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Gliomas are the most common primary brain malignancies. Accurate and robust tumor

segmentation and prediction of patients’ overall survival are important for diagnosis,

treatment planning and risk factor identification. Here we present a deep learning-based

framework for brain tumor segmentation and survival prediction in glioma, using

multimodal MRI scans. For tumor segmentation, we use ensembles of three different

3D CNN architectures for robust performance through a majority rule. This approach

can effectively reduce model bias and boost performance. For survival prediction, we

extract 4,524 radiomic features from segmented tumor regions, then, a decision tree

and cross validation are used to select potent features. Finally, a random forest model

is trained to predict the overall survival of patients. The 2018 MICCAI Multimodal

Brain Tumor Segmentation Challenge (BraTS), ranks our method at 2nd and 5th

place out of 60+ participating teams for survival prediction tasks and segmentation

tasks respectively, achieving a promising 61.0% accuracy on the classification of

short-survivors, mid-survivors and long-survivors.

Keywords: survival prediction, brain tumor segmentation, 3D CNN, multimodal MRI, deep learning

1. INTRODUCTION

A brain tumor is a cancerous or noncancerous mass or growth of abnormal cells in the
brain. Originating in the glial cells, gliomas are the most common brain tumor (Ferlay et al.,
2010). Depending on the pathological evaluation of the tumor, gliomas can be categorized
into glioblastoma (GBM/HGG), and lower grade glioma (LGG). Glioblastoma is one of
the most aggressive and fatal human brain tumors (Bleeker et al., 2012). Gliomas contain
various heterogeneous histological sub-regions, including peritumoral edema, a necrotic core, an
enhancing and a non-enhancing tumor core.Magnetic resonance imaging (MRI) is commonly used
in radiology to portray the phenotype and intrinsic heterogeneity of gliomas, since multimodal
MRI scans, such as T1-weighted, contrast enhanced T1-weighted (T1Gd), T2-weighted, and Fluid
Attenuation Inversion Recovery (FLAIR) images, provide complementary profiles for different sub-
regions of gliomas. For example, the enhancing tumor sub-region is described by areas that show
hyper-intensity in a T1Gd scan when compared to a T1 scan.

Accurate and robust predictions of overall survival, using automated algorithms, for patients
diagnosed with gliomas can provide valuable guidance for diagnosis, treatment planning, and
outcome prediction (Liu et al., 2018). However, it is difficult to select reliable and potent prognostic
features. Medical imaging (e.g., MRI, CT) can provide radiographic phenotype of tumor, and it has
been exploited to extract and analyze quantitative imaging features (Gillies et al., 2016). Clinical
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data, including patient age and resection status, can also provide
important information about patients’ outcome.

Segmentation of gliomas in pre-operative MRI scans,
conventionally done by expert board-certified neuroradiologists,
can provide quantitative morphological characterization and
measurement of glioma sub-regions. It is also a pre-requisite for
survival prediction since most potent features are derived from
the tumor region. This quantitative analysis has great potential
for diagnosis and research, as it can be used for grade assessment
of gliomas and planning of treatment strategies. But this task is
challenging due to the high variance in appearance and shape,
ambiguous boundaries and imaging artifacts, while automatic
segmentation has the advantage of fast speed, consistency in
accuracy and immunity to fatigue (Sharma and Aggarwal, 2010).
Until now, the automatic segmentation of brain tumors in
multimodal MRI scans is still one of the most difficult tasks
in medical image analysis. In recent years, deep convolutional
neural networks (CNNs) have achieved great success in the field
of computer vision. Inspired by the biological structure of visual
cortex (Fukushima, 1980), CNNs are artificial neural networks
with multiple hidden convolutional layers between the input and
output layers. They have non-linear properties and are capable of
extracting higher level representative features (Gu et al., 2018).
Deep learning methods with CNN have shown excellent results
on a wide variety of other medical imaging tasks, including
diabetic retinopathy detection (Gulshan et al., 2016), skin cancer
classification (Esteva et al., 2017), and brain tumor segmentation
(Çiçek et al., 2016; Isensee et al., 2017; Wang et al., 2017;
Sun et al., 2018).

