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Spiking Neural Networks (SNNs) offer great potential to promote both the performance

and efficiency of real-world computing systems, considering the biological plausibility

of SNNs. The emerging analog Resistive Random Access Memory (RRAM) devices

have drawn increasing interest as potential neuromorphic hardware for implementing

practical SNNs. In this article, we propose a novel training approach (called greedy

training) for SNNs by diluting spike events on the temporal dimension with necessary

controls on input encoding phase switching, endowing SNNswith the ability to cooperate

with the inevitable conductance variations of RRAM devices. The SNNs could utilize

Spike-Timing-Dependent Plasticity (STDP) as the unsupervised learning rule, and this

plasticity has been observed on our one-transistor-one-resistor (1T1R) RRAM devices

under voltage pulses with designed waveforms . We have also conducted handwritten

digit recognition task simulations on MNIST dataset. The results show that the

unsupervised SNNs trained by the proposed method could mitigate the requirement

for the number of gradual levels of RRAM devices, and also have immunity to both

cycle-to-cycle and device-to-device RRAM conductance variations. Unsupervised SNNs

trained by the proposedmethods could cooperate with real RRAM devices with non-ideal

behaviors better, promising high feasibility of RRAM array based neuromorphic systems

for online training.

Keywords: unsupervised learning, spiking neural network (SNN), memristor, RRAM (resistive random access

memories), 1T1R RRAM, STDP

1. INTRODUCTION

Spiking Neural Networks (SNNs) have been developed in the last decades as the third
generation Artificial Neural Networks (ANNs) since SNNs behave more similarly to the
natural neural systems, such as the human brain (Maass, 1997). The human brain is
capable of complex recognition or reasoning tasks at relatively low power consumption
and in a smaller volume, compared with those of training conventional ANN models
of similar accuracy. The synaptic modification manners found in cultured hippocampal
neurons introduced a great abstract model of the synaptic plasticity (Bi and Poo, 1998),
namely the Spike-Timing-Dependent Plasticity (STDP). The STDP rule describes how the
intermediate synapse changes its plasticity according to the spike timings of pre-neurons and
post-neurons. The STDP rule could be armed as an unsupervised learning mechanism in SNNs,
to implement more bio-like neural computing systems. However, SNN simulations require
much more effort for preserving and utilizing the enormous amount of spatial-temporal
information encoded in spike trains, thus are incredibly compute-intensive on conventional von
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Neumann computing systems. Some dedicated Very-Large-
Scale Integration (VLSI) neuromorphic architectures have
been proposed to enhance the neural simulation performance
(Schemmel et al., 2010; Painkras et al., 2013; Qiao et al.,
2015). VLSI technology allows intensive integration of neurons;
however, the implementation of synapse arrays requires many
transistors and intricate circuit designs, to emulate the learning
and plasticity dynamics such as STDP. Recently, the analog
Resistive RandomAccess Memory (RRAM) devices have become
emerging neuromorphic hardware for artificial synapses, thanks
to the controllability on their conductances and the ability
of in-memory computing (Jo et al., 2010). The nanoscale
fabricated RRAM devices can also be easily integrated as high-
density crossbar arrays, which provide elegant solutions for the
implementation of numerous synapses in neural systems. STDP
allows the synapse tomodulate its plasticity/strength according to
the relative spike timing difference of the neurons connected by
that synapse, and RRAM devices have been proved to be capable
of providing various STDP characteristics (Jo et al., 2010; Yu
et al., 2011b; Ambrogio et al., 2013, 2016; Wang et al., 2015;
Pedretti et al., 2017; Wu and Saxena, 2017; Prezioso et al., 2018).

