 nAChR modulators (Geerts, 2012).
Other attempts to develop highly selective drugs include PDE10
inhibitors (Geerts et al., 2016b), Histamine H3 antagonists,
mGluR2/R3 partial agonists, dopamine D3, dopamine D4,
glycine modulators, 5-HT2A modulators, GABA modulators,
AMPAkines, and neurokinin modulators (for a review see Geerts
and Kennis, 2014). At the present time, the clinical development
of most of these targeted compounds has been halted due to
lack of efficacy.

Similarly, in Alzheimer’s disease since the approval of
memantine in 2004, 240 clinical trial projects have failed
(Cummings et al., 2014). In this disease, the use of monoclonal
antibodies for amyloid modulation is an extreme example of
highly selective target selection. A likely reason for clinical
trial failures is that highly selective compounds do not impact
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the general outcome of circuits sufficiently to lead to a robust
clinical effect and that appropriately balanced effects on different
pathways and circuits is essential.

However, we acknowledge that other aspects might play
a role such as misaligned target engagement. For instance,
all interventions aimed at glutamate and GABA are subject
to a fine excitation-inhibition balance and often lead to
an inverse U-shape dose-response. In the case of glycine
modulation, basic neurophysiological processes such as the
Hill properties for interaction of glycine with the co-agonist
site on the NMDA receptor, together with the Na-Cl-Gly
co-transporter system and the neuronal firing properties
of pyramidal and inhibitory interneurons mandatory lead
to an inverse U-shape dose-response (Spiros et al., 2014).
This dose-response has indeed been confirmed in a PhII
clinical trial with bitopertin (Umbricht et al., 2014) and
probably was a major hurdle for successful confirmation in
a Phase III study. Other reasons for the lackluster effect
in CNS clinical development for highly selective compounds
include wrong patient populations, the presence of a different
co-morbidities, the formation of pharmacologically active
metabolites, the impact of common genetic variants and
mandatory clinical scales with a high subjective component.
In addition to the underestimated impacts of gender (Podcasy
and Epperson, 2016), large GWAS studies suggest that many
genes each can contribute a very small amount to the pathology
(Horwitz et al., 2019).

This raises the important question of patient subtypes and
genetic heterogeneity in what appear to be common CNS
disorders that might be defined as driven by a single gene, so
that if only if we could identify that gene then a highly selective
drug might be appropriate. However, with the exception of
rare familial cases it is more likely that each different patient
subpopulations might be driven by a unique and restricted set of
low-impact genotypes.

A very important issue is the pharmacodynamic (PD)
interactions between an investigative drug and other co-
medications. Ironically, because of the rich pharmacology of
approved CNS medications (see above), the probability of
pharmacodynamic interaction with a highly selective drug is
substantial, either direct (at the level of the receptor or target),
but most importantly in an indirect way at the level of circuit
outcomes. As an example, we studied the PD-PD interaction
effects on cognitive impairment between antipsychotics,
memantine, AChE-I such as donepezil, and galantamine
and smoking in a virtual schizophrenia population (Geerts
et al., 2015a). Each antipsychotic has a different interaction
profile with these pro-cognitive interventions. For instance,
olanzapine amplifies the effect of memantine in non-smokers;
donepezil, but not galantamine, further enhanced the effect.
Other antipsychotics such as risperidone, quetiapine, and
aripiprazole had a negative interaction, while haloperidol
was neutral. Most interactions became even more negative in
smoking conditions. Such PD–PD interactions could explain
apparently contradictory findings in clinical trials, but most
importantly they can reduce the clinical signal in clinical trials if
not addressed appropriately.

Going Beyond Genomics
The scientific community quickly realized that genes or RNA
sequences did not tell the whole story and new techniques
were developed for documenting the changes in other more
relevant readouts. From the late 1990s, quantitative proteomics
became technically possible (Anderson and Anderson, 1998;
Sperling, 2001) and its combination with genomics was presented
as a major solution for better understanding human biology
(Zivy and de Vienne, 2000). This was followed by other -
omics technologies, from imaginomics such as documenting
circuits relevant for psychiatry (Artigas et al., 2017) and the
100,000 subject UK Biobank imaging project (Miller et al., 2016)
over metabolomics (Beger et al., 2016) to lipidomics (Yang
and Han, 2016). Together with large cohorts that are followed
longitudinally such as Alzheimer’s Disease NeuroImaging project
(Weiner et al., 2016), or access to electronic health records,
this has generated large databases to the point that the major
challenge today is not to generate these data, but to analyze
them properly and develop actionable predictive platforms. Such
analytical approaches include pathway enrichment strategies
and mapping the genetic information onto protein–protein
interactions network.

