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Misfolding protein diseases are a wide class of disorders in which the aberrantly
folded protein aggregates accumulate in affected cells. In the brain and in the skeletal
muscle, misfolded protein accumulation induces a variety of cell dysfunctions that
frequently lead to cell death. In motoneuron diseases (MNDs), misfolded proteins
accumulate primarily in motoneurons, glial cells and/or skeletal muscle cells, altering
motor function. The deleterious effects of misfolded proteins can be counteracted
by the activity of the protein quality control (PQC) system, composed of chaperone
proteins and degradative systems. Here, we focus on a PQC system component: heat
shock protein family B (small) member 8 (HSPB8), a chaperone induced by harmful
stressful events, including proteotoxicity. In motoneuron and muscle cells, misfolded
proteins activate HSPB8 transcription and enhance HSPB8 levels, which contributes
to prevent aggregate formation and their harmful effects. HSPB8 acts not only as a
chaperone, but also facilitates the autophagy process, to enable the efficient clearance
of the misfolded proteins. HSPB8 acts as a dimer bound to the HSP70 co-chaperone
BAG3, a scaffold protein that is also capable of binding to HSP70 (associated with the
E3-ligase CHIP) and dynein. When this complex is formed, it is transported by dynein
to the microtubule organization center (MTOC), where aggresomes are formed. Here,
misfolded proteins are engulfed into nascent autophagosomes to be degraded via the
chaperone-assisted selective autophagy (CASA). When CASA is insufficient or impaired,
HSP70 and CHIP associate with an alternative co-chaperone, BAG1, which routes
misfolded proteins to the proteasome for degradation. The finely tuned equilibrium
between proteasome and CASA activity is thought to be crucial for maintaining the
functional cell homeostasis during proteotoxic stresses, which in turn is essential for
cell survival. This fine equilibrium seems to be altered in MNDs, like Amyotrophic lateral
sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA), contributing to the
onset and the progression of disease. Here, we will review how misfolded proteins may
affect the PQC system and how the proper activity of this system can be restored by
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boosting or regulating HSPB8 activity, with the aim to ameliorate disease progression in
these two fatal MNDs.

Keywords: motoneuron diseases, amyotrophic lateral sclerosis, spinal and bulbar muscular atrophy, proteasome,
autophagy, chaperones, misfolded proteins, HSPB8

INTRODUCTION

Proteotoxic stress associated with aberrantly folded (misfolded)
protein production is one of the factors thought to be deeply
involved in the pathogenesis of several neurodegenerative
diseases (NDs), including motoneuron diseases (MNDs).
Amyotrophic lateral sclerosis (ALS) and spinal and bulbar
muscular atrophy (SBMA) are two different types of MNDs
clearly linked to the aberrant folding behavior of proteins in
their conformationally unstable wild type (wt) or mutated
forms (Rusmini et al., 2017). These are resistant to folding,
become misfolded, and are prone to aggregate, accumulating
in motoneuronal cells as well as in their surrounding (glial)
or target (skeletal muscle) cells. Postmitotic cells like neurons
or skeletal muscle cells are highly prone to react to misfolded
protein-induced stress and mount a potent intracellular response
that includes chaperone overexpression and activation of the
degradative pathways. These two systems work together and
are referred to the protein quality control (PQC) system. The
PQC system represents the first line of defense mechanism
against misfolded protein toxicity; therefore, its modulation is
considered as one of the best potential targets for a possible
therapeutic approach aimed to counteract MND onset and/or
progression, as well as neurodegeneration.

The PQC system comprises a large number of factors, which
may act specifically in some subcellular compartments (i.e.,
chaperones located in the endoplasmic reticulum, mitochondria,
lysosomes, and cytoplasm) or that are expressed in a cell
and tissue specific manner. The chaperone pathways alone
comprise more than 180 different chaperones and their co-
regulators, while the two major degradative pathways involved
in the PQC system comprise more than 600 components (in
the case of the ubiquitin-proteasome system) and at least 30
different components (in the case of the autophagy system)
(Hartl et al., 2011). The chaperone family comprises members
that are grouped mainly on the basis of their size (small HSPs,
HSP40s, HSP60s, HSP70s, HSP90s, and HSP100) and of their
structure and/or function (Kampinga and Craig, 2010). Most
chaperones act through the association with co-chaperones that
are nucleotide exchange factors (NEFs) (Kampinga and Craig,
2010). A typical co-chaperone family is the BCL2-associated
athanogene (BAG) family (Takayama and Reed, 2001). Different
PQC system components, and particularly the chaperones, have
been reported to be mutated and found to cause different
neurodegenerative diseases. One example is represented by the
small heat shock protein B8 (HSPB8), which has been found to
be mutated in diseases involving motoneurons and/or muscle
cells [like Charcot-Marie-Tooth type 2L disease, hereditary
distal motor neuropathy type II (dHMN-II) or distal myopathy
(Fontaine et al., 2006; Irobi et al., 2010; Ghaoui et al., 2016)].
This chaperone is widely expressed in almost all human tissues,
and it has been proposed to be protective in ALS and SBMA