Typically, training neural network models in-situ on
memristive devices could be challenging due to the device
imperfectness and non-idealities, such as read noise, write
noise, write nonlinearities, asymmetric SET/RESET switching
behaviors and the limited gradual levels during programming
(Agarwal et al., 2016; Chang et al., 2017; Wu et al., 2017). To
accomplish recognition tasks such as learning handwritten digits
(LeCun et al., 1998) with memristive neuromorphic hardware,
Gokmen and Vlasov (2016) gave an estimate for the number
of states that are required to be stored on a RRAM device as
600. While the reported state-of-art technologies allow the
memristive devices to have 64 states (Park et al., 2016), up to over
200 states (Gao et al., 2015) continuously tuned by consecutive
programming pulses, it is typically impossible to precisely control
the conductance level using single shot programming (Kuzum
et al., 2011; Yu et al., 2013; Eryilmaz et al., 2016). For neural
networks trained with supervision, such as backpropagation
(LeCun et al., 1989), the conductance of memristive devices can
be fine-tuned to the desired value during the training process,
using write-verification scheme (Guan et al., 2012; Yao et al.,
2017), which introduces operation overheads to modulate the
device conductance more precisely.

However, when it comes to unsupervised neural networks
such as SNNs trained with STDP, write-verification scheme is not
compatible with unsupervised learning since there is no error
propagating backward and the weights should be self-adaptive
to the input stimulus and output responses (STDP). Therefore,
the switching behavior under consecutive programming pulses
of RRAM devices is essential for implementing unsupervised
learning algorithms. The dynamic range and minimum
achievable mean conductance change will limit the learning
rate of training algorithms (Gokmen and Vlasov, 2016). The
learning rates for typical SNN training algorithms are set at the
magnitude order around 10−4 ∼ 10−2 (Masquelier and Thorpe,
2007; Querlioz et al., 2013; Panda et al., 2018), which implies
at least 100 ∼ 1, 000 intermediate states are needed for RRAM

devices to implement such learning rules without compromise.
So far, memristive device technologies could provide with
devices of <100 multi-level states (Kuzum et al., 2013), which
limits the complexity of RRAM-based SNNs. Several SNNs of
simple structures have been simulated or demonstrated basing
on memristive devices (Wang et al., 2015; Pedretti et al., 2017),
accomplishing recognition tasks such as 4 × 4 binary patterns
with one post-neuron (Pedretti et al., 2017), 3× 3 binary patterns
with two competitive post-neurons (Pedretti et al., 2017) and
one single 8 × 8 pattern with eight pre-neurons and eight
post-neurons (Wang et al., 2015). The abrupt switching behavior
of RRAM devices limits the complexity of recognition tasks
accomplished by unsupervised SNNs. Boybat et al. (2018) have
proposed an architecture to wrap several Phase Change Memory
(PCM) devices as one single synapse, to reduce the smallest
achievable mean conductance change, therefore improving
the effective conductance change granularity. This N-in-1 (N
PCMs serving as one single synapse) architecture requires
additional arbitration control circuit to manage N PCMs for each
synapse. Their unsupervised SNN simulation with device model
achieves remarkable performance by using 9-in-1 architecture (9
PCMs as one synapse), reaching testing accuracy over 70% on
MNIST dataset with a single-layer (no hidden layer) SNN of 50
post-neurons, which is close to the float-precision baseline 77.2%
(Boybat et al., 2018).

In this work, we propose a novel scheme for training
unsupervised SNNs, with pattern/background phases and greedy
training, to cooperate with realistic RRAM characteristics. The
pattern/background phases and greedy training methods allow
input pattern spike trains to have much lower frequencies and
still guarantee the synapses to learn correct patterns and forget
irrelevant information as well. Lower firing rate of neurons in
SNNs will lead to fewer times of conductance changes for RRAM
devices. We conduct simulations of unsupervised SNNs for the
recognition of the handwritten digits from MNIST dataset, as
well as the SNNs with different levels of RRAM cycle-to-cycle
and device-to-device variations. The testing accuracy for 10,000
test images fromMNIST dataset reaches around 75% after single-
epoch unsupervised learning on 60,000 training images, with
30% cycle-to-cycle and device-to-device write variation, together
with 10% cycle-to-cycle, and device-to-device dynamic range
variation. The SNNs trained with proposed training methods
show excellent performance even with large learning rates, which
indicates that the requirement for the number of levels of RRAM
devices could be reduced, and the abrupt switching, asymmetric
switching could also be tolerated well. The unsupervised SNNs
trained with proposed training methods show high feasibility of
RRAM array based neuromorphic systems for online training.