In this paper, we present a novel deep learning-based
framework for segmentation of a brain tumor and its subregions
from multimodal MRI scans, and survival prediction based on
radiomic features extracted from segmented tumor sub-regions
as well as clinical features. The proposed framework for brain
tumor segmentation and survival prediction using multimodal
MRI scans consists of the following steps, as illustrated in
Figure 1. First, tumor subregions are segmented using an
ensemble model comprising three different convolutional neural
network architectures for robust performance through voting
(majority rule). Then radiomic features are extracted from
tumor sub-regions and total tumor volume. Next, decision tree
regression model with gradient boosting is used to fit the training
data and rank the importance of features based on variance
reduction. Cross validation is used to select the optimal number
of top-ranking features to use. Finally, a random forest regression
model is used to fit the training data and predict the overall
survival of patients.

2. MATERIALS AND METHODS

2.1. Dataset
We utilized the BraTS 2018 dataset (Menze et al., 2015;
Bakas et al., 2017a,b,c, 2018) to evaluate the performance of
our methods. The training set contained images from 285
patients, including 210 HGG and 75 LGG. The validation set
contained MRI scans from 66 patients with brain tumors of
an unknown grade. It was a predefined set constructed by

BraTS challenge organizers. The test set contained images from
191 patients with a brain tumor, in which 77 patients had
a resection state of Gross Total Resection (GTR) and were
evaluated for survival prediction. Each patient was scanned
with four sequences: T1, T1Gd, T2, and FLAIR. All the
images were skull-striped and re-sampled to an isotropic 1mm3

resolution, and the four sequences of the same patient had
been co-registered. The ground truth of segmentation mask
was obtained by manual segmentation results given by experts.
The evaluation of the model performance on the validation
and testing set is performed on CBICA’s Image Processing
Portal ipp.cbica.upenn.edu. Segmentation annotations comprise
of the following tumor subtypes: Necrotic/non-enhancing tumor
(NCR), peritumoral edema (ED), and Gd-enhancing tumor (ET).
Resection status and patient age are also provided. The overall
survival (OS) data, defined in days, is also included in the training
set. The distribution of patients’ age is shown in Figure 2.

2.2. Data Preprocessing
Since the intensity value of MRI is dependent on the imaging
protocol and scanner used, we applied intensity normalization
to reduce the bias in imaging. More specifically, the intensity
value of each MRI is subtracted by the mean and divided by
the standard deviation of the brain region. In order to reduce
overfitting, we applied random flipping and random gaussian
noise to augment the training set.

2.3. Network Architecture
In order to perform accurate and robust brain tumor
segmentation, we use an ensemble model comprising of
three different convolutional neural network architectures. A
variety of models have been proposed for tumor segmentation.
Generally, they differ in model depth, filter number, connection
way and others. Different model architectures can lead to
different model performance and behavior. By training different
kinds of models separately and by merging the results, the model
variance can be decreased, and the overall performance can be
improved (Polikar, 2006; Kamnitsas et al., 2017). We used three
different CNN models and fused the result by voting (majority
rule). The detailed description of each model will be discussed in
the following sections.

2.3.1. CA-CNN

The first network we employed was Cascaded Anisotropic
Convolutional Neural Network (CA-CNN) proposed by Wang
et al. (2017). The cascade is used to convert multi-class
segmentation problem into a sequence of three hierarchical
binary segmentation problems. The network is illustrated
in Figure 3.

This architecture also employs anisotropic and dilated
convolution filters, which are combined with multi-view fusions
to reduce false positives. It also employs residual connections (He
et al., 2016), batch normalization (Ioffe and Szegedy, 2015) and
multi-scale prediction to boost the performance of segmentation.
For implementation, we trained the CA-CNN model using
Adam optimizer (Kingma and Ba, 2014) and set Dice coefficient
(Milletari et al., 2016) as the loss function. We set the initial
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FIGURE 1 | Framework overview.

FIGURE 2 | Overall survival distribution of patients across the training, validation, and testing sets.

learning rate to 1 × 10−3, weight decay 1 × 10−7, batch size 5,
and maximal iteration 30k.

2.3.2. DFKZ Net

The second network we employed was DFKZ Net, which was
proposed by Isensee et al. (2017) from the German Cancer
Research Center (DFKZ). Inspired by U-Net, DFKZ Net employs
a context encoding pathway that extracts increasingly abstract
representations of the input, and a decoding pathway used
to recombine these representations with shallower features
to precisely segment the structure of interest. The context
encoding pathway consists of three content modules, each has
two 3 × 3 × 3 convolutional layers and a dropout layer with
residual connection. The decoding pathway consists of three
localization modules, each containing 3 × 3 × 3 convolutional
layers followed by a 1 × 1 × 1 convolutional layer. For the
decoding pathway, the output of layers of different depths are
integrated by elementwise summation, thus the supervision can
be injected deep in the network. The network is illustrated
in Figure 4.