(Carra et al., 2005, 2013; Crippa et al., 2010; Rusmini et al.,
2013). HSPB8 is an essential member of a complex required
for chaperone-assisted selective autophagy (CASA) (Figure 1).
The CASA complex targets misfolded proteins to autophagy,
and it is formed by two molecules of HSPB8, the HSP70 co-
chaperone BAG3 (Carra et al., 2008b) and the HSP70 itself that
can transiently associate to the E3-ubiquitin ligase CHIP/STUB1
(Arndt et al., 2010). Once the CASA complex is formed and
associated with the misfolded target protein, the CHIP enzyme
polyubiquitinates the misfolded substrate, which interacts with
the autophagy receptor SQSTM1/p62. SQSTM1/p62 bridges the
polyubiquitinated substrate proteins and the lipidated LC3 (LC3-
II) protein, engulfing them into autophagosomes for degradation
(Klionsky et al., 2016). The relevance of the CASA complex in
the stress response to proteotoxicity and in neurodegenerative
diseases is supported by a large body of evidence, including the
finding that genetic mutations of HSPB8 (Irobi et al., 2004, 2010;
Ghaoui et al., 2016) and of other three members of this complex
have been linked to neurodegenerative or neuromuscular
diseases. Mutant BAG3, for example, is implicated in dilated
cardiomyopathy (Arimura et al., 2011), in muscular dystrophy
(Selcen et al., 2009) and in giant axonal neuropathy (Jaffer
et al., 2012), and STUB1/CHIP1 has been found mutated in
Gordon Holmes syndrome (multisystemic neurodegeneration
(Hayer et al., 2017) and in spinocerebellar ataxia 48 (SCA48)
(Genis et al., 2018), while the protein has been reported to
be destabilized in SCA16 in which six different variants have
been reported (Pakdaman et al., 2017; Kanack et al., 2018). In
addition, a missense mutation in the ubiquitin ligase domain of
CHIP has been involved in the pathogenesis of spinocerebellar
autosomal recessive 16 (SCAR16) (Shi et al., 2013, 2018). Finally,
SQSTM1/p62 has been found to be mutated in some familial
forms of ALS (fALS) (Fecto et al., 2011; Teyssou et al., 2013).

THE ROLE OF HSPB8 IN THE
SELECTION OF THE PROPER
DEGRADATIVE SYSTEM FOR
MISFOLDED PROTEINS IN
MOTONEURON DISEASES

As mentioned in the introduction, ALS and SBMA are typically
considered to be protein misfolding diseases, in which unstable
proteins or their mutated forms tend to aggregate impairing
motoneuronal or muscle functions.

From a clinical point of view, the two diseases present some
difference, especially in the type of motoneurons affected. ALS is
characterized by the loss of both upper and lower motoneurons
and the regions affected are the brain motor cortex, the
brainstem and anterior horns spinal cord motoneurons. In some
fALS, alteration in the fronto-temporal regions are present and
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FIGURE 1 | Protein quality control (PQC) system. Ubiquitin proteasome system (UPS) and autophagy could be impaired by misfolded proteins that accumulate into
aggregates. Aggregates can alter dynein mediated transport or block proteasome. This causes an inefficient protein homeostasis control. As a protective
mechanism, HSPB8 (B8 in the figure) and BAG3 transcription is increased by proteasome blockage that, together with their partner HSP70, facilitates misfolded
proteins degradation via autophagy. Trehalose, doxorubicin, and geranylgeranylacetone (GGA) selectively increase HSPB8 transcription facilitating misfolded proteins
autophagic degradation. When autophagosome formation is reduced by dynein-mediated transport inhibition, the BAG1 transcription is activated. BAG1 interacts
with HSP70/CHIP and allows the degradation of misfolded proteins via UPS.

correlates with a mixed phenotype involving motor dysfunction
and frontolateral temporal dementia (FLTD) (Robberecht and
Philips, 2013). In ALS, not only motoneurons are affected but also
glial cells [astrocytes (Trotti et al., 1999; Boillée et al., 2006; Nagai
et al., 2007), oligodendrocytes (Philips et al., 2013), Schwann
cells (Lobsiger et al., 2009; Turner et al., 2010) and cells of the
inflammatory response, like microglia (Philips and Robberecht,
2011)]. Recent data suggest that skeletal muscle cells can also
be directly involved in disease onset and progression (Musarò,
2010; Onesto et al., 2011; Galbiati et al., 2014). Conversely, in
SBMA, which is characterized by a much slower progression rate
compared to ALS, the motoneurons affected are only the lower
motoneurons in the bulbar region and in the anterior horns of
the spinal cord. The motor and frontal cortex remain unaffected,
and there are no clinical signs of dementia in SBMA patients.
No signs of neuroinflammation involving microglial cells or of
alteration in glial cells have been reported in SBMA, indicating
that microglia is not involved (La Spada et al., 1991; Fischbeck,
1997; Soraru et al., 2008; Boyer et al., 2013; Malena et al.,
2013; Cortes et al., 2014a; Lieberman et al., 2014). Interestingly,
SBMA patients display sensory alteration due to the loss of
dorsal root ganglia (DRG) sensory neurons. Finally, there are
clear data indicating that, in SBMA, the skeletal muscle cells
and several reproductive tissues containing androgen-target cells
are directly affected (La Spada et al., 1991; Fischbeck, 1997;
Adachi et al., 2005; Soraru et al., 2008; Boyer et al., 2013;
Malena et al., 2013; Chua et al., 2014; Cortes et al., 2014a;

Lieberman et al., 2014; Halievski et al., 2015; Sahashi et al., 2015;
Xu et al., 2016, 2018).

