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Closed-loop or intelligent neuromodulation allows adjustable, personalized

neuromodulation which usually incorporates the recording of a biomarker, followed

by implementation of an algorithm which decides the timing (when?) and strength

(how much?) of stimulation. Closed-loop neuromodulation has been shown to have

greater benefits compared to open-loop neuromodulation, particularly for therapeutic

applications such as pharmacoresistant epilepsy, movement disorders and potentially

for psychological disorders such as depression or drug addiction. However, an important

aspect of the technique is selection of an appropriate, preferably neural biomarker.

Neurochemical sensing can provide high resolution biomarker monitoring for various

neurological disorders as well as offer deeper insight into neurological mechanisms.

The chemicals of interest being measured, could be ions such as potassium (K+),

sodium (Na+), calcium (Ca2+), chloride (Cl−), hydrogen (H+) or neurotransmitters such

as dopamine, serotonin and glutamate. This review focusses on the different building

blocks necessary for a neurochemical, closed-loop neuromodulation system including

biomarkers, sensors and data processing algorithms. Furthermore, it also highlights the

merits and drawbacks of using this biomarker modality.

Keywords: neurochemical monitoring, closed loop neuromodulation, deep brain stimulation (DBS), vagus nerve

stimulation (VNS), FSCV, chemometrics

1. INTRODUCTION

The idea of treating intractable diseases with little or no known pharmacological interventions
through the nervous system has led to a new area of therapeutic treatment, known as electroceuticals
or bio-electronic medicine (Kristoffer et al., 2013). The therapeutic effects of electroceutical
techniques are observed by modulating signals on the nervous system through external agents
such as electrical stimulation. This process is known as neuromodulation. Current applications
of electroceuticals target diseases such as Parkinson’s disease (Tass, 2003; Benabid et al., 2009; Ebert
et al., 2014), epilepsy (Amar et al., 2008), depression (Landau et al., 2015), diabetes (Shikora et al.,
2013), inflammation (Borovikova et al., 2000; Tracey, 2002; Li et al., 2016), auto-immune diseases
such as Crohn’s disease (Bonaz et al., 2016), regulation of blood pressure (Hosokawa and Sunagawa,
2016) and obesity (Payne et al., 2018).
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Closed-loop neuromodulation has been shown to be clinically
more effective than open-loop neuromodulation (Sun and
Morrell, 2014), under certain conditions. To implement a closed-
loop neuromodulation paradigm, important aspects to consider
are identifying the relevant neural biomarker, identifying the
optimal location(s) for monitoring the biomarker and electrical
stimulation, respectively, implementing the sensing methodology
and instrumentation for the biomarker, followed by signal
processing to differentiate the biomarker responses from
background interferences, decision and dose tuning algorithms
to determine when and how much to stimulate.

Traditional biomarkers for closed-loop neuromodulation
include electrical neural signals such as action potentials (AP)
or local field potentials (LFP), with many devices providing high
channel count neural recording and processing (Zhou et al.,
2019). There have also been recent efforts to incorporate high-
resolution stimulation through optogenetic methods (Mickle
et al., 2019). Non-neural biomarkers such as electrocardiography
(ECG), electromyography (EMG) signals have also been used,
particularly in epilepsy and movement disorders (Sun and
Morrell, 2014), either as a direct or as an adjunctive biomarker.

For example, in Parkinson’s disease, excessively
synchronized neural activity is a crucial sign of Parkinson’s.
A technique, Coordinated Reset Stimulation (CRS) which
seeks to desynchronize this abnormal synchronization by
computationally modeling stimulation, is gaining traction.
The unique advantage is that, the stimulus could be invasive
electrical (Tass, 2003) or even non-invasive sensory stimulation
such as somatosensory or vibrotactile stimulation. This
review is primarily focussed on neurochemical biomarkers for
closed-loop systems.

Neurochemical recording is an emerging form of neural
recording, where ionic species or neurotransmitters, present
inside neurological systems are monitored. Neurochemical
monitoring has multiple advantages over traditional electrical
neural recording including higher specificity in comparison
to traditional electrical recording of neural activity, lesser
interference from other signals such as EMG or heart rate
(Cork et al., 2018) and possibility to detect inhibitory and
excitatory neural activity by monitoring the concentration of
specific neurotransmitters (Wightman et al., 1988).

In recent years, there has been significant traction in the
pursuit of neurochemical closed-loop feedback in deep brain
stimulation (DBS). A recent National Institute of Health (NIH)
grant was aimed at exploring neurochemical recording for DBS
applications (NIH, 2014). Another interdisciplinary seed grant
was recently awarded by Stanford Bio-X, which is aimed at
developing neurochemical closed-loop DBS system for treating
psychiatric disorders (Stanford-Bio-X, 2018).

DBS is an invasive electrical stimulation therapy used to
treat neurological disorders such as Parkinson’s Disease (Krack
et al., 2003; Bittar et al., 2005; Beuter et al., 2014), essential
tremor (Koller et al., 1999; Rehncrona et al., 2003; Flora et al.,
2010), chronic pain (Marchand et al., 2003; Owen et al., 2006;
Boccard et al., 2015), and dystonia (Vidailhet et al., 2005, 2013).
Although the therapeutic effects of DBS for symptomatic relief in

Parkinson’s is well appreciated, the inherent mechanisms are still
not well understood.

The standard protocol in DBS is to follow a trial and error
technique, whereby a given set of stimulation parameters are
tested on-the-fly by the neurosurgeon during surgery (Volkmann
et al., 2002). For instance, in the case of a patient with
essential tremor, the feedback signal is to observe the amplitude
of the tremor while the stimulation is on (Volkmann et al.,
2002). Although numerous simulations have been performed in
modeling the effect of stimulation on the surrounding neural
tissue (Yousif et al., 2010, 2012; Golden et al., 2013), one
cannot be sure of the nature of excitation or inhibition that
is being introduced in the local neural network for a given
therapeutic outcome in vivo. There are two potential feedback
loops within DBS; electrical activity of the neural network, and
neurochemical activity. In the former category, there are studies
that are advancing the technology to a closed-loop system (Priori
et al., 2013; Rosa et al., 2015), whereby the electrical activity of the
surrounding population of neurons is used as a feedback signal.
However, as this method relies on detecting electrical signals
from surrounding neurons, it is highly susceptible to significant
stimulation artifacts from the proximal stimulation electrode.

In comparison, a neurochemical feedback system measuring
ions and neurotransmitters, has potential to gain a more nuanced
picture of the effect of DBS, on the surrounding neural tissue.
Indeed, efforts are being made in this endeavor, primarily in
the development of the WINCS system (Chang et al., 2013;
Grahn et al., 2014), a single channel, wireless, neurochemical
feedback system for DBS. This technology has been advanced
to a multichannel feedback loop in WINCS Harmoni (Lee et al.,
2017), which has so far proven effective in rodents and swine.

Hence, this review is focused on describing the building blocks
for a neurochemical closed-loop system. It describes briefly,
the different neurochemical biomarkers that could be used in
different neurological diseases and the sensing methodologies
that have been used for these neurochemicals. It primarily focuses
on processing algorithms for decision making and dose-tuning.

In this paper, section 2 describes various neurochemical
biomarkers and respective optimal recording/stimulation loci
for different neurological disorders. Section 3 describes different
sensing methodologies that can be used to monitor various
neurochemical biomarkers. The different steps required to
implement an intelligent, implantable neuromodulation system
are described in section 4. Discussion and Conclusions related
to the above mentioned topics are presented in sections
5 and 6, respectively.