For implementation, we trained the network using the Adam
optimizer. To address the problem of class imbalance, we utilized

the multi-class Dice loss function (Isensee et al., 2017):

L = −
2

|K|

∑

k∈K

∑
i ui(k)vi(k)∑

i ui(k) +
∑

i vi(k)
(1)

where u denotes output possibility, v denotes one-hot encoding
of ground truth, k denotes the class, K denotes the total number
of classes and i(k) denotes the number of voxels for class k in
patch. We set initial learning rate 5 × 10−4 and used instance
normalization (Ulyanov et al., 2016a). We trained the model
for 90 epochs.

2.3.3. 3D U-Net

U-Net (Ronneberger et al., 2015; Çiçek et al., 2016) is a
classical network for biomedical image segmentation. It consists
of a contracting path to capture context and a symmetric
expanding path that enables precise localization with extension.
Each pathway has three convolutional layers with dropout
and pooling. The contracting pathway and expanding pathway
are linked by skip-connections. Each layer contains 3 × 3 ×

3 convolutional kernels. The first convolutional layer has 32
filters, while deeper layers contains twice filters than previous
shallower layer.
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FIGURE 3 | Cascaded framework and architecture of CA-CNN.

For implementation, we used Adam optimizer (Kingma and
Ba, 2015), and instance normalization (Ulyanov et al., 2016b). In
addition, we utilized cross entropy as the loss function. The initial
learning rate was 0.001, and the model is trained for 4 epochs.

2.3.4. Ensemble of Models

In order to enhance segmentation performance and to reduce
model variance, we used the voting strategy (majority rule) to
build an ensemble model without using a weighted scheme.
During the training process, different models were trained
independently. The selection of the number of iterations in the
training process was based on the model’s performance in the

validation set. In the testing stage, each model independently
predicts the class for each voxel, the final class is determined by
the majority rule.

2.4. Feature Extraction
Quantitative phenotypic features from MRI scans can reveal
the characteristics of brain tumors. Based on the segmentation
result, we extract radiomics features from edema, non-enhancing
solid core and necrotic/cystic core and the whole tumor region
respectively using Pyradiomics toolbox (Van Griethuysen et al.,
2017). Illustration of feature extraction is shown in Figure 5.
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FIGURE 4 | Architecture of DFKZ Net.

FIGURE 5 | Illustration of feature extraction.

The modality used for feature extraction is dependent on the
intrinsic properties of the tumor subregion. For example, edema
features are extracted from FLAIR modality, since it is typically
depicted by hyper-intense signal in FLAIR. Non-enhancing solid
core features are extracted from T1Gd modality, since the
appearance of the necrotic (NCR) and the non-enhancing (NET)
tumor core is typically hypo-intense in T1Gd when compared to
T1. Necrotic/cystic core tumor features are extracted from T1Gd
modality, since it is described by areas that show hyper-intensity
in T1Gd when compared to T1.

The features we extracted can be grouped into three
categories. The first category is the first order statistics, which
includes maximum intensity, minimum intensity, mean, median,
10th percentile, 90th percentile, standard deviation, variance
of intensity value, energy, entropy, and others. These features
characterize the gray level intensity of the tumor region.

The second category is shape features, which include volume,
surface area, surface area to volume ratio, maximum3Ddiameter,
maximum 2D diameter for axial, coronal and sagittal plane
respectively, major axis length, minor axis length and least axis
length, sphericity, elongation, and other features. These features
characterize the shape of the tumor region.

The third category is texture features, which include 22
gray level co-occurrence matrix (GLCM) features, 16 gray level
run length matrix (GLRLM) features, 16 Gray level size zone
matrix (GLSZM) features, five neighboring gray tone difference
matrix (NGTDM) features and 14 gray level dependence matrix

(GLDM) Features. These features characterize the texture of the
tumor region.