Artificial Intelligence (AI) and Deep Machine Learning are
the latest developments in the analytical toolbox to cope with
this enormous amount of data (Mak and Pichika, 2018) and they
have been quite successfull in analyzing imaging data (Gao et al.,
2018), in identifying new chemical entities for drug discovery
(Besnard et al., 2012) and in drug repurposing (Gunther
et al., 2003). However, for predictive outcomes useful in drug
discovery for new targets, the associative nature and the lack of
transparency of the “black box” still necessitates the intervention
of domain experts to make sense of the predicted outcomes. For
example, experimental studies and domain expertise was used
together with machine learning and information theory in a
rational polypharmacology study of new targets in axon growth
(Al-Ali et al., 2015).

As illustrated below, we believe that the combination of “Big
Data” with AI analytical techniques together with the “Smart
Data” approach of formalizing domain expertise in a Quantitative
Systems Pharmacology approach represent a powerful approach
for addressing the deadlock in the development of successful
CNS therapeutics.

THE PENDULUM SWINGS BACK: 21TH
CENTURY TARGET-AGNOSTIC DRUG
DISCOVERY

The previous sections highlight the challenges of rational and
selective target-driven CNS drug discovery. Many of these
approaches have also relied on the use of traditional animal
models to assess potential clinical efficacy, approaches that
also have been questioned as reliable indicators of clinical
translation. To address the issue of effective translatability, new
technologies have been developed that allow researchers to
humanize preclinical models, including human IPSC cells, brain
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organoids and transgene primates (see a recent workshop from
the National Academy of Sciences1). However, these approaches,
though promising, are still in development and each of them
has specific issues. For instance, hIPSC cells, while important
for elucidating neuronal biology, lack the specific neuronal
circuitry of the human brain. Brain organoids are notably difficult
to standardize and have extremely low throughput. Transgene
primates have a very low capacity and extremely long timelines.

More importantly, imaging studies, have led to a growing
realization that modulating neuronal circuits rather than
specific molecular targets can affect clinical evaluation scales
considerably. It has indeed become increasingly clear that
complex and “abstract” human mood states can be traced back
to brain network dysfunction. For example, a triple network
model of autism in humans (Menon, 2011) proposes that
aberrant functional organization of the Salience Network (SN),
the Frontoparietal (FPN), and Default Mode Network (DMN)
is related to clinically relevant brain states, such as lack of
accurate self-appraisal (Hogeveen et al., 2018). Examples in
other indications suggest that drug interventions can affect
brain networks. For example nicotine (Faulkner et al., 2018),
ondansetron (Stern et al., 2019), and an experimental a7 nAChR
agonist (Barch et al., 2016) illustrate the possibility of using
this modality for detecting functional network engagement in
a clinical trial.

An interesting development has been the introduction
and development of the “SmartCube” approach where high-
dimensional behavioral data are automatically captured in
animals after therapeutic interventions (Alexandrov et al., 2015).
The “signature” produced after the administration of a novel
experimental drug can be compared to the relevant signature of
several clinically active “reference compounds.” One can then
use this approach to optimize a compound with “antipsychotic”
or “antidepressant” properties based on the specific behavior
as analyzed by the Smart Cube in a preclinical setting. Such
a strategy is only possible in animal models within a specific
genetic strain and in highly standardized and automated
conditions to significantly reduce the variability and reproducibly
detect the pattern associated with the drug pharmacology.
One such example to emerge from this approach is SEP-
363856 currently in clinical development for schizophrenia and
psychosis in Parkinson’s Disease2. It will be interesting to see
whether this approach translates into the more variable human
patient population.

Techniques such as optogenetics (Zhang and Cohen, 2017)
and DREADD (Dobrzanski and Kossut, 2017) allow for the
manipulation of neuronal circuit activity and relate these to
behavioral outcomes in animal models. These interventions
are currently off-limit for use in human patient populations,
but repetitive Transcranial Magnetic Stimulation and direct
current stimulation approaches on the human brain can
provide insights in neuronal activity and its relation to
clinical outcomes.

1https://www.nap.edu/catalog/24672/therapeutic-development-in-the-absence-
of-predictive-animal-models-of-nervous-system-disorders
2http://www.sunovion.us/research-and-development/pipeline.html

The Case of Ketamine as a New
Antidepressant
The potent anti-depressant effect of low-dose iv Ketamine
[introduced as an anesthetic in the 1960s (Domino et al.,
1965)] was identified in a clinical trial (Zarate et al., 2006a),
while another NMDA modulator, memantine was without
effect (Zarate et al., 2006b). 10 years later the exact mode of
action has not been identified although effects beyond NMDA-
R modulation are considered as a prime candidate (Williams
and Schatzberg, 2016), but also Homer1A modulation (Serchov
et al., 2016) and the mTOR pathway (Ignacio et al., 2016) have
been proposed. As a consequence, a number of companies are
developing products based on new formulations (e.g., intranasal
administratio of esketamine by Janssen), and analogs of ketamine
or drugs based on the NMDA modulation properties (Biohaven
Pharma, Mnemosyne, Naurex, Neuropinc). Future clinical trials
will reveal whether the NMDA pathway is a major driver of
the anti-depressant effect. This is another example where smart
clinical observations led to the discovery of a whole new pathway
to treat major depression, essentially in the absence of a rational
theory. Indeed, the FDA recently approved the use of esketamine
(SpravatoTM) for use in treatment resistant depression.