2. NEUROCHEMICAL BIOMARKERS

Both ions, such as Na+, K+, Ca2+, Cl− and, neurotransmitters
can be used as biomarkers for various neurological disorders
(Figure 1). This section describes activity dependent ion
and neurotransmitter dynamics under various neurological
disorders, which can be used as potential disease biomarkers
for use in intelligent neuromodulation systems. The biomarkers
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FIGURE 1 | (A) A typical neuron shows ionic and neurotransmitter transients induced due to neural activity. (B) The action potential propagation across the axon

leads to ionic transients. The activation of the Na+/ATPase and Ca2+/ATPase leads to extracellular acidification and extracellular alkalinization, respectively. (C)

Neurotransmitters are released into the synaptic cleft during propagation of neural response across neurons. (D) The two classes of neurochemicals i.e.,

neurotransmitters and ions can be detected using electrochemical methods such as voltammetry and potentiometry, respectively.

listed in Table 1 were selected based on the following criteria,
(a) a direct correlation between the biomarker and the clinical
symptoms of the neurological disease has been observed, (b) the
biomarker also reflects the effect of stimulation and hence can
indicate the state of neurological disease after neural stimulation.

2.1. Ions
The brain is surrounded by extracellular fluid known as the
cerebrospinal fluid (CSF), which nourishes the neural tissues with
nutrients and performs waste removal. It is mainly composed
of water, protein, glucose and ions such as Na+, K+ etc. A
recent review has highlighted covered changes in ion dynamics
during onset and duration of seizures (Raimondo et al., 2015).
In addition to Na+/K+, changes in pH have also been detected
in glial cells, astrocytes, the cerebellum and the retina in
relation to neural activity and also due to electrical stimulation
(Makani and Chesler, 2010).

Neurochemical studies in peripheral nerves are very rare,
or are at a preliminary stage. They are primarily directed
toward detection of ions only. This is because the PNS
is composed primarily of axons with cell bodies elsewhere.
The earliest known in vitro studies demonstrate the presence
of extracellular pH change in unmylineated nerve fibers
only (Bostock and Grafe, 1985; Bostock et al., 1998). The

reported pH changes were in response to electrical stimulation.
However, no such work was carried out in vivo and in
response to physiological stimulation, such as the release
of a specific hormone. Recently, we demonstrated in vivo,
the presence of extracellular pH changes in response to
intravenous injection of gut hormone cholecystokinin-8 (CCK)
(Cork et al., 2018).

2.2. Neurotransmitters
Another viable class of neurochemical biomarkers are
neurotransmitters. The following section will examine the
neurotransmitters dopamine, serotonin, acetylcholine, and
glutamate, each in brief, with respect to their links with
neurological disorders.

2.2.1. Dopamine
Within the central nervous system (CNS), the dopaminergic
system plays a key role in multiple functionalities including,
working memory (Bubser and Schmidt, 1990; Sawaguchi et al.,
1990; Sawaguchi and Goldman-Rakic, 1994; Zahrt et al.,
1997, reward (Koob, 1992), and locomotion (Whishaw and
Dunnett, 1985). The malfunction of this system is linked
to a number of neurological disorders including Parkinson’s
Disease (Lotharius and Brundin, 2002), schizophrenia (Winterer
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TABLE 1 | Summary of neurological diseases/conditions and their corresponding potential biomarkers.

Neurological condition Neural biomarker Recording site References

Parkinson’s Disease Dopamine SNc Lotharius and Brundin, 2002

Glutamate SNc Johnson et al., 2009,

K+, Na+, Ca2+, Cl− StN Bittar et al., 2005

Schizophrenia Dopamine Prefrontal Cortex

Mesolimbic Pathway

Winterer and Weinberger, 2004;

Brisch et al., 2014

Cocaine Addiction Dopamine Nucleus Accumbens Groppetti et al., 1973; Volkow et al., 2006

Amphetamine Addiction Dopamine Nucleus Accumbens Groppetti et al., 1973

Stress Dopamine Ventral Hippocampus Pani et al., 2000; Lodge and Grace, 2011

Essential Tremor K+, Na+,Ca2+, Cl− Ventral Intermediate Nucleus Krack et al., 2003; Bittar et al., 2005

Chronic Pain K+, Na+,Ca2+, Cl− Ventral Posterolateral Nucleus Marchand et al., 2003

Ventral Posteromedial Nucleus

Dystonia K+, Na+,Ca2+, Cl− Globus Pallidus Internus Krack et al., 2003; Bittar et al., 2005

Dementia Serotonin Prefrontal Cortex (Orbitofrontal, Huey et al., 2006

Frontal Medial and Cingulate

cortices

Anxiety Serotonin * Murphy et al., 2008

Migraine Serotonin † Kowalska et al., 2016

Epilepsy Serotonin Raphe Nucleus Theodore, 2003

Ipsilateral Thalamus

(to epileptic foci)

Multiple Sclerosis Serotonin Lumbar Cerebral Spinal Fluid Hesse et al., 2014; Malinova et al., 2018

Amyotrophic Lateral Sclerosis Serotonin Thoracic Cerebral Spinal Fluid Sandyk, 2006

Depression Serotonin ‡ Manji et al., 2001

Alzheimer’s Disease Acetlycholine Basal Forebrain Mufson et al., 2008

(*) Current link between serotonin and anxiety is based on measurements of the transporter SERT or the effect of Serotonin Reuptake Inhibitors (SRIs) to ameliorate symptoms of anxiety.

(†) Link with serotonin was through effect of serotonin receptor (specifically HT1B and 5-HT1D) inhibition on migraines and also links with genetic polymorphisms related to serotonin

that correlate with migraine propensity. (‡) The link between serotonin and depression is through the therapeutic effects of anti-depressants that increase intrasynaptic serotonin and

the fact that protocols that deplete monoamines (such as serotonin) have a tendency to precipitate depression . Hence more research is required in order to determine an isolated part

of the brain, as yet to measure serotonin in order to provide a direct link.

and Weinberger, 2004; Brisch et al., 2014), and addiction
(Koob, 1992; Volkow et al., 2006).

In Parkinsonian patients, the substantia pars compacta
(SPc) experiences a substantial loss of dopaminergic neurons,
which in turn, affects dopamine levels throughout brain
regions that receive projections from this area (Lotharius
and Brundin, 2002). Dopamine is also used as a reward
signal in the brain (Ikemoto, 2007). This system is amplified
in amphetamine and cocaine addiction. These substances
block dopamine re-uptake and increase dopamine turnover.
Furthermore, amphetamine has been shown to directly
increase the release of dopamine (Groppetti et al., 1973). There
has also been evidence for the role of the dopaminergic
system in the stress response. During stress, there is a
strong increase in dopaminergic activity (Pani et al., 2000;
Lodge and Grace, 2011). Interestingly, a combination of
evidence from the above neurological disorders shows
a link between dopamine and gastric ulcers (Rasheed
and Alghasham, 2012), possibly indicating a link between
neurological conditions and the gut, through the gut brain axis.
In incidences whereby dopaminergic activity is increased, such
as schizophrenia, the incidence of gastric ulcers is significantly
lower (Ozdemir et al., 2007).

