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Despite advances in the field of dynamic connectivity, fixed sliding window approaches
for the detection of fluctuations in functional connectivity are still widely used. The
use of conventional connectivity metrics in conjunction with a fixed sliding window
comes with the arbitrariness of the chosen window lengths. In this paper we use
multivariate autoregressive and neural mass models with a priori defined ground truths to
systematically analyze the sensitivity of conventional metrics in combination with different
window lengths to detect genuine fluctuations in connectivity for various underlying state
durations. Metrics of interest are the coherence, imaginary coherence, phase lag index,
phase locking value and the amplitude envelope correlation. We performed analysis
for two nodes and at the network level. We demonstrate that these metrics show
indeed higher variability for genuine temporal fluctuations in connectivity compared to
a static connectivity state superimposed by noise. Overall, the error of the connectivity
estimates themselves decreases for longer state durations (order of seconds), while
correlations of the connectivity fluctuations with the ground truth was higher for longer
state durations. In general, metrics, in combination with a sliding window, perform poorly
for very short state durations. Increasing the SNR of the system only leads to a moderate
improvement. In addition, at the network level, only longer window widths were sufficient
to detect plausible resting state networks that matched the underlying ground truth,
especially for the phase locking value, amplitude envelope correlation and coherence.
The length of these longer window widths did not necessarily correspond to the
underlying state durations. For short window widths resting state network connectivity
patterns could not be retrieved. We conclude that fixed sliding window approaches
for connectivity can detect modulations of connectivity, but mostly if the underlying
dynamics operate on moderate to slow timescales. In practice, this can be a drawback,
as state durations can vary significantly in empirical data.

Keywords: dynamic functional connectivity, magnetoencephalography, multivariate autoregressive models,
sliding window, neural mass model

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 797

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00797
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00797
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00797&domain=pdf&date_stamp=2019-08-02
https://www.frontiersin.org/articles/10.3389/fnins.2019.00797/full
http://loop.frontiersin.org/people/482522/overview
http://loop.frontiersin.org/people/55136/overview
http://loop.frontiersin.org/people/15670/overview
http://loop.frontiersin.org/people/649721/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00797 July 31, 2019 Time: 20:8 # 2

Liuzzi et al. Sliding Window MEG Dynamic Connectivity

INTRODUCTION

Large-scale functional interactions in the brain are assumed to
be mirrored by statistical dependencies between time evolving
activity of neuronal populations, which can be quantified
by magnetoencephalography (MEG), electroencephalography
(EEG) and functional (f)MRI. The spatiotemporal patterns of
these functional interactions (functional connectivity) are still
commonly treated in a “static connectivity” sense, i.e., functional
connectivity estimates are obtained by collapsing connectivity
over windows. There is ample evidence that neuronal interactions
appear in spatial clusters or subnetworks that form and dissolute
over time (Breakspear et al., 2004; O’Neill et al., 2015, 2017a;
de Pasquale et al., 2016). By collapsing connectivity over
time windows, we potentially miss crucial information about
the temporal evolution of these clusters. Furthermore, recent
electrophysiological studies have demonstrated that taking into
account the temporal domain of connectivity may give insight
into abnormal brain function in neurological diseases (Stam
et al., 2005; Carbo et al., 2017; Kim et al., 2017; Watanabe and
Rees, 2017). Therefore, there is a need to include the dynamics
of functional interactions into our analysis. In addition, given
the superior temporal resolution of MEG and EEG to fMRI,
these modalities could offer a means to analyze the dynamics of
functional interactions in more detail.

A conventional approach to tackle dynamic functional
connectivity is to use fixed sliding window approaches, i.e., a
window of fixed length is moved in time, using an overlapping or
non-overlapping approach, and “static” connectivity is estimated
within every fixed window (O’Neill et al., 2017b). This approach
comes with the arbitrariness of the window length. Recent
approaches have demonstrated that dynamic connectivity can
be well-described at a variety of time-scales, therefore a fixed
window length may not be appropriate to capture the underlying
fluctuations in connectivity (Baker et al., 2014; Vidaurre et al.,
2016, 2018; Brookes et al., 2018; Tewarie et al., 2018; Tronarp
et al., 2018). In other words, there may be a mismatch between the
temporal scale of the underlying fluctuations and the predefined
fixed window length, potentially leading to erroneous estimates
of connectivity. Nevertheless, studies have used the sliding
window approach during cognitive tasks and also in neurological
disease (O’Neill et al., 2017b). Of special interest in these
studies was the variability of connectivity, which was shown
to relate better to outcome measures, such as cognitive decline
after neurosurgical intervention (Carbo et al., 2017), than static
connectivity information. However, it is known from the fMRI
literature that variability of connectivity does not necessarily
imply that the underlying system is non-stationary or dynamic
(Hindriks et al., 2016; Laumann et al., 2016). Furthermore, most
of the popular functional connectivity metrics have mainly been
systematically evaluated in the static connectivity sense (David
et al., 2004; Wang et al., 2014; Colclough et al., 2016; Dimitriadis
et al., 2018). Therefore, there is a need to understand the
strengths and limitations of commonly used metrics of functional
connectivity when used with a fixed sliding window approach.