QUANTITATIVE SYSTEMS
PHARMACOLOGY AS A PHENOTYPIC
ASSAY

We propose that Quantitative Systems Pharmacology (QSP),
based on complex and clinically calibrated computer models
of human neuronal circuits, is a major new tool that can also
incorporate the new experimental technologies in development
mentioned above. Technical descriptions of the QSP platform
have been published extensively (Spiros et al., 2010; Geerts et al.,
2012, 2013b), here we only give an overview of the QSP approach
with a focus on applications along the drug discovery spectrum
(see Figure 2).

Basically, the platform simulates the firing characteristics
of a biophysically realistic neuronal network that integrates
physico-chemical and physiological data from preclinical models
and imaging, functional genomics and postmortem data
in patients. The platform uses biophysical Hodgkin-Huxley
membrane potential calculations of neuronal networks that are
modulated by different neurotransmitter circuits. This allows
representations of targets of approved CNS active medications.
Common functional genotypes can be implemented using human
imaging studies (Spiros and Geerts, 2012). The pathological
state is introduced using imaging and biomarker studies that
differentiate patients from healthy subjects. This allows the
approach to go beyond the pathology implementation in
preclinical animal models where usually only one aspect is
modeled, for instance with transgene animals. The model is
further calibrated by simulating all currently available historical
trials with a large number of drugs and optimizing the outcome
with actual reported clinical values. A receptor competition
model simulates the competition between therapeutic agents
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FIGURE 2 | Integration of a mechanism-based QSP model in CNS drug discovery and development projects. Well validated QSP models could help not only in
identifying, but also validating new and powerful targets that can restore neuronal circuit dysfunction, can support rationally designed MedChem campaigns and help
select the best clinical candidate (middle row). Experimental work (bottom row) includes testing of drugs in heterologous cell systems, execution of a MedChem
campaign with a focus on synthesizing multi-target compounds and the study of brain penetration and ADME-Tox in preclinical animal models. Clinical trial design
(middle row) can be supported by Hyman (2014a) identify the optimal dose, (Geerts, 2009) explore the effect of the drug on non-invasive biomarkers and (Hyman,
2008) identify negative pharmacodynamic interactions between a novel drug and comedications, genotypes and disease states by simulating virtual patients. In the
case of AD as an example (top row), such a project can be applied to the development of a drug that addresses both symptomatic cognitive and neuropsychiatric
symptoms, followed by brain region activity related biomarkers, such as EEG and BOLDfMRI and the impact of tau, amyloid status, comedications, and APOE
genotype on the dose-response of the new investigative drug.

and endogenous neurotransmitters based on their affinity
to pre- and post-synaptic receptors and integrated with a
model of presynaptic physiology on facilitation/depression of
synaptic vesicle release and the negative feedback of presynaptic
autoreceptors (Spiros et al., 2010). This module allows for
the calculation of the functional free intrasynaptic active drug
moiety concentrations derived from PET imaging studies by
adjusting the concentration of drugs to match the observed
displacement of the PET tracer. The changes in activation
level of the postsynaptic receptors are then translated to the
appropriate changes in voltage-gated ion channel conductance
by optimizing the correlation of the model output with
clinical data. In some cases, the platform has been able
to make prospective blinded and correct predictions on
clinical trial outcomes.

The application of QSP in drug discovery will be elaborated
in detail in the following section, but essentially would start
from reverse engineering the platform to identify a validated
“lean” target product profile for a medicinal chemistry campaign.
Molecular Modeling and other Big Data approaches could be
used for accelerating and supporting the MedChem part. Assays
of heterologous in vitro cellular systems with these human targets
will be developed as a first-line screening of candidate drugs with
a fast feedback cycle for a new round of medicinal chemistry.
The most promising candidates will be tested in a more extensive

screening against a large number of additional targets to complete
its full pharmacological profile.

The QSP-based strategy would essentially complement the
in vivo pre-clinical efficacy models for driving Go/NoGo
decisions by “extrapolating” the often substantial animal
pathology to the human situation in an appropriate spatio-
temporal context. However, animal models would still be needed
to confirm central target engagement and mandatory ADME-Tox
related studies and in some cases to study the pharmacodynamic
effect of the selected dug candidate in a “relevant” disease model.
In any case, this could substantially reduce the need for animal
studies, speed up the drug discovery process and reduce costs.