2.2.2. Serotonin
Serotonin has a modulatory effect across numerous biophysical
functions such as arousal (Trulson and Jacobs, 1979), stress
(Carhart-Harris and Nutt, 2017), aggressiveness (Lucki, 1998).
The malfunction of the serotonergic system has been linked
to neurological disorders such as frontotemporal dementia
(Huey et al., 2006), epilepsy (Theodore, 2003), multiple sclerosis
(Davidson et al., 1977), amyotrophic lateral sclerosis (Sandyk,
2006), depression Manji et al., 2001), and migraines (Kowalska
et al., 2016). These disorders are typically characterized by a
decreased serotonin level. Interestingly, in cases of depression,
the therapeutic effects of increasing the level of serotonin,
through administration of serotonin re-uptake inhibitors (SRIs),
are often only seen after chronic administration for weeks.
This would indicate, that it is in fact, the downstream effects
of increased serotonin that produce the therapeutic effect
(Manji et al., 2001). There have also been links found between
decreased serotonin levels and the pathogenesis of fronto-
temporal dementia (Huey et al., 2006).

2.2.3. Glutamate
Glutamate is a key neurotransmitter in the basal ganglia motor
circuit and as such, it has been linked with neurological disorders
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associated with the malfunction of elements of the basal ganglia,
such as Parkinson’s Disease. Indeed, the administration of
glutamatergic receptor antagonists have shown promising results
in the treatment of Parkinson’s Disease in animal models (Breysse
et al., 2002, 2003; Ossowska et al., 2005). The therapeutic effect
is thought to be due to two mechanisms; (i) the improvement
of adverse motor symptoms of Parkinson’s Disease through the
direct effect on glutamatergic receptors in the basal ganglia, and
(ii) the inhibition of glutamatergic transmission is thought to
have a protective effect against neurodegeneration, which may
slow down the loss of dopaminergic neurons in the substantia
pars compacta (Johnson et al., 2009).

2.2.4. Acetylcholine
The cholinergic system has a key role in the modulation of
inflammation in the body. As such, neurological disorders that
exhibit inflammation such as multiple sclerosis (Mahad et al.,
2015) and Alzheimer’s Disease (AD) (Eikelenboom et al., 2000),
are thought to be linked to abnormalities in the function of
the cholinergic system. In post-mortem analysis of patients
with Alzheimer’s Disease, there is a clear loss of cholinergic
neurons (Mufson et al., 2007), and a significant reduction
in cholinergic enzymes, choline acetyltransferase (ChAT) and
acetyl-cholinesterase (AChE) (DeKosky et al., 1992). Moreover,
much of the cognitive decline that is seen in patients with AD has
been attributed to the loss of cholinergic function across the CNS
(Mufson et al., 2008).

3. NEUROCHEMICAL SENSORS

Neurochemical sensing methods employ primarily bio-
electrochemical sensors which are easy to miniaturize and
provide label free detection. The underlying chemical reaction
involves a redox reaction at the electrode-electrolyte interface
(EEI) or through impedance spectroscopy. If a redox reaction is
involved, the redox current absorbed by the electrode provides
a transduction pathway for the detection and measurement of
various analytes. In sensors involving impedance spectroscopy,
it involves adhesion or encapsulation of the target biomarker
to the surface is needed, resulting in a change in impedance
at the EEI.

Traditional chemical detection methods such as microdialysis
have more specificity but are less feasible to implant and offer
less temporal and spatial resolution (Rodeberg et al., 2017).
The Carbon Fiber Microelectrodes (CFM), invented by Gonon
et al. (1980), have been widely used in in vivo electrochemical
recording and are also twenty times smaller than microdialysis
probes. This results in less damage to the nervous system when
CFM electrodes are inserted (Peters et al., 2004). Due to smaller
electrode size, electrochemical techniques are able to offer higher
temporal and spatial resolution. Additionally, smaller electrode
size also leads to reduced signal distortion due to diffusion when
dynamic events are being recorded (Wightman et al., 1988). For
instance, it has been demonstrated that it is possible to detect
non-evoked dopamine activity associated with electrical neural
activity of dopaminergic fibrs (Robinson and Wightman, 2004).
This was previously impossible to detect using microdialysis due

to diffusion related loss of temporal resolution across the dialysis
membrane (Michael and Borland, 2006). Recently, for smaller
dimension neural tissue such as nerves, small dimension Iridium-
Iridium Oxide (Ir/IrOx) electrodes have been used to perform
potentiometric measurements for pH (Cork et al., 2018).

Hence, electrochemical detection of neurochemicals has the
advantages of being a microscale, implantable electrode with
high spatial and temporal resolution. The trade-off is low
biomarker specificity compared to microdialysis techniques.
Also, continuous in vivo recording is generally accompanied by
drift and background activity which needs to be separated in
order to extract the signal of interest.

It is important to note that electrochemical techniques
are only able to measure change with respect to an unknown
baseline. This is a common drawback in all electrochemical
methods, as in a static environment, it is difficult to
differentiate the contribution due to charging and faradaic
currents. Next generation techniques are aiming to measure
the basal dopamine level as highlighted in a recent review
(Bucher and Wightman, 2015).

In this section, we review different electrochemical methods
employed in measuring neurochemicals, shown in Figure 2, i.e.,
amperometry, cyclic voltammetry (CV), electrical impedance
spectroscopy (EIS) and potentiometry. Amperometry and CV
require three electrodes, consisting of a working electrode
(WE), reference electrode (RE) and counter electrode (CE).
Potentiometry requires two electrodes consisting only of WE
and RE. EIS can be performed using two or more electrodes.
The analog front-end circuits required to acquire electrochemical
signals have been described in a recent review (Li et al., 2017).

3.1. Voltammetry
Voltammetric detection involves the measurement of redox
current when a varying cyclic or periodic potential is applied
between theWE and RE. The applied potential should be enough
to trigger the redox reaction. The current between the RE and CE
is proportional to the number of electrolysed molecules, which in
turn is indicative of concentration.

3.1.1. Fast Scan Cyclic Voltammetry
In Fast Scan Cyclic Voltammetry (FSCV), a variable voltage,
typically having a triangular waveform profile, is applied between
the working and reference electrode. The voltage range and scan
rate is dependant on the analyte of interest. For example, the
parameters used for dopamine are −0.4V to +1.3V at a scan rate
of 400 V/s, with a frequency of 10 Hz. The FSCV parameters used
for detection of various neurochemicals are listed in Table 2.

The fast voltage scan leads to charging of the double layer
capacitive-resistive interface at the electrode surface. This leads
to large background current which needs to be subtracted in
order to resolve the current generated due to the dopamine
redox reaction. The cyclic voltammogram profile is unique to
each neurotransmitter and the neurotransmitter concentration
can be resolved based on current peaks and calibration factors
obtained during the standardization process. Calibration could
be done using a flow injection system for various analytes
such as dompamine pre and post experiment (Venton et al.,
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FIGURE 2 | Different electrochemical methods (A) Amperometry: where a constant potential difference is applied between the working electrode (WE) and reference

electrode (RE). The current between the WE and counter electrode (CE) is monitored as is an indication of the analyte concentration as the reaction progresses.

(B) Cyclic Voltammetry: The potential difference between the WE, RE is changed periodically and the current between WE and CE is monitored. (C) Impedance

Spectroscopy: Based on the modality, the impedance of an analyte is measured based on voltage applied between WE, RE and the current through CE.

(D) Potentiometry: The potential difference between WE and RE is measured without applying any external potential difference.

TABLE 2 | FSCV parameters for detecting various neurochemicals, performed usually at a frequency of 10 Hz.

Analyte Resting potential Scan rate Voltage range References

(V) (V/s) (V)

Dopamine −0.4 −0.4 — +1.0/+1.3 400 Venton et al., 2003; Park et al., 2011

Norepinephrine −0.4 −0.4 — +1.3 400 Park et al., 2011

Serotonin 0 +1.2 —0.6 300 John and Jones, 2006

Oxygen 0 +0.8 —1.4 300 Venton et al., 2003

2003), to calculate electrode sensitivity. In addition to peak
current, other features/parameters that can be used to distinguish
voltammograms from different analytes, are rise time and half
decay time.