Not only do we extract features from original images, but
we also extract features from Laplacian of Gaussian (LoG)
filtered images and images generated by wavelet decomposition.
Because LoG filtering can enhance the edge of images, possibly
enhance the boundary of the tumor, and wavelet decomposition
can separate images into multiple levels of detail components
(finer or coarser). More specifically, from each region, 1131
features are extracted, including 99 features extracted from
the original image, and 344 features extracted from Laplacian
of Gaussian filtered images, since we used four filters with
sigma values 2.0, 3.0, 4.0, 5.0, respectively, and 688 features
extracted from eight wavelet decomposed images (all possible
combinations of applying either a High or a Low pass filter
in each of the three dimensions). In total, for each patient, we
extracted 1131 × 4 = 4524 radiomic features, these features are
combined with clinical data (age and resection state) for survival
prediction. The values of these features except for resection
state are normalized by subtracting the mean and scaling it to
unit variance.

2.5. Feature Selection
A portion of the features we extracted were redundant
or irrelevant to survival prediction. In order to enhance
performance and reduce overfitting, we applied feature selection
to select a subset of features that have the most predictive power.
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Feature selection is divided into two steps: importance ranking
and cross validation. We ranked the importance of features by
fitting a decision tree regressor with gradient boosting using

training data, then the importance of features can be determined
by how effectively the feature can reduce intra-node standard
deviation in leaf nodes. The second step is to select the optimal

TABLE 1 | Selected most predicative features (WT, edema; TC, tumor core; ET, enhancing tumor; FULL, full tumor volume comprised of edema, tumor core, and

enhancing tumor; N/A, not applicable).

Extracted from Name Subregion Score

clinical age N/A 0.037375134

wavelet-LHL glcm_ClusterShade WT 0.036912293

log-sigma-4.0mm-3D glcm_Correlation TC 0.035558309

log-sigma-2.0mm-3D gldm_LargeDependenceHighGrayLevelEmphasis TC 0.026591038

wavelet-LHL glcm_Informational Measure of Correlation ET 0.022911978

wavelet-HLL firstorder_Maximum ET 0.020121927

wavelet-LHL firstorder_Skewness ET 0.019402119

original image glcm_Autocorrelation ET 0.014204463

wavelet-HHH gldm_LargeDependenceLowGrayLevelEmphasis FULL 0.014085406

log-sigma-4.0mm-3D firstorder_Mwtian WT 0.013031814

wavelet-HLH glcm_JointEntropy WT 0.013023534

wavelet-LHH glcm_ClusterShade TC 0.012335471

wavelet-HLL glszm_LargeAreaHighGrayLevelEmphasis FULL 0.011980896

original image firstorder_10Percentile WT 0.011803132

TABLE 2 | Evaluation result of ensemble model and individual models.

Stage Metric Enhancing tumor Whole tumor Tumor core

CA-CNN

Mean Dice 0.77682 0.90282 0.85392

Mean Hausdorff95(mm) 3.3303 5.41478 6.56793

Sensitivity 0.81258 0.93045 0.85305

Specificity 0.99807 0.99336 0.99786

DFKZ Net

Mean Dice 0.76759 0.89306 0.82459

Mean Hausdorff95(mm) 5.90781 5.60224 6.91403

Sensitivity 0.80419 0.89128 0.81196

Specificity 0.99833 0.99588 0.99849

3D U-Net

Mean Dice 0.78088 0.88762 0.82567

Mean Hausdorff95(mm) 7.73567 12.63285 13.33634

Sensitivity 0.84281 0.90188 0.81913

Specificity 0.99743 0.99416 0.9981

Ensemble model

Mean Dice 0.80522 0.90944 0.84943

Mean Hausdorff95(mm) 2.77719 6.32753 6.37318

Sensitivity 0.83064 0.90688 0.83156

Specificity 0.99815 0.99549 0.99863

The bold values indicate the best performance.

TABLE 3 | Evaluation result of ensemble model for segmentation.

Stage Metric Enhancing tumor Whole tumor Tumor core

Validation
Mean Dice 0.8052 0.9044 0.8494

Mean Hausdorff95(mm) 2.7772 6.3275 6.3732

Testing
Mean Dice 0.7171 0.8762 0.7977

Mean Hausdorff95(mm) 4.9782 7.2009 6.4735
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number of best features for prediction by cross validation. In
the end, we selected 14 features and their importance are listed
in Table 1. The detailed feature definition can be found at
(https://pyradiomics.readthedocs.io/en/latest/features.html), last
accessed on 30 June 2018.