It is worthwhile considering the fundamental difference
between this domain-expertise based approach and the data-
driven Artificial Intelligence/Machine Learning techniques
(AI/ML) (Geerts et al., 2016a, 2017). Machine learning
approaches are very good for classification purposes and
pattern recognition in large datasets, but they need high-quality
training sets and do not include previous domain knowledge.
For new targets in drug discovery, where there are few or no
data available and pharma companies learn on the “fly,” they
are less useful. The algorithms are basically a black box and are
not based on biological understanding. Moreover, at best they
can derive correlations, but lack the capability to address very
concrete questions such as “how much do I need to modulate
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that pathway to have an appropriate balance between efficacy
and side-effects?” or “what is the optimal dose for my drug that
affects this new target?”

In contrast, because QSP is based on formalized and
quantitative domain expertise and knowledge about fundamental
biological processes, it can more easily predict outcomes without
the need for “training” sets that include these novel targets and
therefore is more readily generalizable, compared to AI processes.
For instance, the QSP platform blindly and correctly predicted
an unexpected clinical outcome for a pro-cognitive 5-HT4 drug
acting on a novel target and was able to identify the translational
disconnect between human subjects and rodent models (Timothy
et al., 2013) in the absence of any clinical “training” data on
this novel target. At the same time, simulations showed that
the back-up compound with a different pharmacological profile
would have a better clinical outcome. It is conceivable that future
developments of AI and ML could combine biological insights
captured in publications through natural language processing
with clinical data from electronic health records to generate
predictions of as yet untested clinical targets.

Preclinical Applications
Validation of Targets
Quantitative Systems Pharmacology allows not only for the
possible identification of a new target product profile but also
for a certain degree of validation that predominantly drives a
specific clinical scale outcome to be used in drug discovery
through “reverse engineering.” Within a well validated computer
model, a systematic search of all the biological processes and
their contribution to a change in phenotype (for example
reversal of the clinically calibrated emergent properties from
a pathological to a normal state), -essentially a sensitivity
analysis – can identify key pathways and targets for novel
drugs. For example, using this approach (Geerts et al., 2015b)
the top biological processes that characterized responders to
iloperidone, a recently approved antipsychotic drug, were found
to be the coupling factor between cortical D4-R and the AMPA
receptor, in line with a SNP found in the GRIA4 gene in a
traditional PGX analysis (Lavedan et al., 2008). Along the same
lines, an extensive analysis of all combinations of biological
processes in the model can possibly identify synergism of a
polypharmacy profile.

Another example illustrates the capability of QSP to identify
a novel neuronal circuit that can drive a more complex clinical
phenotype such as psychosis. Using an advanced computer
model of a closed cortico-striatal-thalamocortical loop (Spiros
et al., 2017) with schizophrenia pathology derived from human
imaging studies, the changes in firing dynamics in the Thalamic
Reticular Nucleus correlated best with the clinical antipsychotic
effect of a large number of drugs. This area is strategically located
between thalamus and cortex, controls the information flow at
this critical juncture of the closed loop, and has been identified
as a critical neuronal endophenotype in neurodevelopmental
disorders (Krol et al., 2018). Recent studies using EEG/MEG have
identified this area as crucial for spindle mechanisms (Piantoni
et al., 2016) that are dysfunctional in schizophrenia. In principle

this could lead not only to the identification of novel targets,
but also their validation in a neuronal circuit that is essential for
psychiatric symptoms.

A substantial limitation of our QSP approach, however, is
the restriction to targets for which there is sufficient biological
knowledge available. While sometimes modern drug discovery
projects start with a limited amount of knowledge (usually a
correlation based on genetic information), a mechanism-based
QSP approach needs more elaborate biological data on the cell
type, specific neuronal circuit, intracellular pathway or substrates.
This limits the space of possible targets but has the advantage that
the selected targets have a much broader biological knowledge
and possibly a higher chance for success.

Generating Actionable Knowledge From Preclinical
hIPSC Experiments
In order to mitigate the translational disconnect between
rodent preclinical models and the human patient, neuronally
differentiated hIPSC or brain organoids have become
increasingly popular as tools for drug discovery. As an example,
using advanced transcriptomic analysis of drug effects on
human derived hIPSC cells, a number of drugs that reversed a
“schizophrenic” signature back to normal was identified allowing
for the exploration of entirely new pathways for treatment
(Readhead et al., 2018).