ALS mainly appears as sporadic forms (sALS), but about 10%
of the cases are inherited (fALS) and several mutated genes have
already been described (Table 1; Cook and Petrucelli, 2019). Of
note, mutations in these genes often result in the production of
pathological misfolded/aggregating-prone proteins (Oskarsson
et al., 2018). Moreover, these genes code for proteins that,
even in their wt form, tend to be conformationally unstable
(Table 1) forming misfolded species, which for unknown
reasons aberrantly accumulate in sALS, causing cell death.
This observation suggests the existence of common pathogenic
mechanisms in fALS and sALS (Neumann et al., 2006; Daoud
et al., 2009; Ju et al., 2009; Bosco and Landers, 2010; Tresse
et al., 2010; Robberecht and Philips, 2013; Taylor et al., 2016).
SBMA appears only in an inherited form, and it is associated to
a CAG triplet repeat sequence expansion in exon 1 of the gene
coding for the androgen receptor (AR). The coded AR protein
contains a translated polyglutamine (polyQ) tract which confers
toxicity to the ARpolyQ. Notably, this toxicity appears only when
the ARpolyQ is bound to its endogenous ligands testosterone
or dihydrotestosterone (DHT) (La Spada et al., 1991; Stenoien
et al., 1999; Simeoni et al., 2000; Katsuno et al., 2002, 2003;
Poletti, 2004).

At present, it remains unclear if protein misfolding is the
primary toxic event in ALS, or if it reflects alteration of specific
intracellular pathways (e.g., alterations of the PQC system).
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TABLE 1 | List of genes related to ALS and SBMA.

Gene Name Protein Protein function Aggregating/misfolded species

ALS

ALS2 Alsin ALS2 Vesicle trafficking

ANG Angiogenin ANG Ribonuclease

ANXA11 Annexin A11 ANXA11 Vesicle trafficking, apoptosis,
exocytosis, and cytokinesis

Mutated

ATXN2 Ataxin 2 ATXN2 Endocytosis/RNA metabolism Mutated; wt

C21orf2 Chromosome 21 Open Reading Frame
2

C21orf2 Mitochondrial dysfunction, cytoskeletal
dynamics

C9orf72 Chromosome 9 Open Reading Frame
72

C9orf72 Possible guanine nucleotide exchange
factor-involved in autophagy

Dipeptide-repeat (DPR) proteins
generated by ATG- independent
transcription of the ALS/FTD-related
abnormal GGGGCC expansion

CCNF Cyclin F CCNF Catalyzes ubiquitin transfer to
substrates for UPS degradation

CHCHD10 Coiled-coil-helix-coiled-coil-helix
domain-containing protein 10

CHCHD10 Mitochondrial protein

CHMP2B Charged multivesicular body protein 2B CHMP2B Protein degradation

DLTNl Dynactin subunit 1 DCTN1 Component of dynein motor complex

EWSR1 Ewing Sarcoma breakpoint region 1 EWSR1 RNA/DNA binding protein Mutated; wt is intrinsically prone to
aggregation

FIG4 Phosphoinositide 5-phosphatase FIG4 Protein degradation

FUS Fused in Sarcoma FUS RNA binding protein Mutated; wt FUS sequestered into
pathological aggregates

HNRNPA1 Heterogeneous nuclear
ribonucleoprotein Al

HNRNPA1 RNA-binding protein Mutated

HNRNPA2/B1 Heterogeneous nuclear
ribonucleoprotein A2/B1

HNRNPA2/B1 RNA-binding protein Mutated

KIF5A Kinesin family member 5A Microtubule-based motor protein

MATR3 Matrin 3 MATR3 RNA-binding protein Mutated and wt (rare inclusions)

NEFH High molecular weight neurofilaments NFH Cytoskeletal component Mutated

NEK1 NIMA Related Kinase 1 NEK1 Cytoskeletal dynamics

OPTN Optineurin OPTN Autophagy adaptor wt OPTN sequestered into pathological
aggregates

PFN1 Profilin 1 PFN1 Actin binding protein Mutated

SETX Senataxin SETX RNA/DNA helicase

SOD1 Cu-Zn superoxide dismutase 1 SOD1 Superoxide dismutase Mutated; oxidized wild type (wt) SOD1

SPG11 Spatacsin SPG11 DNA damage repair

SQSTM1 Sequestosome 1 SQSTM1 Autophagy adaptor Mutated; wt SQSTM1 sequestered into
pathological aggregates

TAF15 TATA box binding protein associated
factor 15

TAF15 RNA-binding protein Mutated; wt is intrinsically prone to
aggregation

TARDBP TAR DNA Binding Protein TDP-43 RNA-binding protein Mutated TDP-43s; phopshorylated wt
TDP-43; wt full-length TDP-43 and its
C-terminal fragments (TDP-35andTDP-
25)