In the current work, we systematically analyze the sensitivity
and specificity of the fixed sliding window approach in

conjunction with commonly used connectivity metrics to detect
genuine fluctuations in connectivity. We opted to include
connectivity metrics based on the two important intrinsic modes
of connectivity, i.e., phase- and amplitude based methods (Siegel
et al., 2012). In order to perform this analysis, we require a
system with a known ground truth regarding the strength and
duration of the time varying connections. Given the lack of this
information in empirical MEG data, we employ two models: a
parameterized neural mass model (NMM) (Jansen and Rit, 1995)
and a parameterized multivariate autoregressive model (MAR)
(Neumaier and Schneider, 2001) that both provide a priori
defined ground truths. Simulations are performed for a two node
system and a large scale network. The former allows us to test
the performance of the metrics without any external nuisance
factors, while the latter allows us to test the performance of
the metrics in a more realistic scenario. We first test in a two
node system the null hypothesis that the observed variability of
connectivity estimates can merely be understood in terms of an
underlying static system superimposed by noise. Secondly, we
analyze the correlation between, and error in, the connectivity
estimates compared to the underlying ground truth for different
state durations and window lengths. In other words, are the
different metrics sensitive to the same or different time-scales
of dynamic connectivity? Are results from connectivity metrics
only valid within a limited temporal range? We then test the
ability of metrics to capture the underlying fluctuations in states
for different signal-to-noise ratios (SNR), since shorter window
lengths also come with the limitation of lower SNR. We finally
evaluate in large scale network simulations if connectivity metrics
can retrieve switching between a priori defined resting state
networks over time and whether the spatial connectivity patterns
can be retrieved using non-negative tensor factorization. This is
performed in a system without and with linear mixing (in order
to model signal leakage).

MATERIALS AND METHODS

Multivariate Autoregressive Model
The multivariate autoregressive (MAR) model describes data
observations of a system at time t (Xt) as a linear mapping (A)
of p past observations

Xt =

p∑
τ=1

AτXt−τ + e, (1)

where e is additive Gaussian noise, and p = 2. This autoregressive
model is an infinite impulse response or all-pole linear
filter whose frequency content is determined by the roots
of the polynomial A. These roots can be estimated by an
eigendecomposition of the companion form of the parameter
matrix (Neumaier and Schneider, 2001). Each mode of the
decomposition is defined by a resonant frequency described by
the eigenvalue and a projection into the channels in X described
by the eigenvectors. Each state in the simulations is defined by a
2-node MAR model with a single resonance defined by its eigen-
parameters with a frequency, magnitude and weight in each node.
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The weight into node 1 is held fixed whilst the weight in node
2 varies between 0 and 0.9 to create a phase locked coupling of
different strengths. These eigen-parameters are then transformed
back into the temporal parameter matrix A. New realizations of
the system can then be generated by filtering white noise with
the pre-defined A matrix. Each parameter matrix A produces
time-series with a fixed phase lag between nodes 1 and 2 at a
given coupling strength. Note that this will inherently favor phase
based metrics over amplitude metrics in our simulations. Three
parameter settings were created, corresponding to three states
with low, medium and high coupling strength. Duration of the
states, i.e., duration of ground truth connectivity was determined
by a Gamma distribution. Figure 1 shows an example of the
output of the MAR model. We generated 300 s of data for each
simulation and iteration and all data were band pass filtered into
the beta band (15–25 Hz).

Parameterized Neural Mass Model
Since simulations are characterized by model specific features of
the data that will inherently influence connectivity estimates, we
opted to also use a different model to generate data to assess
generalizability of results across models for the two node system.
At the same time, this gave us the opportunity to analyze a large
scale network with conduction delays. We employed the well-
known Jansen and Rit NMM (Jansen and Rit, 1995). Every unit
in the NMM consisted of an excitatory population, an inhibitory
population, and a pyramidal population whose activity mimicked
the MEG/EEG signal. Simulations were fed with a Gaussian
white-noise process and equations were solved using a stochastic
Heun’s integration scheme with a time step of 1× 10−4 (Tewarie
et al., 2019b). Parameters were the same as used in Grimbert
and Faugeras (2006). We generated data for the working point
of the model well beyond a Hopf bifurcation (i.e., in the limit
cycle regime), with the rationale that no unpredictable switching
could occur between the limit cycle regime and the linear regime
due to noise. Hence, in this way a controllable system for the
analysis of dynamic functional connectivity was achieved. We
first connected two nodes using a structural coupling parameter
k. For the two node system, coupling k was parameterized as a
time-series, instead of a constant as is typically done. Duration
of the states for k, and hence the duration of ground truth
connectivity was again determined by a Gamma distribution. The
parameterization of k was realized in the same way as described
above for the MAR model (with fast, medium, slow and mixed
states). We generated 300 s of data for each simulation and
iteration and all data were band pass filtered into the alpha band
(8–13 Hz). In the second part of the simulations, we simulated
activity for N = 78 nodes, corresponding to the cortical regions in
the automated anatomical atlas (AAL) (Tzourio-Mazoyer et al.,
2002). This number of nodes also roughly matches the potential
number of independent sources for the relatively low spatial
dimensionality of MEG/EEG data (Farahibozorg et al., 2018). To
boost neurobiological realism, we included distance dependent
conduction delays in our simulations (Cabral et al., 2014; Tewarie
et al., 2019b). To this end, the Euclidean distances between
centroids of the parcels in the AAL atlas was used and divided
by conduction velocity (v = 10 m/s). For the large scale network

simulations, we kept k constant throughout the simulations,
but fed the simulations with a structural connectivity tensor
(instead of a structural connectivity matrix). This structural
connectivity tensor had dimensions N × N × T, where refers
T to the duration of the simulation. At every time point the
structural connectivity tensor was characterized by a resting state
subnetwork connectivity state. The resting state networks of
interest were the default mode network (DMN), sensorimotor
network (SMN), the frontoparietal networks (FPN), and the
visual network. The duration of the states was again determined
by a Gamma distribution (with fast, medium, slow and mixed
states). For every time point only one resting state network was
active (see Figure 2), with the other nodes being active, but
not connected. The resting state networks were obtained from
independent component analysis of fMRI data (at the voxel
level) projected onto the AAL atlas in standard MNI space [data
obtained from Tewarie et al. (2016)].