CFM can be pre-treated so that oxidation currents can
be resolved at different points under the potential axis. The
selectivity of these electrodes can be further improved with the
help of a polymer coating called Nafion, which is a sulfonated
derivative of teflon (Gerhardt et al., 1984). Fixed anionic sites
present in the Nafion membrane help in preventing anionic
substances such as urate, ascorbate and acidic metabolites of
monoamine neurotransmitters, from reaching the electrode
surface and producing interference. This feature also reduces
biofouling of the electrode (Turner et al., 1991).

3.1.2. High Speed Chronoamperometry
In chronoamperometry, the WE is held at a constant potential
where no reaction is happening and the potential is stepped
up to a different potential. This results in the initiation of an
electrochemical reaction, upon which the current due to the
reaction is measured. There are a variety of pulsed voltage
techniques to detect neurotransmitter activity, some of which
have been used to study kinetics and clearance mechanisms
of serotonin (Daws et al., 2005), and dopamine (Gerhardt and
Hoffman, 2001).

3.1.3. Amperometry
In amperometry, the potential of the working electrode is held
constant and the current due to the reaction is measured

temporally. Amperometry is best suited for conditions where
there is a high level of confidence regarding the identity of the
analyte being detected (Michael and Borland, 2006). For this
reason, it is also used with enzyme-modified electrodes to detect
specific non-electroactive species such as glutamate (Kiyatkin
et al., 2013), acetylcholine (Sarter et al., 2009) and choline. For
nonelectroactive neurotransmitter detection, oxidase enzymes
are immobilized on the electrode surface, which, in the presence
of target neurochemical, eventually lead to production of an
electroactive species. For example, detection of glutamate is
performed with glutamate oxidase, where, glutamate is converted
to α-ketoglutarate and hydrogen peroxide (H2O2) (Kiyatkin
et al., 2013; Bucher and Wightman, 2015).

3.2. Potentiometry
Potentiometry is the measurement of the potential of a solution
with the help of two different electrodes, the working electrode
which detects the change in chemical reaction and a reference
electrode whose potential is known in reference to a standard
electrode, such as the Standard Hydrogen Electrode (SHE).
In general, the measurement of pH or metal ions can be
done using potentiometric methods. The standard, portable pH
measurement electrode is the glass electrode.

Previous work in neurochemistry, involving the measurement
of pH or ions, was performed using glass electrodes in vitro
(Endres et al., 1986; Chesler and Kaila, 1992; Makani and
Chesler, 2010). However, for in vivo measurements, especially
in measuring ionic concentrations in PNS, characteristics such

Frontiers in Neuroscience | www.frontiersin.org 6 August 2019 | Volume 13 | Article 808

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mirza et al. Closed-Loop Neuromodulation Using Neurochemical Monitoring

as invasiveness, robustness, small form factor, high sensitivity
and resolution are needed. Metal-Metal oxide surfaces such as
Iridium oxide (IrOx) can be used to measure pH (Ng and
O’Hare, 2015). It can also be fashioned into microelectrodes or
microwire electrode and can be used to measure extracellular
ionic concentrations in vivo in the peripheral nervous system
(PNS), such as the vagus nerve (Cork et al., 2018).

3.3. Impedance Spectroscopy
Recent work has also shown the potential of using Impedance
spectroscopy as a means to detect ionic concentration in the
CNS (Machado et al., 2016; De La Franier et al., 2017). A gold
substrate is coated with anti-biofouling material to prevent the
accumulation of blood or cells. On top of the anti-biofouling
layer, 18-6-crown-ether andmonoethyleneglycolthiol (MEG-SH)
in a 1:10 ratio, respectively, is placed to capture potassium
ions (Machado et al., 2016). Another methodology consists of
using an oxide layer. This oxide layer is coated with a layer of
anti-biofouling material, 3-(3-(trichlorosilyl)propoxy)propanoyl
chloride (MEG- Cl). A common issue present in both works
is interference from ionic species with similar size such
as sodium (Na+).

4. CLOSED-LOOP: SIGNAL
PREPROCESSING, DECISION MAKING,
AND STIMULATION DOSE SELECTION

The goal of closed-loop neuromodulation is to determine when?
and how much? to stimulate, on the basis of information
received directly or indirectly from the neuromodulatory target.
Closed-loop neuromodulation can be performed for prosthetic
or therapeutic neurological conditions. This review primarily
focusses on therapeutic applications, with a focus on using
neurochemicals as target biomarkers.

In this Section, different steps involved in implementing a
neurochemical based closed-loop neuromodulation system are
presented. The first step described is signal pre-processing which
is useful in removing baseline drift and identifying symptomatic
neurochemical change. This is followed by steps to determine
the relationship between symptoms and neurochemical change
performed by training set construction and cross validation.
It will help the system determine when to initiate stimulation.
The final step is determining the relationship between electrical
stimulation and neurochemical change i.e., stimulation model
selection. This will help the system to determine how much
to stimulate.

Based on functionality and type of control feedback,
neuromodulation systems can broadly be divided into five
types : continuous, scheduled intermittent, responsive, adaptive
and complete closed-loop, as classified in a recent review
by Hoang et al. (2017). Continuous neuromodulation is an
open-loop neuromodulation system, where the stimulation
dose is delivered continuously. Adjustments to stimulation
dosage is performed by clinicians or care-providers. The
feedback in this case are external physiological symptoms
and stimulation decisions are made by clinicians. Scheduled

Intermittent neuromodulation is also a type of open-loop where
the stimulation is intermittent and no feedback symptom is
monitored over time. The stimulations dosage frequency and
other parameters such as amplitude, pulsewidth (PW), waveform
and frequency are pre-set based on empirical evidence from
clinical trials. Responsive neuromodulation is a form of partial
closed-loop neuromodulation system where the stimulation
is initiated automatically based on a physiological biomarker
threshold. The stimulation dosage are still pre-set and not tuned
in real time. Adaptive stimulation is also a form of closed-
loop neuromodulation where a single biomarker is monitored.
Thresholds and scales on the biomarker are used to determine
when and how much to stimulate. Complete closed-loop system
consists of monitoring multiple biomarkers answer when and
how much to stimulate.

Both decision making and stimulation dose selection
algorithms have to undergo a training phase to enable
autonomous operation. The training phase can be
conducted on in vivo data (Behrend et al., 2009; Trevathan
et al., 2015; Bozorgzadeh et al., 2016; Mirza et al.,
2019), by recording the neurochemical response to
different stimulation parameters. This is followed by cross
validation to judge the precision of decision making and
stimulation model control algorithms. Prior to in vivo
training, bench testing using a flow injection system and
target analytes may be performed to test electronics and
processing system used for data readout and processing
(Bozorgzadeh et al., 2016).

An overview of the different elements in a neurochemical,
closed-loop neuromodulation system is shown in Figure 3. As
shown in Table 3, there are very limited number of implantable,
neurochemical closed-loop systems, as the field is still at a
nascent stage. Furthermore, most of the previous work are
either responsive or adaptive closed-loop system with only one
biomarker under consideration.

4.1. Signal Pre-processing
The chemical signal acquired needs to be pre-processed.
Different pre-processing techniques include low pass filtering,
downsampling and the removal of drift due to faradaic
or background activity. The specifications of different pre-
processing elements vary according to the sensing modality and
signal characteristics.