TBK1 Serine/threonine-protein kinase TBK1 TBK1 Innate immune response, autophagy,
inflammation and cell proliferation

TIA1 T cell-restricted intracellular antigen 1 TIA1 RNA-binding protein Mutated TIA1 showed altered stress
granules dynamics

TUBA4A Tubulin alpha 4a TUBA4A Microtubule subunit Mutated

UBQLN2 Ubiquilin 2 UBQLN2 Autophagy adaptor Mutated; wt UBQLN2 sequestered into
pathological aggregates

VAPB VAMP/synaptobrevin-associated
protein

VAPB ER-membrane protein Mutated

VCP Valosin containing protein VCP Ubiquitin segregase

(Continued)
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TABLE 1 | Continued

Gene Name Protein Protein function Aggregating/misfolded species

SBMA

AR Androgen receptor AR Nuclear receptor that mediates male
hormones effects

Mutant polyQ, ligand-dependent

The table illustrates the genes found mutated in ALS (upper part) and SBMA (lower part), listed in alphabetical order. For each gene, the name, the coded protein and its
cellular function are indicated, if known. In the last column, the aggregation/misfolding propensity of the protein is depicted, specifying the affected species [wild-type (wt)
and/or mutated]. In green the ALS genes that are most frequently mutated and collectively account for 60–70% of fALS and 10% of sALS cases.

Several recent data underline that autophagy dysfunction is
implicated in ALS (Valenzuela et al., 2018; Evans and Holzbaur,
2019; Nguyen et al., 2019) and SBMA (Cortes et al., 2014b), but
its role in diseases is still debated (Chua et al., 2014; Cristofani
et al., 2017, 2018). On one side, autophagy defects are clearly
involved, since different genes found mutated in ALS code for
proteins of the autophagic system, like SQSTM1/p62, OPTN,
VCP, UBQLN2, TBK1 and C9orf72 (Table 1; Nguyen et al., 2019).
Altered autophagic flux has furthermore been observed in ALS
patients and confirmed in both cell and animal ALS models. On
the other hand, an excessive autophagy seems to be related to
the disease (Nguyen et al., 2019). Pharmacological manipulations
of autophagy performed in different ALS models confirm this
dual role of this degradative pathway in ALS (Valenzuela et al.,
2018). For example, the treatment of SOD1-G93A mice with the
mTOR-independent autophagy stimulator trehalose significantly
prolonged life span and attenuated the disease signs, decreased
SOD1 aggregates and enhanced motoneuron survival (Castillo
et al., 2013; Zhang et al., 2014; Li et al., 2015). On the contrary, the
mTOR-independent autophagy stimulator rilmenidine worsened
motor neurons degeneration and symptom progression in SOD1-
G93A mice (Perera et al., 2018). Similar results were observed also
after treatment with the mTOR-dependent autophagy stimulator
rapamycin, which exacerbated the pathological process of SOD1-
G93A mice by accelerating the motor neurons degeneration,
shortening the life span causing mitochondrial impairment and
caspase-3 activation (Zhang et al., 2011).

With regards to SBMA, accumulation of autophagosome
and reduced autophagic flux have been observed in cell and
animal models of SBMA (Rusmini et al., 2010, 2013; Cortes
et al., 2014a,b; Giorgetti et al., 2015; Cristofani et al., 2017).
Interestingly, while the wild type AR positively regulates
the activity of the transcription factor EB (TFEB, a master
regulator of autophagy and lysosomal biogenesis), the mutant
ARpolyQ interferes with TFEB activity, reducing its control
on target genes and thus leading to autophagy dysregulation
(Cortes et al., 2014b). Otherwise, in SBMA mice models,
autophagy is upregulated in skeletal muscle during disease
progression, indicating that tissue-specific aberrant activation
of TFEB signaling might contribute to SBMA pathogenesis
(Cortes et al., 2014a,b; Rusmini et al., 2015; Rocchi et al.,
2016). In addition, a very recent observation suggests that
alternative autophagic pathways can also be dysregulated. Indeed,
the charged multivesicular body protein 7 (Chmp7) gene,
which codes for an ESCRT-III related protein involved in
autophagic flux and the endo-lysosomal sorting pathway is
downregulated in induced pluripotent stem cells (iPSCs) derived

from SBMA patients as well as in SBMA mice models even before
disease onset. This suggests that CHMP7 may play a primary
role protein in autophagic flux alteration observed in SBMA
(Malik et al., 2019).

Several studies have proposed that HSPB8 is implicated both
in ALS and SBMA, possibly by acting as a protective agent against
disease onset and/or progression (Carra et al., 2005, 2008b, 2010;
Crippa et al., 2010, 2013a,b, 2016a,b; Rusmini et al., 2013, 2019;
Cristofani et al., 2017, 2018; Cicardi et al., 2018). It has been
shown that, during disease manifestations and at the end stage
of disease, HSPB8 is highly expressed in the spinal cord of the
SOD1-G93A ALS mouse model and in spinal cord specimens
of ALS patients (Anagnostou et al., 2010; Crippa et al., 2010).
Moreover, HSPB8 was found upregulated in the lateral tract
astrocytes of patients with short disease duration (Gorter et al.,
2018). In the SOD1-G93A ALS mouse model, the high levels
of HSPB8 are confined specifically in anterior horn spinal cord
motoneurons that survive at the end stage of disease (Crippa
et al., 2010). These data are of great interest, since in non-
transgenic (NTg) normal mice, the expression of HSPB8 within
the spinal cord typically decreases with age (Crippa et al., 2010).
Thus, these motoneurons are potentially more vulnerable to the
toxicity of mutant misfolded proteins, and HSPB8 overexpression
in motoneurons of the SOD1-G93A affected mice could represent
a cell response to damages induced by misfolded proteins. The
increased HSPB8 levels may enhance proteotoxic stress tolerance
of these surviving motoneurons.