While this example is based essentially on transcriptomic
readouts, other more functional experimental readouts such as
electrophysiological studies on Multi-electrode Arrays (MEA)
can report on more subtle deficits and are more amenable
to mechanism-based simulations. The effect of therapeutic
interventions on neural progenitor cells from patients or the
change in electrophysiological properties due to the disease can
be studied using multi-electrode arrays (Hondebrink et al., 2017).
In principle, an in silico model of such an experimental set-up can
be developed to perform a systematic search of modifications of
voltage-gated ion channels for reproduction of the experimental
phenotype, prioritizing a list of possible hypotheses that can
be tested experimentally. This could lead to novel targets and
biological insights (Figure 3).

Computer Assisted Synthesis of Rational
Polypharmacy
Starting from the ‘ideal” lean profile described above, different
approaches can then be used to generate chemical structures
with the desired polypharmacy. One such approach relies on
identifying chemical structures that act on individual targets
using searches in chemical databases, followed by finding
common pharmacophores of molecules acting on the different
targets and developing a chemical “template” that can serve as
a start for a medicinal chemistry campaign. Other approaches
use Big Data analytics and AI or deep learning for predicting
chemical structures with a well-defined multi-target profile
(Besnard et al., 2012).

Once this ideal profile is established and a medicinal chemistry
campaign is started, there is a need for an “assay” that can test
profiles of new leads coming out of such a program. Because these
compounds are aimed at changing neuronal circuit properties
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FIGURE 3 | In silico Translation of hIPSC Cell Culture Experiments to in vivo “Humanized” Situation. Experiments using different modalities (electrophysiology,
biochemical studies, and transcriptomics) are limited by the issues on differentiation status. QSP could in principle extrapolate the findings of these experiments by
“adding” missing key biological processes present in human cells. The interpretation of challenge experiments (pharmacological or genetical) could be enhanced by
knowledge driven modeling of the underlying biology. Finally, these findings could be integrated into a neuronal circuit model that is closer to the clinical scales.

rather than single targets, cell culture models such as hIPSC
cannot be used. Rather than using expensive and low throughput
animal models, in principle, a QSP platform that is well validated
can play a major role as an in silico tool to prioritize different
candidate leads based on their pharmacological properties
derived from individual human target assays (Geerts and Kennis,
2014). This would both accelerate the selection of the best clinical
candidate and ensure a higher level of translatability.

As a great application of such a rational polypharmacy
approach in Alzheimer’s disease, the strategy to combine a
pro-cognitive pharmacology with a disease-modifying target
would substantially de-risk clinical development, using short-
term (6 months) clinical trials for symptomatic improvement,
getting marketing approval and then perform the long-term
clinical studies (2–3 years) to confirm the disease-modifying
properties in order to change the label.

Clinical Applications
Identifying Biomarkers of Target Engagement in
Human Populations
A major challenge in early clinical development is the ability to
estimate the degree of functional target engagement in a Phase I
study with healthy volunteers. In some cases, PET imaging tracers
are developed alongside the therapeutic compound to estimate
the degree of receptor occupancy or the target product profile
includes a target for which there is already a clinically approved
PET tracer available.

If these tracers are unavailable, functional non-invasive
biomarkers such as EEG and BOLDfMRI can be used as
elaborated above in section “The Pendulum Swings Back : 21th
Century Targetagnostic Drug Discovery.” Because these are based
on neuronal circuit activity, they fit very well with the concept of
QSP modeling. Indeed complex computer models for simulating
both resting state (Rosen et al., 2018) and evoked EEG responses

have been developed (Moxon et al., 2003) and can be extended
to include the effect of pharmacological interventions that
affect membrane potential dynamics such as those downstream
of membrane G-Protein Coupled Receptors (GPCR) targets.
Similarly, voxel-based BOLDfMRI can be simulated from firing
activities in neuronal circuits (Sotero and Trujillo-Barreto, 2007).
An additional advantage of QSP is that these observations
in healthy volunteers can be extrapolated “in silico” to a
pathological situation.

Identifying the Best Patient Population for the
Investigative Drug
Because the QSP platform is based on the biology of the
human brain, different clinical indications or disease states
can be explored to identify the most responsive patient
population. For instance, pro-cognitive interventions such as
acetylcholinesterase inhibitors could be positioned either for
symptomatic relief in dementia (Roberts et al., 2012) or
cognitive impairment in schizophrenia (Geerts et al., 2013a,
2015a). In AD these drugs can be tested as the primary
intervention, but their efficacy can be dependent upon the
β-amyloid load, while in schizophrenia they must be given as
augmentation therapy with antipsychotics in order to provide
efficacy for the psychotic symptoms. As many antipsychotics have
a rich pharmacology, PD–PD interactions can significantly affect
clinical outcome as illustrated above in section “Highly Selective
Drugs in CNS Disorders.”