MEG Connectivity Metrics
We employ methods that capture information from two modes
of connectivity, i.e., amplitude and phase based metrics. We
apply connectivity metrics to beta band (MAR) and alpha
band (NMM) filtered timecourses for both amplitude and phase
based metrics (i.e., amplitude envelope correlation, phase locking
value, phase lag index, coherence and imaginary coherence).
The implementation of all the metrics is exactly the same as in
Liuzzi et al. (2017).

1. Amplitude envelope correlation (AEC) (Brookes et al., 2011;
Hipp et al., 2012): The amplitude envelopes are extracted
using the Hilbert transform of band pass filtered data
and the Pearson correlation is computed between the
amplitude envelopes of two pair of regions.

2. Coherence (COH) and Imaginary Coherence (iCO) (Nolte
et al., 2004): Coherency is computed on band pass filtered
timecourses by evaluating

C
(
f
)
=

Sxy
(
f
)√

Sxx
(
f
)
Syy
(
f
) , (2)

where Sxy denotes the cross spectral density for two
timecourses when x 6= y or the auto spectral densities
when x = y. The coherence was computed from the
absolute value of coherency and by averaging over the
frequency band of interest. Imaginary Coherence can
also be extracted from Eq. 2 by simply calculating the
imaginary part of coherency C(f) thus removing zero lag
phase relationships.

3. Phase Locking Value (PLV) (Lachaux et al., 1999)
characterizes a stable phase relationship between
two timecourses within a predefined window. The
instantaneous phases are derived using the Hilbert
transform and the difference between the instantaneous
phases i and j at time t denoted as 1ϕij (t). Phase locking
is subsequently defined as

PLV =
∣∣∣〈ei1ϕij(t)

〉∣∣∣ (3)
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FIGURE 1 | Overview of the multivariate autoregressive model. The cross-spectra (A), state timecourses (B), the two nodal timecourses (C), the coherence between
the two nodes (D) are illustrated. Panel (E) shows the ground-truth probability distributions of the state lifetimes for fast, medium, slow and mixed states, which are
input to the model (note that the y-axis of the mixed states is in logarithmic scale).

4. Phase Lag index (PLI) (Stam et al., 2007): The PLI uses
similar phase information as the PLV but discards zero-lag
phase differences. Unlike the PLV, it merely quantifies the
asymmetry of the phase difference distribution

PLI =
∣∣∣〈sign

(
=

[
ei1ϕij(t)

])〉∣∣∣ . (4)

Extracting Time Varying Networks Using
Non-negative Tensor Factorization
We extracted time evolving subnetworks using non-negative
tensor factorization. This method can be considered as a
higher order principal component analysis and decomposes
a third order tensor into a set of basis vectors (Bro, 1997;
Gauvin et al., 2014)

T =
L∑
l=1

al × bl × cl (5)

Here × corresponds to the outer product, and al, bl and cl
correspond to basis vectors of component l and have dimensions
N (network size) and t (number of time points). In other
words, the outer product of al and bl reflects the connectivity
patterns characterized by the time-series cl. The factorization
of tensor T is found by solving the optimization problem
minA,B,C ‖ T-T

′

A,B,C ‖, with the constraints of orthogonality of
the first two basis vectors (ak, bk), and non-negativity of the last
vectors ck (where T

′

A,B,C is the approximation of TA,B,C). The
N-way toolbox (version 1.8) in Matlab was used for this analysis
(Andersson and Bro, 2000). We set L = 4, given the four resting
state networks that were used in the simulations.

Analysis Steps
In order to analyze the sensitivity of our connectivity metrics
to genuine fluctuations in connectivity, we follow a step-
by-step approach. Analysis is divided into two parts: (1)
simulations for a two node system and (2) simulations for a
large scale network.
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FIGURE 2 | Time evolving activity of resting state subnetworks. We simulated a network of 78 neural mass units, which were connected using structural
connectivities that resembled one of four resting state networks (default mode network, frontoparietal network, sensorimotor network, and a visual network (A)). At
every moment in time only the connections underlying one resting state network were active (B), all other nodes were active but not connected. Note that the
number on the y-axis does not indicate the level of connectivity, but merely the network that was active at any given point in time. At every moment in time we
estimated functional connectivity within an active resting state subnetwork and outside the active resting state subnetwork.

FIGURE 3 | Two node MAR model summary statistics for connectivity in a static vs. fast dynamic underlying system (SNR = 1). Panel (A) shows the standard
deviation of connectivity across the number of windows for the static and dynamic underlying system (pink rectangles correspond to the underlying ground-truth of
the range of the state durations). Panel (B) shows the skewness of the connectivity distributions. Panel (C) shows the kurtosis of the connectivity distributions and
panel (D) the excursions from the median. Shaded areas correspond to the range across realizations/iterations. A red cross corresponds to a significant difference in
distribution between a summary statistic for static and dynamic connectivity (Mann–Whitney test p < 0.01) for the window length of interest.
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FIGURE 4 | Two node NMM model summary statistics for connectivity in a static vs. fast dynamic underlying system (SNR = 1). Panel (A) shows the standard
deviation of connectivity across the number of windows for the static and dynamic underlying system (pink rectangles correspond to the underlying ground-truth of
the range of the state durations). Panel (B) shows the skewness of the connectivity distributions. Panel (C) shows the kurtosis of the connectivity distributions and
panel (D) the excursions from the median. Shaded areas correspond to the range across realizations/iterations. A red cross in each panel corresponds to a
significant difference in distribution between a summary statistic for static and dynamic connectivity (Mann–Whitney test p < 0.01) for the window length of interest.