In NTg mice, HSPB8 is also present at high levels in muscles;
instead, in the SOD1-G93A ALS or SBMA AR113Q mouse
models, HSPB8 expression is robustly increased paralleling
disease progression (Crippa et al., 2013a,b; Rusmini et al.,
2015). This is not unexpected, since skeletal muscle cells are
a direct target of misfolded protein toxicity in both ALS and
SBMA; therefore, the enhanced production of HSPB8 may
serve to protect this tissue during disease progression. This
interpretation is suggested by the finding that, in TDP-43
ALS Drosophila melanogaster models (TDP-43, TDP-35, and
TDP-25), the overexpression of the HSPB8 functional ortholog
(HSP67Bc) protects from misfolded protein toxicity, while its
downregulation has the opposite effect (Crippa et al., 2016a). In
line with these data is the observation that a viral homologue
of HSPB8—the protein ICP10PK, carried by the herpes simplex
virus type 2 (HSV-2)—when used to infect the SOD1-G93A
ALS rat model is able to delay symptom onset and reduce the
progression of the disease, thus enhancing the overall survival
of the mice (Aurelian, 2012; Aurelian et al., 2012). Whether
ICP10PK exerts similar functions in PQC compared to HSPB8
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or whether its protective activity is due to other mechanisms that
are not related to PQC and autophagy is still unknown.

Collectively, the data obtained using ALS and SBMA animal
models corroborate the notion that HSPB8 is protective against
misfolded protein toxicity in these diseases.

The observations performed at cellular and molecular levels
parallel the animal data, showing that HSPB8 has a potent
antiaggregant activity, and facilitates the removal of aggregating
misfolded proteins from a variety of neuronal and muscle
models of ALS and SBMA. For example, HSPB8 reduces the
accumulation of several polyQ proteins, like polyQ of the mutant
huntingtin and ataxin-3, as well as of the beta-amyloid protein,
of the alpha-synuclein, and of a large number of ALS-associated
mutant proteins (like the mutant SOD1-G93A or the mislocalized
TDP-43 C-terminal fragments (TDP-35 and TDP-25) and the
abnormally translated dipeptides (DPRs) produced from the
expanded GGGGCC repeated sequence of the C9orf72 gene
causing ALS and/or FLTD) (Chavez Zobel et al., 2003; Wilhelmus
et al., 2006; Carra et al., 2008a,b; Crippa et al., 2010, 2016b;
Bruinsma et al., 2011; Seidel et al., 2012; Rusmini et al., 2013;
Cristofani et al., 2017, 2018; Cicardi et al., 2018).

Very recently, it has been shown that HSPB8 is also able to
maintain a correct dynamic behavior of stress granules (SGs),
membraneless ribonucleoprotein (RNP) complexes that form via
liquid-liquid phase separation (LLPS) (Banani et al., 2017).

In the past decade, researchers have sought to understand
the principles that regulate the formation and dissolution
of SGs, due to their potential implication in a number of
neurological disorders [e.g., ALS, FLTD, Alzheimer’s disease
(AD), etc.] (Elden et al., 2010; Taylor et al., 2016). Similar to
other types of membraneless organelles, such as PML bodies
(Banani et al., 2017), SGs are highly dynamic and are induced
by stress conditions, including oxidative stress, viral infection,
and temperature upshift, but they tend to dissolve upon stress
relief (Anderson and Kedersha, 2002). While SGs tend to
dissolve rapidly after stress relief in healthy cells, SGs were
reported to persist for longer time in cell models of ALS that
express mutated, disease-causing forms of TDP-43, FUS, TIA-
1, and hnRPNA1. TDP-43, FUS, TIA-1, and hnRPNA1 are
all RNA-binding proteins recruited inside SGs. These RBPs
can form liquid droplets in vitro that are unstable and can
mature with time into amyloid-like aggregates (Molliex et al.,
2015; Patel et al., 2015; Mackenzie et al., 2017). The ALS-
associated mutated forms of TDP-43, FUS, TIA-1, and hnRPNA1
accelerate the conversion of the liquid droplets into a solid
aggregated-like state in vitro, while they all confer rigidity to
SGs in ALS cell models, thereby delaying their disassembly
kinetics and favoring the co-aggregation of SGs with other
misfolded aggregate-prone proteins (Ganassi et al., 2016; Taylor
et al., 2016; Mateju et al., 2017). These observations have
therefore, suggested the hypothesis that SGs play an important
role in ALS. Recent data obtained using light-inducible SGs
(or OptoGranules) showed that the repetitive induction of
SGs leads to their conversion into neuronal aggregates that
become enriched for phosphorylated TDP-43 forms, ubiquitin
and SQSTM1/p62 (Zhang et al., 2019), typical hallmark of
inclusions found in sALS and fALS (Neumann et al., 2009). Thus,

SGs may contribute to the formation of the neuronal pathological
inclusions (Zhang et al., 2019).