In another example, amyloid load at baseline can affect the
cognitive readout of amyloid reducing interventions (Geerts
et al., 2018b). This is due to the fact that the shorter Aβ

forms have a dose-response in which they are predominantly
neuro-stimulatory, while the longer Aβ forms reduce glutamate
neurotransmission irrespective of the dose. These non-linear
effects, first detected in preclinical studies are likely active in
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human patients as they are essential to explain three different
clinical datasets. These simulations suggest that amyloid reducing
interventions are only improving cognition for patients with a
high amyloid baseline, while they reduce cognitive performance
in subjects with low or zero amyloid.

Identification of Negative Pharmacodynamic
Interactions
In clinical CNS trials as well as in clinical practice, polypharmacy
is the rule rather than the exception. For instance, AD patients are
often treated with acetylcholinesterase inhibitors and the NMDA-
inhibitor memantine, but additional CNS-active co-medications
are often added with an estimated 40% taking antidepressants
and 20% of AD patients taking antipsychotics for behavioral
disturbances such as agitation (Clague et al., 2016). Current
guidelines are in place for PK–PK interactions whereby one drug
affects the metabolism of the other drugs or where a specific
genotype of the metabolizing enzymes determines individual
drug dose. However, the often complex pharmacodynamic
interactions (PD–PD) with novel treatments are not very well
studied, most likely leading to a less than optimal treatment
paradigm. As an example, the use of drugs with direct or an
indirect anticholinergic activity leads to a higher risk of AD (Gray
et al., 2015; Risacher et al., 2016) while polypharmacy is associated
with lower cognitive performance (Lau et al., 2011).

Because the QSP platform includes the targets of all CNS
active drugs together with a simulation module that – in case of
antipsychotics – calculates level of functional target engagement
based on PET imaging, the effects of these co-medications on the
dose-response of a new investigative drug can be predicted.

Similarly, imaging studies of tracer displacement document
the effects of common variants such as COMTVal156Met
(Slifstein et al., 2008) or 5-HTTLPR rs23351 (Fisher et al., 2012)
on the dynamics of dopamine, norepinephrine and serotonin
and can be explicitly modeled as a change in neurotransmitter
half-life. These genotypes can affect the dose-response of a new
drug on cognitive outcome in complex non-linear of ways.
Having this information early on, would allow either to modify
the exclusion-inclusion criteria or at least stratify the patients
over the different treatment arms, possibly leading to a higher
probability of success.

Analysis of Clinical Trials at the Single Patient Level
Post hoc analyses on failed clinical trials are mostly based
on statistical analyses using patient subgroups, often based on
discrete features such as age and gender, the number of co-
medications, the class co-medications or single genotypes such
as APOE. This approach, although necessary for achieving
sufficient power, does not take into account individual patient
characteristics, for instance, the nature of each co-medication
(not all antipsychotics or benzodiazepines are the same) or
their dose. In addition, combinations of co-medications (for
instance antidepressants with antipsychotics) have often non-
linear interactions which are heavily dependent upon the
nature and dose of the drugs (Geerts et al., 2018a). Other
confounding factors conveniently assumed to have no impact
include combinations of genotypes. For instance, there are 27

possible combinations of the three common variants APOE,
COMTVal156Met, and 5-HTTLPR rs 23351 which all affect
cognitive readout in a different way.

We would argue that developing individual QSP models for
each patient (“virtual patients”) with their unique medication and
genotype profile is a powerful way to extract more information
from these post hoc analyses. Even with “failed” trials (as most
are), there is always a fraction of “responders” and studies of
these individual responses can elucidate specific interactions
between the drug and the pathology. This level of granularity
allows the identification of subtle differences with often large
consequences and can lead to better insights on the interaction
of the investigative drug with the unique biology of the patient.

Combing Pharmacotherapy With Behavioral Therapy
Finally, the combination of Cognitive behavioral therapy and
repetitive transcranial stimulation (rTMS) can be optimized
using QSP modeling. Although such an approach is currently
being tested in CNS disorders with modest success (Nguyen
et al., 2017), challenges remain for identifying the optimal
conditions for such combination therapy. It is conceivable
that an appropriate synchronized combination with the right
pharmacotherapy might be synergistic, because of the possible
priming by the drug of relevant intracellular pathways which are
used by the behavioral intervention For instance, a mathematical
model based on the intracellular activation of an ERK-based
and a cGMP-based pathway that affects the glutamatergic
synapse, takes into account the temporal relationships between
the stimulatory pulses and the “priming” of the intracellular
pathways, in this case the increase of cGMP after PDE9 inhibition
(Smolen et al., 2014). This model has been shown to predict
correctly the change in LTP using different timing of stimulatory
pulses in an Aplysia experimental model (Zhang et al., 2011).
Pharmacological modulation of G-protein coupled receptor
activation levels leading to intracellular second messengers
such as cAMP or inhibition of phosphodiesterases can affect
downstream proteins such as voltage-gated or ligand-gated
ion-channels either directly through phosphorylation or via
modification of protein synthesis and therefore modulate the
action potential dynamics, increase neuroplasticity and clinical
cognitive outcomes. In a certain way, well-defined cognitive
stimuli in humans do have similarities to electrical stimulation
in preclinical models of long-term potentiation (LTP). As
another example, the Reset-O program, a digital therapeutic
in combination with standard-of-care drug treatment for
substance abuse (Ben-Zeev et al., 2016). Therefore, advanced
QSP mechanism-based modeling of humanized circuits can, in
principle, optimize the timing of combination therapy based on
the PK profile and the effect of a novel drug on the priming of
intracellular pathways.