4.1.1. Filtering and Downsampling
Chemical signals are low pass filtered to remove high frequency
noise. In FSCV recordings for dopamine, the low pass cut-
off is typically set at approximately 100 Hz (Grahn et al.,
2014), 1 kHz (Lee et al., 2017), 4 kHz (Bozorgzadeh et al.,
2014). In our experiments, where we record pH changes in
the sub-diaphragmatic vagus nerve, the pH change induced
by CCK (potentiometric measurements) takes about 1–2 min
to return to baseline (Figure 4). Hence, in this case, a low
pass filter with a -3dB cut-off frequency of 0.1 Hz is enough
to remove any high frequency interference including any
line interference (50Hz/60Hz). In order to maintain high
resolution, some solutions implement sigma-delta (61) analog
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FIGURE 3 | A functional block diagram of a typical closed-loop neurochemical neuromodulation system is shown.

TABLE 3 | Review of existing technical platforms for neurochemical closed-loop neuromodulation.

References Year Neuromodulation Biomarker Biomarker Sensor type Algorithm Outcome

target application

(CNS/PNS) (when?) (how much?) (Neural)

Cork et al.,

2018

2018 VNS pH – Potentiometry Linear Regression Non-implantable in vivo research device

(PNS) using IrOx Responsive operation in

animal models only

Lee et al.,

2017

2017 DBS Neurotransmitter Neurotransmitter FSCV using CFM ANN
†

Non-implantable in vivo research device

(CNS) (Dopamine,

Serotonin,

(Dopamine,

Serotonin,

Adaptive operation in

Adenosine) Adenosine) animal models only

Bozorgzadeh

et al., 2016

2016 DBS Neurotransmitter – FSCV using CFM PCR* Implantable research device

(CNS) (Dopamine) Responsive operation in

animal models only

Grahn et al.,

2014

2014 DBS Neurotransmitter Neurotransmitter FSCV using CFM ANN
†

Non-implantable in vivo research device

(CNS) (Dopamine) (Dopamine) Adaptive operation in

animal models only

Behrend et al.,

2009

2009 DBS Neurotransmitter Neurotransmitter FSCV using CFM ANN
†

Non-implantable in vivo research device

(CNS) (Glutamate) (Glutamate) Adaptive operation in

animal models only

†
Artificial Neural Networks.

*Principal Component Regression.

to digital converters (ADC) (Bozorgzadeh et al., 2016; Lee
et al., 2017). This results in oversampling of data which
is further sampled down using Cascaded Integrator-Comb
(CIC) filter as in Bozorgzadeh et al. (2016), to reduce
data throughput.

4.1.2. Background Subtraction and Drift Removal
The current recorded whilst recording FSCV to sense
neurotransmitters, is a combination of faradaic and background
current. Similarly, during potentiometric recording, there is
interference from background potentiometric changes and also
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FIGURE 4 | (Top) The potentiometric pH data recorded using IrOx electrodes,

in vivo, in the subdiaphragmatic vagus nerve of male Wistar rats. The changes

due to CCK are highlighted. (Middle) The recorded potentiometric waveform

is pre-processed to remove drift using the technique described in Ahmed et al.

(2018). (Bottom) The 1pH is determined using the sensitivity of the IrOx pH

electrodes, followed by simple linear regression to determine CCK-induced

change in neural pH (Cork et al., 2018). This is a demonstration of responsive

type of intelligent neuromodulation.

a consistent, sometimes unidirectional drift, due to changes in
Open Circuit Potential (OCP) of the potentiometric electrode.
Hence, it is essential to remove large changes in background
signal, before performing dimensionality reduction or pattern
recognition, to identify signatures related to the neural activity
being monitored.

A common technique in FSCV drift reduction is the
subtraction of recorded current with a short recorded window of
the previous current. This is possible because it has been observed
during in vivo recordings, that FSCV current signatures due to
dopamine transients occur in the range of 2–3 ms. Secondly, it
has been observed that background current is typically stable over
few seconds (Bozorgzadeh et al., 2016). Hence, the background
current can be recorded, averaged over few scans (two or four
scans) and then subtracted to remove any background activity

as described in Bozorgzadeh et al. (2014) and Bozorgzadeh et al.
(2016). Other solutions such as the WINCS Harmoni platform
also implement background subtraction (Lee et al., 2017). For
pre-processing of CCK induced pH changes, a resource efficient
architecture was recently described, where the recorded data
is down-sampled and slow, non-linear drift was removed in
real-time (Ahmed et al., 2018).

4.2. Dimensionality Reduction
Data collected during neurochemical recordings are highly
complex with multiple variables affecting readings, hence a
multivariate dimensionality reduction technique needs to be
utilized in order to ensure accurate analysis of the data
and for detection of target neurochemical signature. Principal
Component Analysis (PCA) has been widely used as a
preferred technique for dimensionality reduction in a number
of neurochemical FSCV applications (Keithley et al., 2010).
PCA combined with inverse-least squares regression, known
as Principal Component Regression (PCR), is used to make
predictions regarding the concentration of target neurochemical
analyte (Heien et al., 2004, 2005; Keithley et al., 2005, 2010;
Keithley and Wightman, 2011; Bucher et al., 2013; Bozorgzadeh
et al., 2016). PCA is a mathematical technique which, from
a dataset of possibly correlated variables, identifies a set of
vectors which are linearly uncorrelated (mutually orthogonal),
called “principal components” (PCs). The application of PCA
to chemometrics involves a four step procedure: (a) signal
identification (b) training set construction, (c) generation and
selection of relevant PCs, (d) cross validation of PCs.

4.2.1. Signal Identification
Signal identification consists of determining the signal
characteristics which are directly correlated to changes in
the target neurochemical analyte. The steps involved in signal
identification may consist of in vivo experiments, followed by
signal processing and statistical steps such as ANOVA to ensure
reproducibility (Keithley et al., 2005; Cork et al., 2018). After
identification of the neurochemical response, it is crucial to
model the relationship between (a) the neurochemical response
and physiological symptom under study, (b) the relationship
between the electrical stimulation and the neurochemical
response to it. This is achieved through a combination of
mathematical modeling and machine learning techniques
described later in this section.

4.2.2. Training Set Construction
The training matrix is generated by combining the temporal
signatures of changes in target analyte that were observed
electrochemically. For multivariate classification, background
changes due to electrode drift or changes in interferring
neurochemicals are also considered (Bozorgzadeh et al., 2016).

In Figure 5, where the interferents are not known, the pre-
injection and post injection waveforms could be used as two types
of background signal, in addition to the response to generate a
training matrix (Mirza et al., 2017).
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FIGURE 5 | The training matrix can be constructed for as shown, for CCK induced pH changes in the vagus nerve (Mirza et al., 2017).

4.2.3. Generation and Selection of Relevant PCs
The PCs are generated using Single Value Decomposition (SVD)
(Equation 1). The commands listed in MATLAB are listed below.

[U, S,V] = svd(A) (1)

A scree plot can be used to determine the variance captured by
each PC. The PCs which capture maximum variance are relevant
and hence, are retained.

Uc = U(:, 1 : k) (2)

where k is the number of relevant PCs. The decision to retain
relevant PCs can be used to generate projections (Aproj) of the
training matrix (A) onto the PCs:

Aproj = A× Uc (3)

where U is the PC matrix, composed of PCs generated from the
training matrix. If PCR is used, then a regression matrix based on
the dose response nature of the analyte is also generated as shown
in Equation (11). After the PC matrix is calculated, the next step
is cross validation.