So far, two mechanisms that decrease SG dynamics have
been identified: (1) the presence of unstable aggregate-prone
RBPs (Molliex et al., 2015; Patel et al., 2015) and (2) the
accumulation inside SGs of misfolded proteins [including
defective ribosomal products (DRiPs) and ALS/FLTD-linked
DPRs] (Ganassi et al., 2016; Lee et al., 2016; Mateju et al., 2017).
Enhanced clearance of misfolded proteins, DRiPs or DPRs may,
therefore, indirectly facilitate disassembly of SGs, restoring their
physiological dynamics. Enhanced clearance of aberrant SGs may
furthermore exert protective functions. Indeed, the accumulation
of misfolded proteins inside SGs is prevented by the action of
molecular chaperones such as VCP and the HSPB8-BAG3-HSP70
complex, which target misfolded proteins, DRiPs and DPRs to
degradation (Verma et al., 2013; Seguin et al., 2014; Ganassi et al.,
2016). In addition, ZFAND, VCP, and SQSTM1/p62 facilitate the
degradation of persisting aberrant SGs via autophagy and the
proteasome, respectively.

The formation of cytoplasmic aggregates containing
phosphorylated TDP-43 may arise also with SG-independent
mechanisms, and can be induced by fibrillar fragments of
aggregated TDP-43 itself or FUS (Gasset-Rosa et al., 2019).
These aggregates sequester nuclear transport factors, impairing
the nucleocytoplasmic shuttling (Freibaum et al., 2015; Jovicic
et al., 2015; Boeynaems et al., 2016; Woerner et al., 2016; Kim
and Taylor, 2017; Chou et al., 2018). Considered together, these
studies demonstrate that SG-dependent and SG-independent
mechanisms contribute to ALS disease progression. They
likewise suggest that SG-dependent and SG-independent
mechanisms may converge so as to favor the formation of the
pathological inclusions. Consequently, approaches that limit
the cytoplasmic accumulation of aggregated TDP-43, such
as overexpression of HSPB8 or induction of autophagy, may
exert beneficial effects by acting both on SG-dependent and
independent TDP-43 aggregates.

From the molecular point of view, the mechanism by which
HSPB8 blocks the accumulation of misfolded proteins in cells
affected in these MNDs is intriguing. As mentioned above,
HSPB8 is a crucial component of the CASA complex. The
intracellular levels of HSPB8 appear not to be sufficient to handle
the large amounts of misfolded proteins that accumulate under
certain stress conditions. In fact, the single overexpression of
HSPB8 is able to restore a sufficient clearance of misfolded
proteins, preventing their aggregation in cells. It is thus not
surprising that the main activity of HSPB8 is to act as an
autophagy facilitator. The first proof for this action comes from
the observation that HSPB8 strongly interacts with the Ile-Pro-
Val (IPV) domains of BAG3 forming a stable complex (Fuchs
et al., 2010, 2015). Moreover, BAG3 might use the IPV domains to
interact also with other HSPBs, like HSPB1, HSPB2 (Morelli et al.,
2017), HSPB5 (αB-crystallin) (Hishiya et al., 2011), and HSPB6
(Fuchs et al., 2009; Rauch et al., 2017).

Like HSPB8, other members of the mammalian HSPB family
have been linked to ALS progression. Indeed, two HSPB1 variants
have been reported in a cohort of unrelated Italian ALS patients,
while the loss of chaperone-like activity was demonstrated in
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one of the mutant proteins (Capponi et al., 2016). Like HSPB8,
also HSPB1, together with αB-crystallin, were found upregulated
in the spinal cords of different symptomatic mutant SOD1
mice (G37R, G93A, G85R, H46R/H48Q), compared to control
(Vleminckx et al., 2002; Wang et al., 2003). Notably, we observed
in two similar SOD1-G93A mice strains that were characterized
by a different progression rate (fast vs slow progression) that
low basal expression of the αB-crystallin correlates with a
fast progressing phenotype, whereas high αB-crystallin levels
correlate with a more slowly progressing phenotype (Marino
et al., 2015). This observation is indicative of a protective role
of αB-crystallin in these animals. In vitro experiments also
support this hypothesis, since both αB-crystallin and HSPB1
overexpression are able to suppress SOD1 aggregation (Yerbury
et al., 2013). Focusing on HSPB1, its role in ALS is rather
controversial; for example, HSPB1 overexpression is beneficial
when tested in different SOD1-based ALS cell models (Patel et al.,
2005; Krishnan et al., 2006; An et al., 2009; Yerbury et al., 2013;
Heilman et al., 2017), but animal model experiments did not
confirm this protective role. In its work, Krishnan et al. (2008)
showed that the ubiquitous over-expression of human HSPB1
in SOD1-G93A mice [double transgenic SOD1(G93A)/hHSPB1
mice] did not affect disease duration, progression, motor
neuron degeneration or SOD1 aggregation, although hHSPB1
overexpression alone (single transgenic hHSPB1 mice) protected
against spinal cord ischemia (Krishnan et al., 2008). Slightly
different results were obtained by Sharp et al. (2008), where
the SOD1(G93A)/HSPB1 double transgenic mice showed an
improvement in some pathological parameters compared to
SOD1-G93A mice; this protective activity was present at the early
stage of disease but was lost at later stages (Sharp et al., 2008).
Interestingly, in these mice the expression of hHSPB1 protein
in affected cells decreased during disease progression, although
mRNA levels remained unchanged, and so far no explanation
for this phenomenon have been provided, but this reduced
translation/enhanced clearance of HSPB1 may help to explain the
lack of protection at late stage of disease.