Two Node System Analysis
Dynamic vs. static connectivity
We first simulated two conditions: (1) two timecourses with an
underlying static connectivity between them, superimposed by
noise, and (2) two timecourses with underlying fluctuations in
connectivity for three different mean state durations (125 ms,
1 s, 3 s, mixed state durations based on the latter three mean
state durations). These different state lifetimes and mean state
durations were obtained by tuning the scale and shape parameters
for a Gamma distribution. Then, for the different metrics we
computed the connectivity using a sliding window approach with
windows 50% overlapping in time, resulting in a distribution of
connectivity values for the entire simulation. We calculated four
summary statistics from the distribution: (1) standard deviation,
(2) skewness, (3) kurtosis, (4) excursions from the median.
The latter three statistics were selected as resulting connectivity
distributions, especially for the “dynamic connectivity case” can
be non-Gaussian. The metric “excursions from the median” has
extensively been described in Zalesky et al. (2014) and Hindriks
et al. (2016), and captures the length and height of all excursions
from the median. The rationale is that, the longer and larger the
excursions from the median, the greater the evidence for non-
stationarity of connectivity. We a priori expected all four metrics
to be larger in the dynamic connectivity case than in the static
connectivity case. A range of window lengths were chosen for
this analysis. For every window we ran twenty iterations. This

was done for both the static connectivity case as well as for the
dynamic connectivity case. The null hypothesis (i.e., observed
variability of connectivity estimates can be fully accounted for
by an underlying static system superimposed by noise) can
be rejected if the summary statistic in the dynamic system
exceeds the summary statistic of the static system. For every
window length we computed the Mann–Whitney test to reject the
null hypotheses.

Detecting genuine fluctuations in connectivity
We evaluated for the different metrics the mean error of the
connectivity estimate. The error was defined as the mean absolute
difference between underlying ground truth and connectivity
estimates. This was again done for different mean state durations
and for a range of window lengths. Similarly, we computed
the Pearson correlation coefficient between the underlying
ground truth and the connectivity fluctuations obtained with
the different metrics. For both outcome measures, prior to
calculation, we interpolated the connectivity estimates using
a cubic spline interpolation. Interpolation was necessary since
there was a dimension mismatch between the underlying ground
truth connectivity timecourses and the connectivity estimates
obtained with the five metrics [i.e., the latter were based on
one estimate for every window, whereas in that window the
underlying connectivity was fully sampled as the data timecourse
(i.e., the ground truth)]. We used non-parametric Friedman
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FIGURE 5 | Two node MAR model summary statistics in connectivity in a static vs. slow dynamic underlying system (SNR = 1). Panel (A) shows the standard
deviation of connectivity across the number of windows for the static and dynamic underlying system (pink rectangles correspond to the underlying ground-truth of
the range of the state durations). Panel (B) shows the skewness of the connectivity distributions. Panel (C) shows the kurtosis of the connectivity distributions and
panel (D) the excursions from the median. Shaded areas correspond to the range across realizations/iterations. A red cross in each panel corresponds to a
significant difference in distribution between a summary statistic for static and dynamic connectivity (Mann–Whitney test p < 0.01) for the window length of interest.

tests to test the effect of window length on the correlations
and mean error (test for repeated measures). This was done in
order to analyze whether a change in the distributions of the
correlations or mean absolute error was significantly different for
subsequent window lengths.

The effect of SNR
We evaluated the effect of different SNR for different mean
state durations on the ability of connectivity metrics to
detect the underlying ground-truth connectivity. Again the
correlation between the estimates and the underlying ground
truths was evaluated.

Network Analysis
Detecting temporal fluctuations of resting state subnetworks
We evaluated whether the connectivity metrics are sensitive
to detect switching of resting state subnetworks over time.
Similar as for the two node system analysis, we temporally
interpolated the estimated functional connectivity data since
there was a dimension mismatch with the dimension of the
structural connectivity tensor (time interval of a window is
reduced to a single estimate for functional connectivity). Again
note that there was only one resting state network active at every
time point (DMN, SMN, FPN or visual), and the duration of
the states (fast, medium, slow, mixed) determined the switching
between four different resting state subnetworks. For every time
point t in the simulation, we tested whether the strength of

within resting state network connectivity exceeded the magnitude
of connectivity outside the resting state network at every point
in time. This was tested for the a priori defined connections
belonging to a resting state subnetwork.

Detecting temporal fluctuations of resting state subnetworks
with linear mixing
The former analysis was repeated in a more realistic scenario.
Source localization for empirical MEG/EEG data usually involves
signal leakage, which manifests itself as a zero-time lag linear
summation of underlying signals. Here, instead of a forward
projection in our simulations from the network source nodes to
sensors and an inverse projection to the sources (Chella et al.,
2019), we opted to implement linear mixing to model such
signal leakage (Lobier et al., 2014). Linear mixing was induced
by adding for a time-series of a node i the weighted activity

of all other nodes using a linear combination, x̃i= xi+
N∑

j,j 6=i

1
dij

xj,

where the weights were chosen as the inverse Euclidean distance
between two nodes i and j. Lastly, prior to the calculation
of the connectivity-metrics that are sensitive to signal leakage
(coherence, amplitude envelope correlation and phase locking
value), we used a symmetric multivariate leakage correction
method to reduce the effects of signal leakage (Colclough et al.,
2015). For the windows and metrics that did show significant
differences in connectivity for the a priori defined connections
within subnetworks and outside subnetworks, we also tested

Frontiers in Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 797

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00797 July 31, 2019 Time: 20:8 # 8

Liuzzi et al. Sliding Window MEG Dynamic Connectivity

FIGURE 6 | Two node MAR model summary statistics for connectivity in a static vs. fast dynamic underlying system (SNR = 3). Panel (A) shows the standard
deviation of connectivity across the number of windows for the static and dynamic underlying system (pink rectangles correspond to the underlying ground-truth of
the range of the state durations). Panel (B) shows the skewness of the connectivity distributions. Panel (C) shows the kurtosis of the connectivity distributions and
panel (D) the excursions from the median. Shaded areas correspond to the range across realizations/iterations. A red cross in each panel corresponds to a
significant difference in distribution between a summary statistic for static and dynamic connectivity (Mann–Whitney test p < 0.01) for the window length of interest.

whether time varying subnetworks could be retrieved from the
data itself using non-negative tensor factorization.