4.2.4. Cross Validation of PCs
Cross validation involves determining the robustness and
applicability of the training set. This is required to ensure the PCs
are sufficient to perform dimensionality reduction in real time.
There are a number of methodologies which can be utilized to
cross-validate PCs (Keithley et al., 2005, 2010), one such method
being residual analysis, which is described below. The residual

of a data set is defined as the difference between actual data and
data projected using the PCs. A parameter Qt is defined as the
difference in the square value of the actual and projected sample
values, ai and ãi, respectively.

Qt =

N
∑

i=1

(a2i − ã2i ) = (a21 − ã21)+ . . . + (a2N − ã2N) (4)

where N is the total number of datapoints. ai and ã2i are actual

and projected data values, respectively, for the ith sample. A
significance threshold, Qα , is set so that the residual for each
dataset, Qt , does not exceed Qα . For the training set to be
considered robust, Qt must be less than Qα for all data in the
validation set. When Qt is greater than Qα , for a specific dataset,
it indicates that the variance in the input data is not appropriately
captured in the training set. It can indicate the data is non-
deterministic and can lead to false positives. Qα is calculated
using the following formula (Keithley et al., 2010) :

Qα = ⊖1

[

cα

√

2⊖2 h
2
0

⊖1
+ 1+

⊖2h0(h0 − 1)

⊖
2
1

]

(5)

where k+1 to n is the number of discarded PCs, k is number of
retained PCs and n is the total number of PCs generated.

γ = S2 (6)

where γ is the sum of the square of the projected datapoints from
the training matrix and S is the singular value matrix generated
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from Equation (1).

⊖i =

n
∑

j=k+1

γ i
j (7)

h0 = 1−
2⊖1 ⊖3

⊖
2
2

(8)

where, Qα denotes an upper limit on the random error to
be tolerated. In Equation (5), for cα = 1.645 or 2.326 Qt

will be greater than Qα if 95% or 99%, respectively, of the
dataset are due to random noise. More details are provided in
Keithley et al. (2010).

4.3. Decision Making
This step involves determining when to stimulate. The decision
when to stimulate could be based on a number of criteria. It
could be (a) threshold based: stimulation is initiated when a
specific neurochemical signature is detected and the response
has reached a specific threshold (Bozorgzadeh et al., 2016) or (b)
response based: where only the presence of a response is enough
to trigger stimulation (Cork et al., 2018). In order to implement
this, various statistical techniques could be utilized. Techniques
such as Simple Linear Regression can be used in response based,
univariate, decision making. Inverse least square regression in
combination with PCA can be used to perform multivariate
analyte concentration and a decision regarding when to stimulate
can be made, based on the threshold of analyte concentration. In
this section, we describe a multi-variate decision making model
(Bozorgzadeh et al., 2016).

4.3.1. Simple Linear Regression
As shown in Figure 4, certain characteristics of the recorded
neurochemical signal can be extracted and a simple linear
regression model can be fitted on it to extract and identify a
signature. This is a type of univariate detection method where
only one variable is considered to affect the neurochemical signal.
This technique was successfully demonstrated to implement a
responsive closed-loop neuromodulation technique in an in vivo
experimental setup. However, since this technique is a univariate
approach, it is sometimes susceptible to false positives, hence it is
best to limit this to stable in vivo experimental environment and
not to extend it in an implant.

4.3.2. Inverse Least-Squares Regression
In this process, the regression matrix generated is used
to estimate the concentration of the analyte. Different
concentrations of analyte can result in different amplitude of
neurochemical response peaks. Based on a preset threshold
for analyte concentration, stimulation can be initiated.
This process was first described in Keithley et al. (2005),
followed by an implementation on a System-On-Chip (SoC) in
Bozorgzadeh et al. (2016).

The regression matrix is based on the dose response to the
analyte concentration (Bozorgzadeh et al., 2016). The regression
matrix, in combination with the projected data set from PCA,

can be used to predict the concentration of the analyte. This is
described in the equation below :

F = C × Aproj × (A′
proj × Aproj) (9)

Dproj = Du × Uc (10)

[CACB1CB2] = Dproj × F (11)

where C is the concentration matrix i.e., a diagonal matrix with
concentration values of each analyte considered in a multivariate
model, Aproj is the projection matrix defined in Equation (3), Du

is the real time data, Dproj is the projection of the real time data
on the PCs, Uc is defined in Equation (2). F is the projection
matrix and CA, CB1, CB2 are the projected concentrations based
on inverse least-squares regression.

4.4. Model Selection
The primary goal of model selection is to determine optimal
electrical stimulation parameters based on the relationship
between stimulation parameters and the target neurochemical
biomarker. It is a crucial step toward adaptive or complete closed-
loop neuromodulation to determine the stimulation dose. The
relationship between stimulation parameters and neurochemical
biomarkers is established based on experimental data and
mathematical modeling. Various linear (Behrend et al., 2009)
and non linear (Grahn et al., 2014; Lee et al., 2017) modeling
techniques have been utilized previously to develop stimulation
models. The model selection could be different based on whether
the neuromodulatory target is located in the CNS or PNS. In this
section, we will describe briefly, one linear and two non-linear
stimulation models.

4.4.1. CNS: Stimulation Evoked Release and Uptake

of Neurotransmitters
DBS of specific areas in the brain is considered an effective
therapy for the treatment of Parkinson’s disease. For CNS
disorders, the neurochemical biomarkers generally under
consideration are dopamine, serotonin (Grahn et al., 2014;
Lee et al., 2017) and glutamate (Behrend et al., 2009). In
closed-loop DBS, the goal is to maintain a specific concentration
of neurotransmitters (Lee et al., 2017). Several publications
demonstrate possible techniques for choosing appropriate
stimulation parameters (Wu et al., 2001; Behrend et al., 2009;
Grahn et al., 2014; Walters et al., 2014; Lee et al., 2017). Behrend
et al. (2009) use model equations, whereas Artificial Neural
Network (ANN) is used in Lee et al. (2017)and Grahn et al.
(2014). In this paper, we principally describe stimulation model
selection based on linear or non-linear modeling techniques
described in Behrend et al. (2009), Lee et al. (2017), and Grahn
et al. (2014), respectively.

In Behrend et al. (2009), the concentration of glutamate
recorded close to the sub-thalamic nucleus (StN) was modeled as
a function of electrical stimulation. The parameters of electrical
stimulation used in Behrend et al. (2009), were fixed (stimulation
current ≈ 100 µA, a stimulation pulsewidth of 1 ms for 100
Hz stimulation frequency and 0.67 ms for 150 Hz stimulation
frequency). A second order model equation, based on Auto
Regressive eXogenous (ARX) fitting was developed, shown in
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Equation (12). This was validated using cross correlation between
simulated and recorded concentrations of glutamate, for varying
stimulation durations in a rat model.

A(q)× y(t) = B(q)u(t)+ ε(t) (12)

where, y(t) represents the glutamate concentration, u(t)
corresponds to the input stimulation parameters and ε(t)
corresponds to the stochastic error. For each set of stimulation
parameters (i.e., two different sets of stimulation pulsewidth
and frequency), the stimulation was switched on randomly
to accurately capture the dynamic response of the system
(Behrend et al., 2009).

The limitations of the stimulation model included limited
visibility into the effects of changing stimulation currents, which
is a crucial parameter to consider in DBS. Also, the model will
benefit by selecting a wider range of pulsewidths and frequency.
Furthermore, in order to further develop the therapy, the effects
of stimulation on concentrations of other neurotransmitters such
as dopamine and GABA are not modeled. The model itself is
univariate, hence it does not consider interference from other
neurochemicals with similar oxidation potential. The model also
does not take the non-linear nature of neurochemical responses,
into consideration. The univariate and linear transfer function,
described in this model, needs to be expanded to ensure the
model is applicable in a long-term implant.