In this article, the material details of our 1T1R device will
first be introduced in section 2.1. Then the STDP architecture
on 1T1R array and the unsupervised SNN architecture will
be explained in sections 2.2, 2.3 respectively. The STDP
characteristic of 1T1R devices measured from experiment is
shown in section 3.1. The pattern/background phases and
greedy training methods are described in sections 3.2.1, 3.2.2.
The inference technique is also included in section 3.2.3. And
classification results on digit recognition are shown in sections
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3.2.4, 3.2.5. In section 4, more types of RRAM non-idealities
are discussed, such as endurance, failure rate and asymmetric
switching behavior. Section 5 highlights the main contributions
of this work.

2. MATERIALS AND METHODS

2.1. 1T1R Device
The one-transistor-one-resistor (1T1R) structure is used to
fabricate the RRAM crossbar array, as illustrated in Figure 1.
Each RRAM device consists of a TiN/TaOy/HfOx/TiN stack.
The transistor inside the 1T1R cell plays an important role to
overcome the shortcomings of the conventional 2-terminal 1R
or one-selector-one-resistor (1S1R) crossbar array, such as sneak
current path and programming disturbance (Yao et al., 2015).
Furthermore, the gate node offers more control over the whole
1T1R cell since the current through the device can be complied
during the SET processes. The control on gate voltage allows
more immunity to the switching voltage magnitude and achieves
better uniformity (Liu et al., 2014).

Each 1T1R cell has three main terminals: transistor gate, top
electrode and transistor source, and they are connected to the
word-line (WL, also noted as G), bit-line (BL), and source-line
(SL) respectively in the array layout. Typical switching behavior
during SET and RESET is shown in Figure 1C, where abrupt
switching during SET is observed since the generation of each
oxygen vacancy during the SET process can increase the local
electric field/temperature and accelerate the generation of other
vacancies, analogous to avalanche breakdown (Yao et al., 2017).
Gate voltage pulses are usually different during SET and RESET
processes: lower gate voltage is applied during SET to limit the
set current, while RESET process requires a higher gate voltage
to supply adequate reset current (Wu et al., 2011; Yao et al.,
2017). Furthermore, we can notice that the switching behaviors
of SET and RESET are asymmetric, which is one of the major
bottlenecks that limit the performance of memristive-based
neural computing system (Kuzum et al., 2013). Fortunately, this
asymmetric behavior could be partly compensated by tuning
device-independent parameters of proposed trainingmethods. In
the next section, we introduce an architecture for 1T1R crossbar
array to implement the biological plausible STDP feature of
synapses. This schematic is a general design which can be
configured for different 1T1R devices that require different
operating voltages.

2.2. STDP Implementation on 1T1R Array
Figure 2 shows the schematic to implement STDP characteristics
basing on the 1T1R array, where each 1T1R cell acts as one
electrical synapse. The pre-neuron layer is connected to the
synapse array via n BLs, and the post-neuron layer is connected
to m SLs, representing the fully-connected structure of two
layers in topology. In the forward mode, when the pre-spike
voltage signal is applied on the BL, corresponding current flows
through 1T1R cell and adds up with the current of other cells
in the same row at the SL node. This current stimulates the
post-neuron (leaky-integrate-and-fire neuron) to integrate and
modify the membrane voltage. Once the membrane voltage of