RESULTS

Two Node System: Estimates of Static
vs. Dynamic Connectivity
Fluctuations for dynamic connectivity in our simulations were
characterized by fast, medium, slow and mixed states. Results
are shown for the MAR and NMM models and for an SNR of 1
(Figures 3–5) and for an SNR of 3 (Figure 6) for the MAR model
for the fast states. Figure 3A shows the variability (standard
deviation) of connectivity estimates for the fast dynamic and
the static system as a function of window length. We a priori
expected higher variability for the fast dynamic case, since in its
underlying timecourse of connectivity there was a frequent switch
between three coupling values (low, medium, high connectivity),
whereas for the static case there was constant coupling during the
whole simulation. For all metrics, we could see that for an SNR
of 1 connectivity estimates from a genuine dynamic connectivity
timecourse showed the same variability as connectivity estimates
based on the static connectivity timecourse (Mann–Whitney test
for all windows p > 0.01). For both the static and dynamic
case, variability generally decreased as a function of the window
length. A difference in skewness was observed between static
connectivity (Figure 3B) and dynamic connectivity with higher

skewness for dynamic connectivity for all measures but the
AEC, but usually in window lengths that did not match the
underlying state durations. Note that the positive skewness for
the dynamic case for most metrics indicates that the connectivity
distribution was non-Gaussian. Kurtosis and excursions from the
median were significantly larger for the dynamic connectivity
than for the static connectivity (Figures 3C,D), although for both,
mostly not for the window widths that matched the underlying
state durations. Although note that for the excursions from the
median this was also significant for the correct window lengths.
Simulations based on the NMM for an SNR of 1 and fast state
durations showed similar results for most metrics and summary
statistics (Figure 4). Again, excursions from the median was
significantly higher for dynamic connectivity, especially for the
window widths that matched the underlying state durations.
Similar curves were also obtained for medium (Supplementary
Figure S1), mixed (Supplementary Figure S2) and slow states
(Figure 5) for the MAR model and NMM model (Supplementary
Figures S3–S5), with the difference that especially for slow states
there was a clear divergence in variability, skewness, kurtosis
and excursions from the median between static and dynamic
connectivity (Figure 5) for several window lengths, including
the longer window lengths that matched the underlying state
durations. Note that curves for fast states, medium and slow states
have very similar shapes for both MAR and NMM, indicating that
the form of these curves are largely determined by window length
rather than state durations.
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FIGURE 7 | Mean error and correlation between connectivity estimates and ground truth for the two node MAR and NMM models. Panels (A,B) show the mean
absolute error of the estimated connectivity relative to the underlying ground truth for different state durations and window lengths, and for the MAR and NMM
model, respectively. Panels (C,D) show the correlation between interpolated connectivity estimates and ground truth connectivity timecourse for different window
lengths for the MAR and NMM model, respectively. Pink rectangles show the range of the underlying state durations. Shaded areas correspond to the range.

TABLE 1 | Non-parametric Friedman statistics for all correlation and mean absolute error for all metrics.

AEC PLV PLI COH iCO

χ2(79) p χ2(79) p χ2(79) p χ2(79) p χ2(79) p

MAR model

Fast-states R 213 <0.001 560 <0.001 523 <0.001 234 <0.001 429 <0.001

Fast-states Error 441 <0.001 383 <0.001 413 <0.001 453 <0.001 510 <0.001

Medium-states R 327 <0.001 576 <0.001 575 <0.001 504 <0.001 574 <0.001

Medium-states Error 483 <0.001 530 <0.001 529 <0.001 550 <0.001 557 <0.001

Slow-states R 299 <0.001 444 <0.001 471 <0.001 417 <0.001 462 <0.001

Slow-states Error 451 <0.001 510 <0.001 489 <0.001 515 <0.001 514 <0.001

Mixed-states R 223 <0.001 525 <0.001 523 <0.001 367 <0.001 505 <0.001

Mixed-states Error 261 <0.001 323 <0.001 313 <0.001 369 <0.001 373 <0.001

NMM model

Fast-states R 472 <0.001 595 <0.001 278 <0.001 644 <0.001 259 <0.001

Fast-states Error 307 <0.001 419 <0.001 407 <0.001 186 <0.001 211 <0.001

Medium-states R 642 <0.001 714 <0.001 525 <0.001 719 <0.001 351 <0.001

Medium-states Error 631 <0.001 664 <0.001 590 <0.001 478 <0.001 243 <0.001

Slow-states R 536 <0.001 657 <0.001 541 <0.001 694 <0.001 514 <0.001

Slow-states Error 518 <0.001 559 <0.001 445 <0.001 427 <0.001 175 <0.001

Mixed-states R 572 <0.001 652 <0.001 506 <0.001 691 <0.001 483 <0.001

Mixed-states Error 543 <0.001 531 <0.001 422 <0.001 412 <0.001 174 <0.001

Significance corresponds to a significant change in modulation of the error or correlation with ground truth (R) for different window lengths.
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Having said this, increasing the SNR resulted in a better
disentanglement of dynamic vs. static connectivity with our
conventional metrics. Figure 6 shows the results for fast
states for an SNR of 3. In contrast to results for an SNR
of 1 (Figure 3), the range of the standard deviation for
static and dynamic connectivity start to diverge for most
metrics for even short window lengths (Figure 6A). A clear
divergence between static and dynamic connectivity was also
observed for skewness (Figure 6B), as well as for kurtosis
(Figure 6C) and excursions from the median. Results for
medium, slow and mixed states for an SNR of 3 showed
similar disentanglement of dynamic vs. static connectivity
(see Supplementary Figures S6–S8).