Unsurprisingly, age had the most predictive power among
all of the features. The rest of the features selected came
from both original images and derived images. We also found
that most features selected came from images generated by
wavelet decomposition.

2.6. Survival Prediction
Based on the 14 features selected, we trained a random forest
regression model (Ho, 1995) for final survival prediction.
The random forest regressor is a meta regressor of 100 base
decision tree regressors. Each base regressor is trained on a
bootstrapped sub-dataset into order to introduce randomness
and diversity. Finally, the prediction from base regressors
are averaged to improve prediction accuracy, robustness and
suppress overfitting. Mean squared error is used as loss function
when constructing individual regression model.

FIGURE 6 | Examples of segmentation result compared with ground truth. Image ID: TCIA04_343_1, Green:edema, Yellow:non-enhancing solid core,

Red:enhancing core.
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TABLE 4 | Evaluation result of survival prediction.

Stage Classification accuracy Median error

Validation 46.4% 217.92

Test 61.0% 181.37

3. RESULTS

3.1. Result of Tumor Segmentation
We trained the model using the 2018 MICCAI BraTS training
set using the methods described above. We then applied the
trained model for prediction on the validation and test set.
We compared the segmentation result of the ensemble model
with the individual model on the validation set. The evaluation
result of our approach is shown in Table 2. For other teams’
performance, please see the BraTS summarizing paper (Bakas
et al., 2018). The result demonstrates that the ensemble model
performs better than individual models in enhancing tumor and
whole tumor, while CA-CNN performs marginally better on the
tumor core.

The predicted segmentation labels are uploaded to the
CBICA’s Image Processing Portal (IPP) for evaluation. BraTS
Challenge uses two schemes for evaluation: Dice score and
the Hausdorff distance (95th percentile). Dice score is a
widely used overlap measure for pairwise comparison of
segmentation mask S and G. It can be expressed in terms of
set operations:

Dice =
2|S ∩ G|

|S| + |G|
(2)

Hausdorff distance is the maximum distance of a set to the
nearest point in the other set, defined as:

dH(X,Y) = max{ sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y) } (3)

where sup represents the supremum and inf the infimum. In
order to have more robust results and to avoid issues with noisy
segmentation, the evaluation scheme uses the 95th percentile.

In the test phase, our result ranked 5th out of 60+
teams. The evaluation result of the segmentation on the
validation and test set are listed in Table 3. Examples of the
segmentation result compared with ground truth are shown
in Figure 6.

3.2. Result of Survival Prediction
Based on the segmentation result of brain tumor subregions,
we extracted features from brain tumor sub-regions segmented
from MRI scans and trained the survival prediction model as
described above. We then used the model to predict patient’s
overall survival on the validation and test set. The predicted
overall survival was uploaded to the IPP for evaluation. We
used two schemes for evaluation: classification of subjects as

long-survivors (> 15 months), short-survivors (< 10 months),
andmid-survivors (between 10 and 15months) andmedian error
(in days). In the test phase, we ranked second out of 60+ teams.
The evaluation results of our method are listed in Table 4. For
other teams’ performance, please see the BraTS summarizing
paper (Bakas et al., 2018).

4. DISCUSSION

In this paper, we present an automatic framework for the
prediction of survival in glioma using multimodal MRI scans and
clinical features. First, a deep convolutional neural network is
used to segment a tumor region from MRI scans, then radiomics
features are extracted and combined with clinical features to
predict overall survival. For tumor segmentation, we used
ensembles of three different 3D CNN architectures for robust
performance through voting (majority rule). The evaluation
results show that the ensemble model performs better than
individual models, which indicates that the ensemble approach
can effectively reduce model bias and boost performance.
Although the Dice score for segmentation is promising, we
noticed that the specificity of the model is much higher than
the sensitivity, indicating an under-segmentation of the model.
For survival prediction, we extracted shape features, first order
statistics, and texture features from segmented tumor sub-region,
then used a decision tree and cross validation to select features.
Finally, a random forest model was trained to predict the overall
survival of patients. The accuracy for three-class classification
is 61.0%, which still leaves room for improvement. Part of the
reason is that we only had a very limited number of samples
(285 patients) to train the regression model. In addition, imaging
and limited clinical features may only explain patients’ survival
outcome partially, too. In the future, we will explore different
network architectures and training strategies to further improve
our result. We will also design new features and optimize our
feature selection methods for survival prediction.
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