Part of the protective activity of HSPBs against neuronal loss
may be due to their ability to interact with BAG3. In addition to
the binding with different HSPBs, BAG3, with its BAG domain,
can bind directly the HSP70 already involved in a heterodimer
with CHIP (Figure 1). When HSPB8 binds, the CASA complex
is formed, and this allows misfolded protein recognition. BAG3
is a scaffold protein, which also contains a PXXP motif for
the binding to dynein, and this interaction is reinforced by the
14-3-3 protein, which binds in close proximity to the PXXP
motif (McCollum et al., 2009; Merabova et al., 2015). Dynein
has now the capability to move retrogradely the CASA complex
with the misfolded protein (polyubiquitinated by CHIP) along
microtubules to the MTOC, where aggresomes are formed and
autophagosomes assembled.

Dynein mediated transport has been involved in ALS
pathogenesis: (i) dynein has been detected in SOD1 aggregates
and (ii) alteration of retrograde transport is present in transgenic
SOD1-G93A mice even if the legs at odd angles (Loa) mutation
in cytopasmic dynein could be protective in transgenic SOD1-
G93A mice where it delays disease onset and extends the life span

(Kieran et al., 2005; Zhang et al., 2007; Bilsland et al., 2010; El-
Kadi et al., 2010). Moreover, DCTN1 and KIF5A motor protein
and TUBA4, NEFH, and NEK1 cytoskeleton proteins are related
to ALS (Table 1).

The polyubiquitinated misfolded proteins are then/finally
recognized by the autophagy receptor (like SQSTM1/p62) and
engulfed by the lipidated LC3-II into nascent autophagosome
for clearance [see (Rusmini et al., 2017)]. This mechanism has
been initially elucidated in physiological condition in muscle
fiber subjected to extensive physical exercise, in which large
amounts of damaged (carbonylated, nitrosylated, etc.) proteins
are generated. Indeed, the CASA complex is essential for Z-disk
maintenance in skeletal muscle (Arndt et al., 2010; Ulbricht
et al., 2015). We proved that this mechanism takes place also
in motoneurons, in pathological conditions due to the presence
of ALS or SBMA-associated misfolded proteins (Crippa et al.,
2010, 2016a,b; Rusmini et al., 2013; Cristofani et al., 2017, 2018;
Cicardi et al., 2018). The CASA complex may also involve HSP40
(particularly DNAJB6) (Sarparanta et al., 2012), which acts as
an HSP70 co-chaperone to block misfolded protein aggregation
(Hageman et al., 2010). Like several members of the CASA
complex, mutation in DNAJB6 has been identified in human
diseases linked to aberrant protein aggregation, like Limb-girdle
muscular dystrophies (LGMDs) (Sandell et al., 2016). Of note,
DNAJB6 aggregates in muscles of LGMD patients and sequesters
BAG3, HSPB8, HSP70 and CHIP in inclusions of different sizes
present in the cell cytoplasm. Curiously, in the same specimens
DNAJB6 was also present in nuclear aggregates that were positive
exclusively for HSPB8 (Sato et al., 2013), leading to the hypothesis
that these two proteins may interact during CASA complex
formation earlier, or at a different cell location, than with the
other members of the CASA complex.

Even more intriguing is the existence of an alternative
way to escape HSPB8/BAG3 recognition when the function of
the CASA complex is blocked. This way reroutes substrates,
including misfolded proteins, from autophagic to proteasomal
degradation. For example, if the dynein mediated transport of
the CASA complex is blocked, the heterodimer HSP70-CHIP
does not interact with HSPB8-BAG3, but preferentially associates
to an alternative interactor: BAG1 (Cristofani et al., 2017). Like
BAG3, BAG1 is a NEF/BAG co-chaperone of HSP70, which
after interacting with HSP70-CHIP routes cargoes, including
misfolded proteins, to the proteasome (Arndt et al., 2010;
Ulbricht et al., 2013; Figure 1). It is relevant to note that the
blockage of the CASA complex transport to MTOC induces the
transcriptional activation of the BAG1 gene. On the other hand,
the blockage of proteasome induces the de novo synthesis of
HSPB8 and BAG3 (Yew et al., 2005; Carra, 2009; Crippa et al.,
2010; Carra et al., 2013; Cristofani et al., 2017). Therefore, this
connected transcriptional regulation gives rise to a fine-tuned
equilibrium between autophagy and proteasome and allows the
selection of the proper degradative pathway during different
types of proteotoxic stresses, which may differentially impact
on one of the two systems (Arndt et al., 2010; Crippa et al.,
2010; Behl, 2011, 2016; Gamerdinger et al., 2011a,b; Lilienbaum,
2013; Xu et al., 2013; Jia et al., 2014; Minoia et al., 2014;
Merabova et al., 2015; Cristofani et al., 2017). An unbalanced
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equilibrium between these two systems may thus account for
the aberrant accumulation of misfolded proteins in MNDs
and in NDs in general (Kakkar et al., 2014; Ciechanover and
Kwon, 2015; Nikoletopoulou et al., 2015; Senft and Ronai, 2015;
Xilouri and Stefanis, 2015).