Two Node System: Identifying Genuine
Fluctuations in Dynamic Connectivity
Results in the previous section show that especially for sufficient
long window lengths, metrics could identify higher and genuine
variability for the dynamic underlying system. However, this only
indicates that metrics have some sensitivity to pick up differences
between coupling and uncoupling, it does not indicate whether
the correct duration of the state lifetimes could be captured.
In order to address this, we computed the mean error and
the correlation coefficient between ground truth connectivity
timecourse and (interpolated) estimated connectivity timecourse.
Figures 7A,B displays the mean error for the connectivity
estimates for different metrics and state durations and for
the different models (pink rectangle shows the range of true
underlying state durations). This shows that the error increases
for shorter state durations and for shorter window lengths for
both the MAR and NMM simulations. For medium and slow
state durations there seems to occur a plateau or minimum
for the window lengths that roughly match the duration of
the states. For fast states, there is no clear difference between
the metrics in the window lengths that matches the underlying
ground truth connectivity modulations. However, for slow states
the error of the AEC is larger than for the other metrics
for the MAR model, while for the NMM model the error of
iCO is larger than for other metrics. There was a significant
effect of window length for all metrics and state durations on
the mean absolute error (see Table 1). Similar results can be
observed for the correlation with the ground truth, i.e., the
shorter the state durations, the lower the correlation of the
connectivity estimates with the ground truth (Figures 7C,D).
For short state durations, there is a poor correlation with
the ground truth for all the metrics and for both NMM and
MAR simulations. Again, there are maxima at, or around,
(e.g., for short state durations) the window lengths that match
the underlying state durations. There is no clear difference in
performance for the different metrics in the MAR simulations,
apart from the observation that the AEC underperforms for
longer state durations. Whereas for the NMM simulations the
iCO seem to perform worse for longer and mixed state durations.
Again, there was a significant effect of window length for all
metrics and state durations on the correlation with the ground
truth (see Table 1).

Two Node System: Sensitivity in
Detecting Dynamic Connectivity for
Different SNRs
An important hurdle in the estimation of dynamic connectivity
is the limited SNR of the data due to the inclusion only a
relatively small number of samples. We therefore calculated the
correlation of the connectivity estimates with the ground truth for
various SNRs, and for both models (Figure 8). Results are only
shown for the window length that matches the underlying state
duration, i.e., the most optimal condition. For correlation with
the ground truth the most important observation is that increases
in SNR only lead to moderate increase of the correlation. Note
that for all metrics, state durations and models, an increase in
SNR eventually leads to a plateau where further increases in
SNR hardly affects the correlation with the ground truth. The
imaginary coherence seem to outperform the other metrics for
fast state durations for the MAR model, which is the opposite
for the NMM model. For the MAR model, for lower values of
SNR the AEC seems to perform worse for slow states compared
to the other metrics.

Network Analysis: Detecting Temporal
Fluctuations of Resting State Networks
We extended our two node analysis to a large scale network
analysis. Figure 9 shows the results for neural mass simulations
with an SNR = 3 and without linear mixing. For every mean
resting state subnetwork duration of activity (fast – A, medium –
B, slow – C, mixed states – D), we show functional connectivity
within the active resting state subnetworks and functional
connectivity outside of the resting state subnetworks. For the
AEC, PLV and COH, we can observe that the estimate of
connectivity within the resting state networks is higher than
outside of these networks, especially for longer window lengths.
PLI and iCO fail to show significant higher connectivity within
resting state networks compared to outside network connectivity.
Similarly as for the two node system, the curve of connectivity
versus window length strongly depends on the selected window
length rather than on the underlying duration of activity of the
resting state subnetworks. Note that mostly there was a mismatch
between the window length that showed significant differences
and the underlying state durations, e.g., PLV and COH showed
higher connectivity for resting state subnetworks compared to
connectivity outside the subnetworks for longer window lengths
than the underlying state durations (see Figure 9A). However, for
AEC and PLV this also happens for longer window lengths that
match the underlying dynamics of the slow states.

Network Analysis: Detecting Temporal
Fluctuations of Resting State Networks
With Linear Mixing
We repeated the same analysis as in the previous section for a
connected network of neural mass with linear mixing for different
resting state network durations (fast – A, medium – B, slow –
C, mixed states – D). Results for an SNR = 3 did not show
any significant difference between connectivity within resting

Frontiers in Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 797

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00797 July 31, 2019 Time: 20:8 # 11

Liuzzi et al. Sliding Window MEG Dynamic Connectivity

FIGURE 8 | Correlation between connectivity estimates and ground truth for different levels of SNR for the two node MAR and NMM models. Panels (A,B) show the
correlation between interpolated connectivity estimates and ground truth connectivity timecourse for different levels of SNR for the MAR and NMM model,
respectively. Shaded areas correspond to the range of correlation values.

FIGURE 9 | Within resting state network connectivity vs. outside resting state network connectivity (SNR = 3) based on the NMM model. Curves show mean within
resting state subnetwork connectivity (red curves) and mean connectivity outside the resting state networks (blue curve) for different window lengths, state durations
(duration of activity of the resting state subnetworks (A–D)) and connectivity metrics. Pink rectangles show the range of the underlying state durations. Shaded areas
around the curves correspond to the range of values. A red cross in each panel corresponds to a significant difference in connectivity within vs. outside the resting
state subnetworks (Mann–Whitney test p < 0.01) for the window length of interest.

state networks and connectivity outside resting state networks
(Supplementary Figure S9). Figure 10 shows the result for
SNR = 5. Again, the curve for connectivity versus window is

for all metrics very similar for different state durations, i.e.,
again the window length has a larger effect on estimations of
connectivity than the underlying state durations. Within resting
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FIGURE 10 | Within resting state network connectivity vs. outside resting state network connectivity (SNR = 5) based on the NMM model with linear mixing and
symmetric leakage correction. Curves show mean within resting state subnetwork connectivity (red curves) and mean connectivity outside the resting state networks
(blue curve) for different window lengths, state durations (duration of activity of the resting state subnetworks (A–D)) and connectivity metrics. Pink rectangles show
the range of the underlying state durations. Shaded areas around the curves correspond to the range of values. A red cross in each panel corresponds to a
significant difference in connectivity within vs. outside the resting state subnetworks (Mann–Whitney test p < 0.01) for the window length of interest.