the post-neuron reaches a certain threshold, the spike generator
module will generate two synchronized spike signals: post-
spike and gate-control. In the feedback mode, the gate line
is controlled by a certain pulse generated by post-neuron, for
the RRAM SET/RESET processes. The voltage across the given
memristor (i, j) is determined by the voltage difference of BLj
and SLi. So the overlapped waveform of pre-spikes and post-
spikes with some time window will determine the behaviors of
1T1R cells during the feedback process. This design provides
a flow paradigm with two communication phases and allows
parallel modulation on crossbar states utilizing the overlapped
spiking events naturally. Thanks to the crossbar architecture
which binds all Gate nodes and Source nodes of all devices in
one row, the temporal all-to-all spike-interaction of STDP could
be implemented easily (Morrison et al., 2008). Similar structures
on STDP implementation have been proposed for 1R (RRAM
without any transistor, also known as 0T1R) devices (Yu et al.,
2011b; Wu and Saxena, 2017; Prezioso et al., 2018), while for
1T1R devices, additional control on Gate nodes is required.

Figure 3 shows the abstract waveform design for the STDP
architecture mentioned above. According to the STDP rule
observed in natural neural system (Bi and Poo, 1998), when
the post-spike fires slightly before the pre-spike, the synapse
should be depressed, and for the RRAM device, the conductance
should decrease. As illustrated in Figure 3A, the positive part
of post-spike pulse overlaps with the negative part of the pre-
spike pulse, causing a larger negative voltage across the 1T1R
cell, which in fact is a RESET operation given the appropriate
gate voltage, leading the synapse conductance to a lower value.
Similarly in Figure 3B, when the post-spike follows the pre-spike
closely, the voltage across the cell is a large positive value which
can SET the device into a higher conductance state. Figure 3C
shows the situation that the pre-spike does not overlap with the
post-spike, and no learning mechanism is triggered. The peak
positive voltage values of BL and SL are annotated as VBL

+ and
VSL

+, and VBL
–, VSL

– for the negative parts. VG
SET and VG

RESET

represents the appropriate gate voltage during SET and RESET
respectively. Analytically, magnitude of the voltage across the cell
varies from |VSL

–| to VBL
+ + |VSL

–| during SET, from VSL
+ to

VSL
+ + |VBL

–| during RESET. These pulse shaping parameters
(including VG

SET, VG
RESET and pulse width) can be configured

with flexibility tomeet the control requirements of different 1T1R
devices and for desired synaptic characteristics (Figure 3D). The
STDP characteristic shown by our 1T1R devices under this
scheme design is experimentally measured in section 3.1.

2.3. Unsupervised SNN Architecture
The work uses a Spiking Neural Network which consists of
two layers of neurons, as shown in Figure 4A. The neurons in
the input layer are Poisson neurons which produce spike trains
whose firing rate is proportional to the associated pixel intensity
(Diehl and Cook, 2015; Boybat et al., 2018). For one gray-scale
image stimulus, the 2-dimensional image will be flattened into a
1D vector, and each pixel is mapped to one input Poisson neuron.
The Poisson neurons are fully connected to a layer of Leaky-
Integrate-and-Fire (LIF) neurons, serving as the output layer.
The mechanism of one LIF neuron is explained in Figure 4B. In
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FIGURE 1 | The architecture of 1T1R crossbar array and 3D fabrication illustration. (A) The 1T1R crossbar array layout. The transistor gates and transistor sources of

1T1R cells in the same row are connected to the G (WL) bus and SL bus respectively. The RRAM top electrodes (TE) of 1T1R cells in the same column are gathered

onto the BL bus. (B) The 3D fabrication structure schematic of the 1T1R cell. The bottom electrode (BE) of each RRAM device is connected to the transistor drain

node., and the top electrode (TE) is wired with the BL bus. When the transistor gate is open by the high voltage on the WL bus, a positive voltage across BL and SL

will help to strengthen conductive filaments in the HfOx/TaOy layer, increasing the RRAM conductance, which is known as the SET operation. FORM operation is

similar but with a higher positive voltage across BL and SL, to form the main conductive filaments in the TaOy layer for the first time. RESET requires a reverse

operation voltage that tries to cut off the filaments formed in the HfOx layer, thus decreasing the RRAM conductance. (C) Typical switching behavior of our 1T1R

device under consecutive identical operation pulses (width = 50 ns) during SET/RESET. VBL = 1.5V,VG = 2.0V,VSL = 0 for SET, and VSL = 1.4V,VG = 4.0V,