DISEASE MODIFYING APPROACHES

The discussion so far has been focused on the restoration of
neuronal circuit homeostasis to achieve a clinically relevant
outcome. However, recent R&D projects for neurodegenerative
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diseases focus on addressing key pathological processes such as
β-amyloid dynamics or tau pathology in AD or α a-synuclein in
PD. Despite a strong genetic rationale for some of these targets,
there are multiple challenges, as evidenced by the failure of
multiple clinical trials mentioned previously.

For instance, the complex biology of the β-amyloid peptide
with a neuroprotective non-linear dose-response for shorter
forms and a neurotoxic role for longer isoforms (Geerts et al.,
2018b), and the differences in amyloid load between preclinical
animal models and the human situation are drivers of the
translational disconnect. Another challenge refers to the large
number of comorbidities converging into the aging brain. A third
consideration is the multi-scale nature of the processes together
with the time scales involved leading from pathological changes
to cognitive outcome which by itself is driven by neuronal
firing activities of interacting brain regions. This highlights the
difficulty of extrapolating time- and spatial scales from the
preclinical animal model to the human patients.

These considerations suggest the need for a broader
understanding of these multi-dimensional processes, their
relationships, the ability to quantify these properties and their
ultimate impact on neuronal activity. Computer modeling can be
a tool to address some of these issues.

New implementations of astrocyte and microglia biology
can expand the current electrophysiology-based approach for
instance by modeling the role of microglia in clearing misfolded
amyloid and tau proteins or secreting various cytokines
that affect neuronal physiology (Edelstein-keshet and Spiros,
2002). Astrocytes can influence neurotransmitter homeostasis by
their effect on uptake and synthesis of key neurotransmitters
such as glutamate.

Modeling intracellular processes that regulate post-
translational modifications of key proteins, such as the tau
protein (Stepanov et al., 2018), needs to be coupled to membrane
protein modifications that regulate membrane potential
dynamics. Model parameters for instance, can be constrained
by comparing anticipated outcomes with “fingerprints” of tau
molecules, such as phosphorylation at specific sites, detectable
in biofluids. Multi-scale modeling not only involves enzymatic
processes but also gene regulation, each with appropriate timing
dynamics. While the fundamental biology would be informed
by preclinical data in cellular systems and transgene mouse
models, the QSP platform can be used to scale the predictions
to the human pathology case. This is especially important for
both spatial and temporal pathology progression (measured
by PET imaging and clinical trajectory). This illustrates the
different levels of biomarkers that can be used to constrain and
validate the model.

As an example, there is sufficient preclinical data to develop
a QSP platform of spatial tau progression by combining
secretion processes in the extracellular space, subsequent uptake
by an afferent neuron, axonal transport over the neuronal
projections and progressive conversion of monomeric tau into
larger aggregates. At the same time, the interaction of the
modified tau protein and membrane proteins, notably voltage-
gated ion channels (Hall et al., 2015), can be simulated leading
to changes in membrane excitability, firing dynamics and finally

behavioral outcome. Combining these processes together with
spatial progression as measured by tau PET imaging ultimately
can generate a model that accounts for disease progression and
has the capacity to start addressing the variability of the patient
populations in their clinical phenotype.

DISCUSSION AND CONCLUSION

Drug Discovery Focused on Neuronal
Circuitry
This report presents a novel paradigm for drug discovery and
development that is based on advanced computer modeling
supplemented by insights generated from a limited amount of
preclinical studies. Basically, the strategy is to reduce the use of
preclinical animal models of efficacy with advanced humanized
and empirically based computer modeling with the hope of
increasing the probability of clinical success. The approaches
outlined in this article would significantly reduce the use of
expensive animals and reduce both the timeline and resources of
selecting the best clinical candidate.