FIGURE 11 | Estimated spatial patterns of time varying networks using non-negative tensor factorization. Results are shown for an SNR = 5 in a NMM model with
linear mixing and symmetric leakage correction and for a window length of 4 s with slow underlying state durations. The upper row (A) shows estimated networks for
the AEC (amplitude envelope correlation). The second row (B) shows estimated networks for the PLV (phase locking value), while the third row (C) shows estimated
networks for the COH (Coherence). The upper 3% of the connections within each component is illustrated. Note that for all metrics some of the a priori defined
networks could be retrieved. A priori defined networks were the default mode network (DMN), the sensorimotor network (SMN), the frontoparietal networks (FPN)
and the visual network (see Figure 2).
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state connectivity is again higher for the AEC, PLV and COH,
especially for longer window lengths. The window length for
which there is significant difference between within resting state
connectivity and connectivity outside the networks is on average
longer than without linear mixing and symmetric leakage.

For the AEC, PLV and COH, we tested for window
lengths of 4 s whether we could retrieve the spatial patterns
of the a-prior defined resting state networks. i.e., the DMN,
the SMN, the FPN and the visual network (Figure 2).
Figure 11 shows the spatial patterns of the estimated time
varying networks for the slow states. Components estimated
from AEC resembled three a priori defined networks, while
components extracted from the PLV resembled two apparent
resting state networks, and for COH three clearly recognizable
networks could be obtained. For example, for the AEC, non-
negative tensor factorization retrieved a FPN with predominantly
connections on the right, the visual network, default mode
network, but no clear sensorimotor network. For the PLV we
could observe a sensorimotor network and visual network,
and a network reminiscent of the default mode network.
Lastly, for the COH we could observe a clear visual network
and two networks that had some spatial characteristics of
the sensorimotor and FPN. To emphasize our previous
analysis (shown in Figure 10), we could not identify clear-
cut networks for medium states and window lengths of
1 s for all the metrics, though the visual network was an
exception (see Supplementary Figure S10). As was also
hinted in Figure 10, for medium states, extraction of resting
state networks improved for using longer windows (see
Supplementary Figure S11), though networks were not as clearly
recognizable as for slow states.

DISCUSSION

Despite advances in the field of dynamic connectivity, fixed
sliding window approaches in conjunction with conventional
metrics are still widely used to identify dynamic connectivity.
Given the lack of ground truth in empirical MEG data, we
used simulations based on parameterized MAR and NMM
models informed by predefined timecourses of connectivity.
We performed a step by step analysis in a two node system
and in a large scale network. Two node analysis revealed that
SNR should be sufficiently large in order to distinguish static
connectivity from dynamic connectivity. Especially excursions
from the median was the most sensitive measure to distinguish
dynamic connectivity from static connectivity. All connectivity
metrics, performed well to detect fluctuations in slow dynamic
states and to some extent medium dynamic states. However,
the identification of fast underlying ground truth states (mean
state duration 125ms) was poor for all metrics. An increase in
SNR resulted in only a moderate increase in identification of the
ground truth connectivity timecourses. Network analysis indeed
underscored that resting state networks could only be retrieved
for sufficient levels of SNR and long state durations.

Variability has often been used as the outcome measure
to quantify the dynamics of connectivity. In the current

work variability was quantified by the standard deviation of
connectivity across estimates from all sliding windows (with
a constant width). Here, we show that variability unequal to
zero in itself does not necessarily imply evidence for a dynamic
underlying system (Figure 3). For both static and dynamic
connectivity there was high variability for short window lengths,
indicating that high variability can merely be an artifact of
the window length. Also note that high variability for short
states (Figure 3A) could co-occur with poor identification of the
underlying connectivity timecourse (Figures 7C,D). Especially,
for low SNR (SNR < 3), for fast and medium states variability
could hardly distinguish genuine dynamic connectivity from
static connectivity. Another hurdle with the use of the standard
deviation of connectivity is that the connectivity distributions
are mostly non-Gaussian, as evidenced by non-zero skewness.
The skewness of the distribution was a more sensitive statistic
to detect differences in static vs. dynamic connectivity, especially
for the phase based metrics, though the window lengths for
which this occurred did not necessarily match the underlying
state durations. The kurtosis was found to be less useful in
disentangling dynamic from static connectivity, while excursions
from the median was sensitive for detecting genuine fluctuations
in connectivity, especially for the window widths that match the
underlying state duration. However, note that for both skewness
and excursion, their magnitude is highly influenced by the
width of the window.