The stimulation model, described in Behrend et al. (2009),
is based on normalized values of glutamate concentration
across animals. This was due to large variance in absolute
glutamate concentrations across animals and also partly due
to the limitation of neurochemical measurement based on
electrochemical methods, which are only able to measure the
change in analyte concentration only. However, the range of
control on a normalized analyte concentration, in this case
glutamate, is crucial. In Behrend et al. (2009), results suggest a
normalized concentration range between 0.4 and 1.0 were set as
control thresholds.

In Lee et al. (2017), the stimulation model was adopted
from Trevathan et al. (2015). It is based on modeling dopamine
kinetics due to electrical stimulation, using two different
frameworks, ANN and time-series approach using Volterra
kernels. Volterra kernels are particularly useful to capture
the short-term and long-term effect of stimulation parameters
(input) on neurochemical responses (output), in non-linear
systems. Hence, they are useful in capturing the hysteresis
effect i.e., effect of previous electrical stimulation events on
present neurochemical responses (Trevathan et al., 2015). On the
contrary, ANNs are better suited for compartmental modeling
of input/output relationship between stimulation parameters
and stimulation-evoked neurochemical release (Walters et al.,
2014, 2015). The experimental data was obtained by stimulating
the medial forebrain bundle (MFB) in rats and recording
neurochemical data (Trevathan et al., 2015). A similar method
was also adopted in the striatal and ventrotegmental area
/ substantia nigra pars compacta (VTA/SNc) of swine and
non-human primate (NHP) (Trevathan et al., 2015). The
stimulation parameters under consideration were stimulation

amplitude (current) and pulsewidth. The stimulation duration
was randomly selected to be either 0.5 or 2.0 s, to capture the
dynamics of dopamine, while attempting to avoid hysteresis.

In Grahn et al. (2014), a combination of non-linear regression,
computational modeling and constrained optimization was used
for linking stimulation parameters with stimulation evoked
dopamine responses during the experimental phase. The target
stimulation electrode was placed in the medial forebrain bundle
(MFB), the FSCV recording electrode was placed in the striatum
and a reference silver-silver chloride electrode was placed in
the contralateral cortex, to record dopamine concentration.
The stimulation parameters (current, pulsewidth, frequency)
were varied to record evoked dopamine responses. This dataset
consisting of the stimulation parameters and their corresponding
evoked dopamine responses were modeled as a combination of a
7th degree polynomial and 2nd order exponential mathematical
models. The parameters in the model i.e., 8 for polynomial, 4
for exponential, and corresponding stimulation parameters were
presented to an ANN. The ANN was a double feedforward
ANN with sigmoidal and linear transfer funtions (Lujan
and Crago, 2009). Later, in order to demonstrate closed-
loop neuromodulation, the stimulation parameters required for
sustaining dopamine responses at desired levels were predicted
using ANN. Hence, to summarize the build-up of ANN, the
inputs consisted of three stimulation parameters (stimulation
frequency, pulsewidth and stimulus amplitude/current) and
system outputs consisted of 12 model parameters.

The ANN consisted of 150 hidden neurons, the initial weights
and biases are based on 10 different initial conditions and
10 corresponding ANNs were trained on 80% of the data
(Levenberg-Marquardt algorithm). The remaining 20% of the
data were used to simulate ANNs and identify those with the
lowest generalization error. Constrained optimization was added
to the ANN model to minimize stimulation energy and to
eliminate mathematical redundancies. In order to determine the
accuracy of the model, the predicted stimulation parameters
and the measured dopamine levels evoked due to predictive
stimulation was compared with the desired simulation results.
The root mean squared error between measured and desired
dopamine levels was determined, followed by least-squares
regression analysis to determine dependencies between actual
and desired dopamine levels were theni used in order to identify
sources of error such as drift. Results in Grahn et al. (2014),
from four rats, suggest that the computational and predictive
models of stimulation-evoked dopamine levels can be adjusted
using predicted stimulation parameters (R2 = 0.8).

4.4.2. PNS: Neurochemical Recordings and

Stimulation Evoked Compound Nerve Action

Potentials (CNAPs)
The goal of stimulationmodel selection in PNS neuromodulatory
therapeutic applications is to either inhibit or enhance nerve
fiber activity. Peripheral nerve activity can be classified into
(a) neural mass activity, (b) CNAPs and (c) Neurochemical
ionic activity. Neurochemical recording can be utilized reliably
to detect specific physiological events and initiate stimulation
(Cork et al., 2018). However, stimulation dose tuning can
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FIGURE 6 | NAP profiles for different fiber types : A, B, and C based on Ward et al. (2015), the rheobase current (IRh in A) is depicted vs. the percentage fiber

activation(λ).

be achieved through monitoring electrical activity alone. A
method to estimate the properties of individual fibers is through
interrogative stimulation and recording. A stimulation protocol
and method for high resolution CNAP recording on vagus nerve
is described in Mirza et al. (2018).

In Ward et al. (2015), an effort has been made to determine
stimulation dosage based on CNAPs. This involves determining
a nerve activation profile (NAP) for each fiber type. The nerve
activation potential is based on an exponential relation between
rheobase current and normalized CNAP amplitude. Stimulation
dosage (stimulation current) can be chosen appropriately based
on NAPs. The relationships are shown below (Ward et al., 2015) :

IRhA = e0.0255λ−10.97 (13)

IRhB = e0.0145λ−10.15 (14)

IRhC = e0.0143λ−10.63 (15)

where, IRh is the rheobase current. λ =
Vcnap

Vcnap_max
× 100, which

represents the percent maximal activation of nerve fibers. The
NAP for different fibers are shown in Figure 6.

In existing solutions, such as Behrend et al. (2009), Grahn
et al. (2014), and Lee et al. (2017), model selection was performed
using ANN. Implementation of ANN on-chip or SoCs can be
resource and power intensive. To enable on-chip implementation
of model selection, it is important to consider simplification of
the stimulation control model by balancing the trade-off between
complexity of the model and stimulation goals.

Alternatively, a better approach to develop implantable
solutions, especially for PNS applications, will be to determine a
mathematical model as described in Ward and Irazoqui (2010)
and Behrend et al. (2009). Linear or polynomial models can

be implemented on-chip and optimized to be resource and
power efficient. Another approach will be to design stimulators
which can perform selective activation of fibers by modifying
the traditional stimulation waveforms (Joseph and Butera, 2011;
Patel and Butera, 2015).

5. DISCUSSION

Closed-loop neuromodulation is likely to improve system
performance and clinical outcomes. However, the challenges
involved in implementing closed-loop neuromodulation
consists of identification of appropriate biomarkers, identifying
the recording and stimulation loci and the choice of
neuromodulatory paradigm i.e., excitation/inhibition of neural
activity or regulation of neurotransmitter concentration.
A neurochemical monitoring modality for closed-loop
neuromodulation is promising, as it provides higher resolution
in terms of neural events, better Signal-to-Noise ratio and
less interference in comparison to electrical recordings of
neural signals.

This review highlights that, neurochemical closed-loop
neuromodulation systems benefit from higher specificity
and less interference for therapeutic neuromodulation
applications. However, there is a clear lack of implantable,
closed-loop neurochemical neuromodulation systems that are
available commercially. The lack of neurochemical closed-loop
neuromodulation is due to various reasons.