Although the approach presented here is not a “blind”
phenotypic assay as it is based on a complex interacting
network of well-known neuronal and biochemical circuits,
it enables a search of possible combinations that might
significantly synergize to revert the pathological phenotype in
a target-agnostic way. In fact, the platform aims to deliberately
search for a poly-pharmacological profile with known targets
to address different pathological imbalances in the relevant
circuits and networks. This obviates the need to start expensive
target identification studies in other cellular or animal-based
implementations of phenotypic assays and opens new avenues for
therapeutic innovation.

A major difference with animal-based drug discovery
approach is the translatability of the humanized computer model,
as this will be extensively calibrated with historical retrospective
data and validated with a different historical clinical dataset. In a
few cases, such a QSP model has been able to prospectively and
correctly predict clinical outcomes in schizophrenia and AD that
was different from the preclinical animal-based predictions. Such
a tight relationship is an essential criterium for any phenotypic
assay. In addition, the platform makes extensive use of the non-
invasive and clinical biomarkers that characterize the pathology
or the effects of drugs.

The emphasis of the computer modeling on
electrophysiological signatures in neuronal firing networks
is in line with an increased focus on symptoms classes (Cohen
et al., 2017) that are cross-diagnostic (Kas et al., 2019) and
is more closely and mechanistically related to underlying
neurobiology processes. The biological processes underlying
these symptom classes can be probed by non-invasive methods
such as EEG and MRI imaging. The ability of the computer
model to simulate these outcomes adds a level of translatability
to this new paradigm.

Using a computer model for driving the drug discovery
process allows a seamless integration with other modeling
approaches used during the development phase that are key
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to a successful project, such as SimCYP (Physiology-based
pharmacokinetic modeling). In fact, such an organic integration
allows also for a more powerful calibration and validation
phase based on the clinical outcome of individual patients as it
takes into account PK profiles and blood-brain transport. The
capability of developing individual computer models for patients
with different genotypes, co-medications and disease status can
be very helpful even in early stages of drug discovery, as it allows
for the possible identification of back-up candidates that can be
tailored for a different patient population.

Limitations of This Approach
First and foremost is the limited scope of the model; many
more biological processes or brain regions are not included. In
contrast, animal models do have a complete brain biology but
some of these processes might be irrelevant or very different from
the human situation. There is therefore a trade-off to be made
between focusing on key human-disease relevant processes versus
including biology that might have a limited contribution to the
global outcome. In this respect, close inspection of phenotype
databases (including biomarkers) can help in prioritizing the key
circuits that are driving a clinically relevant outcome (for instance
the neurocircuitry of an RDOC dimension). Also, the hope is that
these computer models in the future will expand considerably
given the availability of increased computer power and storage.

Secondly, the approach relies heavily on the extrapolation
of in vitro pharmacology using artificial cellular systems to the
“humanized” in vivo situation. While this is to some degree also
an issue for the more traditional animal-based drug discovery
process, it can to some extent be mitigated by the use of human
patients derived hIPSC cells.

Thirdly, the computer model is based on actual knowledge
and cannot account for targets and pathways that are still
to be discovered and important for the clinical phenotype.
In this regard new findings from large GWAS studies can
identify pathways that need to be prioritized for modeling in
future iterations.

Fourth and most importantly, the unique validation of this
approach relies on the availability of clinical data from past
trials, especially on an individual patient basis. Although these
datasets become increasingly available for other indications,
many companies in the CNS area are reluctant to provide
information on their interventional trials. This is a crucial
prerequisite and, although some headway has been made using
published group average data, as in the current generation of QSP
models, there is substantial room for improvement.

We acknowledge that this approach is a fundamental
paradigm-shift compared to the more traditional animal-based
drug discovery strategy. However, it has become abundantly clear
repeated late-stage failures have resulted in increased pressure
for innovative approaches. This new paradigm focuses on data
and knowledge, not animal models or chemistry, as the most
important assets in pharmaceutical discovery and development.
Moreover, where there is a noteworthy paucity of drugs to treat
neurological disorders, it is possible that the approaches outlined
in this article may also extend to drugs effective in treating
those conditions as well. A number of start-ups (i.e., Numedii,
Benevolent AI, Berg Pharma) use Artificial Intelligence and Deep
Learning approaches to identify new targets for drug discovery –
although so far not in CNS disorders -; however, they still need to
“validate” their targets in animal models as a key transition into
clinical trials.

The approach fits into the broader concept of digitizing
the pharmaceutical enterprise, spearheaded by technology
companies such as Calico and Verily (Google Alphabet),
23andMe and others. We believe that with the right software
and modeling approach these companies will ultimately be
more successful.

In summary, the advanced computer-based mechanistic
modeling as presented here is a powerful tool to integrate a large
amount of knowledge (both basic and clinical information) into
an actionable platform that provides the opportunity to address
key questions along the CNS drug discovery and development
spectrum and which can, hopefully, improve the outcome of
drugs to treat the spectrum of CNS disorders.
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