The involvement of other HSPs, in particular HSP70 and
HSP90, in ALS has been deeply reviewed in Kalmar and
Greensmith (2017) and Lackie et al. (2017).

IDENTIFICATION OF SMALL
MOLECULES THAT REGULATE HSPB8
EXPRESSION IN MND-AFFECTED CELLS

In line with the data summarized above, it would be of interest to
determine whether the expression of HSPB8, which is sufficient
to restore autophagy, can be enhanced by acting at the level
of its gene transcription, thus preventing its role of limiting
factor for the CASA complex. Several small molecules have
already been identified to act as HSPB8 inducers and could
be an opportunity to be tested in clinical trials in MNDs.
In a large, high-throughput screening, based on a luciferase
reporter controlled by the human HSPB8 promoter, we were
able to find several FDA-approved drugs capable of modulating
HSPB8 gene expression. Among the list of hits, we selected
colchicine and doxorubicin and showed that these compounds
enhance the clearance of insoluble TDP-43 species (hallmark
for ALS) in a HSPB8-dependent (even if not exclusive) manner
(Crippa et al., 2016b). Since colchicine is a safe drug with a
well-established pharmacokinetic, it is now under investigation
in a phase II clinical trial on a large cohort of ALS patients
(Mandrioli et al., 2019).

Other small molecules that are able to induce HSPB8
expression have been characterized. One is trehalose, a non-toxic
natural compound well-known for its ability to induce autophagy
(Rusmini et al., 2013), whose mechanism of action has been
recently unraveled. TFEB is the main mediator of the effects of
trehalose. Trehalose treatment correlates with the activation of
the calcineurin/TFEB pathway by a rapid and transient lysosomal
membrane permeabilization and, possibly, by lysosomal calcium
release. This event triggers the induction of TFEB target genes
leading to specific removal of damaged lysosomes by autophagy
(called lysophagy) and the restoration of normal lysosomal
homeostasis (Rusmini et al., 2019). Trehalose has been proven,
both in cell and animal models, to be very efficient in the removal
of misfolded proteins in many different NDs (Tanaka et al., 2004;
Davies et al., 2006; Rodriguez-Navarro et al., 2010; Perucho et al.,
2012; Schaeffer and Goedert, 2012; Castillo et al., 2013; Du et al.,
2013; Sarkar et al., 2014; Zhang et al., 2014; He et al., 2016).

Estrogens and selective estrogen receptor modulators
(SERMs) are also potent activators of HSPB8 expression (Sun
et al., 2007; Piccolella et al., 2017), and this might help to explain
the existence of gender differences in the risk to develop some
age-related forms of NDs (Villa et al., 2016).

Geranylgeranylacetone (GGA), also known as teprenone,
which is an inducer of several HSPs, is also a potent upregulator of
HSPB8 expression, and has been proven to be able to decrease the

formation of amyloid oligomer and aggregates in desmin-related
cardiomyopathy (Sanbe et al., 2009).

Finally, one of the best known regulators of HSPB8 (and
BAG3) is the NF-κB transcription factor, which is generally
activated in the recovery period that follows a heat shock (Nivon
et al., 2012). Even if the control of this pathway is still obscure,
it is expected that modulators of the NF-kB pathway may
also influence the expression of HSPB8 in cells. Whether or
not this approach may have therapeutic perspectives remains
to be elucidated.

CONCLUSION

In conclusion, biochemical and immunohistochemical data
obtained by using cell and animal (mouse and Drosophila)
models of ALS and other neurodegenerative diseases support the
interpretation that HSPB8 has a prominent role in counteracting
the toxicity of misfolded proteins in MNDs and may be
fundamental in the maintenance of the delicate equilibrium
that regulates the routing of proteins to autophagy and to
the proteasome. This is further suggested by the finding
that HSPB8 and BAG3 are upregulated in the postmortem
tissues from patients affected by several types of protein
conformational diseases, specifically in the regions interested
by neurodegeneration (Anagnostou et al., 2010; Seidel et al.,
2012). HSPB8 may act as a limiting factor in this context, and
its transcriptional induction or functional activation with small
molecules may serve as a potential approach to counteract the
onset and/or progression of these devastating NDs. Despite the
fact that how HSPB8 works at the molecular level and how
its expression is regulated have not yet fully been elucidated,
the current literature highlights its relevance in several NDs,
prompting us to investigate how to exploit the functions of
this chaperone against neurodegeneration. The availability of
safe drugs that are able to induce HSPB8 expression in MNDs
may be the first step to clarify its potential protective role
in these diseases.
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