One of the limitations of neurochemical monitoring is
ensuring direct contact between the neurochemical sensor and
neurochemical molecules. For this reason, the sensors need
to be inserted into neural tissue and hence have greater

Frontiers in Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 808

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mirza et al. Closed-Loop Neuromodulation Using Neurochemical Monitoring

susceptibility to bio-fouling. It is a long standing challenge to
produce neurochemical sensors whose sensitivity lasts longer
in vivo. CFM has been widely used to perform neurochemical
voltammetric measurements and has been shown to work reliably
up to 4 months after chronic implantation (Clark et al., 2010).
Carbon fiber microelectrodes can also be coated with CNTs
(Swamy and Venton, 2007), which increases its resistance to
the adhesion of common biofouling agents such as 5-HIAA.
CNT-based microelectrodes are able to increase selectivity and
sensitivity of FSCV measurements at high speeds (Bucher and
Wightman, 2015). Especially, polyamide-coated fused silica CFM
electrode have been shown to last in vivo for approximately
25 days without any loss in sensitivity, albeit a small loss in
temporal resolution (Clark et al., 2010). Efforts to tackle this
challenge further include developing anti-biofouling coatings on
the sensor (Blaszykowski et al., 2015; Machado et al., 2016).
However, the lifetime of in vivo ion-selective electrodes needs to
be investigated further.

A very promising line of research has been pursued
by Thompson’s group at the University of Toronto, who
are developing anti-biofouling coatings for in vivo sensor
applications (Sheikh et al., 2012, 2015). Furthermore, the
same group have developed an anti-biofouling coating for
potassium sensors, which will include neuro-chemical recording
(Thompson, 2017).

Another important effort in sensor fabrication is directed
toward reducing the size of the array while increasing recording
locations. This will increase spatial resolution leading to
better recording of neurotransmitter concentrations within the
extracellular/intracellular environment. In this direction,
research is progressing to explore the development of
carbon-nanotube (CNTs) or carbon-nanofiber (CNF) based
microelectrode array (MEA) which are compatible to be used for
neurochemical measurements (Bucher and Wightman, 2015). In
order to capture neurotransmitter activity from extracellular or
exocytotic neural environment in the brain, the microelectrode
array (MEA) pitch needs to be between ∼ 10 − 20µm to enable
interfacing with individual neurons (Kishida et al., 2011). The
latest neurochemical MEA consists of 36 microelectrodes within
an area of 40 µm× 40 µm (Bucher and Wightman, 2015).

The majority of neurochemical recording in the CNS,
reported earlier, is focussed on neurotransmitters. However, the
relationship between stimulation parameters and stimulation-
induced change in neurochemical concentration, may vary over
time. This change could be due to neuro-plasticity or change
in electrode-electrolyte interface, leading to re-adjustment of
stimulation models on a regular basis, to adjust stimulation
dosage accurately.

An important aspect of neurochemical recording is the
interference from other neurochemicals. One of the common
interferents is pH change, which produces similar profile of
voltammograms to dopamine. Hence, it is important to subtract
contribution due to pH in order to identify dopamine specific
cyclic voltammogram. Another common interferent is ascorbate,
which also has similar oxidation potential as dopamine but
different voltammogram profile. A multivariate classification
model can be used for distinguishing signal contribution due

to target neurochemical signals and interferents. Furthermore,
electrode design can also be utilized to reduce cross-talk
between different neurochemical signals. It was shown that CNF
performs better than glass carbon electrode in isolating signal
contributions due to different neurotransmitters (Rand et al.,
2013). Different neurotransmitters which show similar oxidation
potentials using glass carbon electrodes, show different oxidation
potentials when CNF is used.

Also, in diseases where there isn’t a clear relationship
between neurotransmitters and disease symptoms, there may
exist a clear relationship between electrical neural signals and
symptoms. In such cases, it is better to monitor neural ionic
concentrations, such K+, Na+, or H+ which are also directly
correlated with electrical neural signals (Makani and Chesler,
2010). This will ensure high specificity biomarker recording.
Another fact to note is that the recent work in neurochemical
monitoring mostly focusses on healthy animal models (Chang
et al., 2012; Lee et al., 2017) and very limited work has
been done in humans. Two human studies were performed by
Kasasbeh et al. (2013) and Chang et al. (2012), in which no
adverse effects to patient health were reported in the short-
term. Also, no short-term reduction in DBS treatment efficiency
was observed.

In existing neurochemical neuromodulation systems, the
training step and in some cases, the entire decision making and
model selection algorithm is implemented off-chip. Although,
this works for research applications, it restricts patient mobility
in a future implantable solution. In order to achieve local or
on-chip machine learning capabilities, it is important to reduce
complexity of the neuromodulation algorithmwithout sacrificing
stimulation goals. Commercial solutions, such as those from
ARM and Qualcomm, are also focussed on developing resource
efficient, artificial intelligence on SoC (Desoli et al., 2017; Moons
et al., 2017).

Another important aspect of achieving therapeutic
efficiency is stimulating at the optimal location. When
DBS is used for treating Parkinson’s, the stimulation locus
is generally the sub-thalamic nucleus/globus palliadus
internus (StN/Gpi) (Hitti et al., 2019). For VNS, various
locations have been used for different applications such as
stimulation of left or right cervical vagus nerve for epilepsy
(Boon et al., 2001), subdiaphragmatic vagus nerve for obesity
(Ikramuddin et al., 2014), auricular branch of the vagus nerve
(Clancy et al., 2014).

The WINCS platform has demonstrated that it is possible
to develop an adaptive neuromodulation system based on a
single neurochemical biomarker. However, the long term efficacy
of a single biomarker based solution needs to be determined.
A solution to better understand the success and, ultimately,
improve closed-loop neuromodulation therapy is the addition
of electrophysiological recording. Recently, an electrode was
developed by Vajari et al. (2018), which incorporates the
ability to record both neurochemical, neuro-electrical recording
and electrical stimulation. This is a desirable addition for
CNS based therapy, but is necessary for complete closed-
loop in a PNS based closed-loop neuromodulation system
(Mirza et al., 2017, 2019).
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6. CONCLUSION

This review is focused on highlighting the benefits
and challenges of using a neurochemical biomarker for
intelligent neuromodulation. It has also outlined the different
elements required to implement neurochemical closed-loop
neuromdoulation as an implantable solution. The first step
toward developing an intelligent neuromodulation system is
identifying an appropriate biomarker, such as a neurochemical
biomarker and a corresponding stimulation/recording
site. The second step is to develop a reliable sensing
methodology, sensor and data acquisition system. The third
challenge is to implement the pre-processing and intelligent
neuromodulation algorithms on-chip or locally in a single
integrated SoC.

For CNS based applications, where neurotransmitters are the
target biomarkers, FSCV is often chosen as a reliable detection
technique and CFM is the preferred electrode for this application.
Emerging techniques include impedimetery and potentiometry
for detection of ionic concentrations, in both CNS and PNS.
For potentiometric sensing, IrOx sensors can be used reliably
for sensing pH. The sensitivity, selectivity and longevity of the

sensors described in this paper can be improved through coatings
such as, Nafion-CNT.

There are primarily two technical challenges that need to be
addressed in order develop a neurochemical closed-loop system
for long-term, chronic therapeutic efficacy studies. The first is
development of an implantable chemical sensor, with a reliable
sensitivity and resolution in the long term. The second challenge
is implementing processing algorithms on-chip for stimulation
decision making (when? to stimulate) and stimulation model
selection (how much? to stimulate).
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