Unlike in empirical data, we could test the performance of
the metrics with an underlying ground truth. Results were fairly
similar for the MAR and NMM simulations. All conventional
metrics performed poorly when the ground truth contained fast
states, as their correlation with the underlying ground truth
timecourse was low. In other words, metrics are unable to
quantify very brief states in a fixed sliding window approach.
This therefore limits the use of fixed sliding window approaches
for the detection of fast states. Our results showed that sliding
window approaches are safe to use if the underlying states are
at least of medium duration. Even an increase in SNR could not
significantly improve the performance of the metrics for the fast
states, implying that the low performance is not only related to
SNR but also to the properties of the metrics. Recent studies
have shown that in empirical resting state data fluctuations in
amplitude and phase coupling can be well-described in a range
from a few hundred milliseconds to seconds (Baker et al., 2014;
Tewarie et al., 2018; Vidaurre et al., 2018). We mimicked this
by the mixed state condition, which actually also show very
moderate correlation for different metrics with the underlying
ground truth, indicating that there is high uncertainty in
detection of the underlying connectivity. Finally, the correlation
with the ground truth was usually maximal for window lengths
that more or less matched the state durations (except for
longer state durations). A mismatch between window length and
underlying state duration also led to a drop in correlation with
the ground truth. This emphasizes the problem of an arbitrary
window length for the estimation of dynamic connectivity with
unknown, and most likely varying, state durations.

Another important observation is that one would beforehand
expect that phase-based metrics would perform better for
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faster states, whereas the amplitude envelope correlation would
perform better for slower states, since the amplitude envelopes
modulates on slower timescales than the phases. This was
especially obvious for the network simulations, where PLV and
coherence were sensitive in detecting medium state durations,
while AEC was only able to detect network connectivity for
slow and mixed state durations. However, at the same time,
this notion requires caution since performance of metrics seem
to depend on the type of simulation (MAR vs. NMM). For
example, in the MAR model, there is explicit parameterization
of phase locking, which would favor estimates of phase locking
over amplitude-amplitude coupling. Potentially, differences in
MAR and NMM results could also be explained by differences
in the intrinsic frequencies of the oscillations, i.e., beta band
oscillations in MAR vs. alpha band oscillations in NMM.
This may also explain the observed difference in performance
of imaginary coherence for NMM vs. MAR simulations.
Also note, that for most simulations, performance of metrics
nearly converge for sufficient SNR or longer window lengths
(see Figures 7, 8).

Our two node analysis was extended to a more realistic
large scale network scenario. For simulations without linear
mixing and leakage correction, metrics that were inherently
sensitive for leakage, AEC, PLV and coherence were sensitive
in detecting genuine fluctuations in connectivity. Coherence was
even sensitive to detect within resting state network connectivity
for medium state durations for windows that matched these
state durations. However, this was also the case for longer
window lengths that did not match the underlying state
duration. Thus this indicates that significant higher connectivity,
for a resting state network for a specific window length,
does not necessarily imply that the underlying duration of
temporal varying connectivity has the same temporal scale
as the window width. Especially slow states were detectable
by the AEC, PLV and COH for longer window widths.
For the scenario with linear mixing and symmetric leakage
correction, results showed that to extract meaningful resting
state networks, we usually required longer windows, especially
for the AEC. This finding is in line with empirical work, where
meaningful time varying networks for AEC could be extracted
during a working memory task for longer window widths
(O’Neill et al., 2017a).

Some methodological issues warrant further discussion.
A limitation of the current work is that our simulations are
not necessarily a direct representation of electrophysiological
data. However, a methodological issue with empirical data is
its lack of ground truth. Connectivity analysis with empirical
data would require the use of surrogate data (Dimitriadis et al.,
2018). Previous work has illustrated that the choice and selection
of surrogate methods is not trivial (O’Neill et al., 2017b) and
conclusions regarding non-stationarity of connectivity based on
surrogate data can be highly biased by the selection of the
method itself. Extensive analysis of various surrogate methods
in the context of dynamic connectivity is beyond the scope
of this paper, but should surely be explored in future work
(Dimitriadis et al., 2018). Another limitation is that other metrics
of functional connectivity such as mutual information (Palus,

1997) or measures that characterize generalized synchronization,
such the synchronization likelihood (Stam and Van Dijk,
2002), as well as metrics that estimate directed connectivity
(Nolte et al., 2010; Lobier et al., 2014) were not included in
our analysis. Here, we restricted our analysis to frequently
used (and computationally inexpensive) phase- and amplitude-
based functional connectivity metrics. In addition, ideally the
effects of co-registration, lead field inaccuracies, and effects of
inverse operator would also be simulated (Hincapié et al., 2017;
Chella et al., 2019). However, these errors lead to reduced
amplitude of the reconstructed signal. As a surrogate, and
in order to reduce the number of simulations, these effects
can be observed by examining the effects of SNR on our
results. Lastly, network simulations were only performed for
the NMM, since to boost neurobiological realism, we could
implement distance dependent conduction delays. Implementing
these distance dependent delays is not trivial in a linear
MAR model, and therefore the MAR model was not used
for this purpose.

In conclusion, we have demonstrated the strengths and
limitations of metrics based on the two intrinsic modes of
coupling (amplitude and phase) with regards to the detection
of genuine fluctuations in functional connectivity. Fixed sliding
window approaches have difficulty in detecting brief states, even
when using short window lengths. Increasing SNR does not
mitigate this sufficiently, especially for large scale networks. We
therefore recommend the use of longer window lengths (at
least 3–4 s) to estimate fluctuations in functional connectivity
of resting state networks. Our simulations showed that PLV,
AEC and coherence outperform imaginary coherence and PLI,
which might advocate for the use of the former three metrics for
the estimation of dynamic functional connectivity. Furthermore,
an often used metric to quantify dynamic FC, variability, also
comes with difficulties: high variability could co-occur with low
correlation with the ground truth and can be an artifact of
the used window length. Given the non-Gaussianity of most
connectivity distributions, skewness may be a more appropriate
metric to quantify genuine fluctuations in connectivity and in
addition, excursions from the median could also be used in
this context. However, again the magnitude of these metrics
can be merely an artifact of the selected window length, and
these metrics provide only meaningful information if they are
tested against a null-hypothesis of static connectivity. Caution
is therefore warranted when using these outcome measures
in empirical data.
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