VBL = 0 for RESET. Abrupt switching is more readily observed during SET.

the forward mode, each synapse in the middle conveys the spike
signals of the certain input neuron to the output neuron via its
strength, defined as W. In the feedback (backward) mode, the
strength of the synapse is modified according to the pre-spike
and post-spike timings. The STDP variant rule, which changes
weight with soft bound is used (Kistler and Hemmen, 2000), as
shown in Equation 1. The relative weight changes 1W/W of soft
bound STDP model vary with different W states (see Equation
2). In general, when applying the same SET operation on RRAM
devices in HRS, the consequent relative conductance change
is often larger than that of devices in lower resistance states,
and similarly for the RESET operation. This nonlinear manner
of RRAM devices matches the synapse strength modulation
modeled by soft bound STDP. The STDP model with soft
bound fits better with the experimental behavior of the 1T1R
device under the STDP circuit architecture and waveform design
mentioned above, as explained in section 3.1. 1t is defined as

tpost − tpre, where tpost and tpre represent the spike timings of
the post-neuron and pre-neuron respectively. While the classical
STDP model which expects the relative weight changes to be
irrelevant with original weight states (see Equation 3) does not
match the typical nonlinear behaviors of RRAM devices.

1W =







A+(Wmax −W) exp
(

−1t
τ+

)

, if 1t > 0

−A−(W −Wmin) exp
(

−
|1t|
τ−

)

, if 1t < 0
(1)

1W

W
=







A+

(

Wmax
W − 1

)

exp
(

−1t
τ+

)

, if 1t > 0

−A−

(

1− Wmin
W

)

exp
(

−
|1t|
τ−

)

, if 1t < 0
(2)

1W

W
=







A+ exp
(

−1t
τ+

)

, if 1t > 0

−A− exp
(

−
|1t|
τ−

)

, if 1t < 0
(3)
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FIGURE 2 | Schematic for FORWARD/FEEDBACK modes on 1T1R RRAM array. Each Leaky-Integrate-and-Fire neuron (namely post-neuron) is connected to the SL

and G nodes and each Poisson neuron (pre-neuron) is connected to the BL. (A) In FORWARD mode, the current stimulated by input pre-spikes can flow through the

1T1R cell and finally arrives at the integrator module of post-neurons (marked as dashed blue curve), where the input information encoded in pre-spikes is conveyed

to the post-neurons. (B) When the post-neurons generate output signals, i.e., post-spikes and gate-controls, the circuit changes to the FEEDBACK mode via the

control of the two-state switch at SLs. The conductance of RRAM devices could be programmed since the Gate is enabled and there is a voltage across the RRAM

devices because of the simultaneous presence of pre-spikes and post-spikes.

Since the synapse strength is modulated by STDP rule in an
unsupervised manner, competition mechanism is required for
the post-neurons to learn discriminated patterns (Masquelier
et al., 2009; Carlson et al., 2013; Diehl and Cook, 2015; Panda
et al., 2018). Lateral inhibitory paths are added to the output
neurons in Winner-Take-All (WTA) fashion: once a LIF neuron
fires at tpost, membrane voltage of all neurons in the output
layer will be reset to the resting voltage, and the spiking neuron
itself goes into a refractory period as illustrated in Figure 4B. All
other neurons need to re-accumulate their membrane voltage
from resting voltage, and the spiked one will be held at
resting potential during refractory, allowing LIF neurons to
compete with each other for the firing opportunity. Furthermore,
the homeostasis mechanism is also introduced among LIF
neurons. The membrane threshold of each LIF neuron is
adapted according to its recent spiking activity: threshold of
the LIF neuron with more recent firing events will increase
to lower its firing opportunity during the next several stimuli,
and vice versa.

The training methods, namely pattern/background
phases and greedy training, which allow the SNN to
cooperate with large conductance change step shown by
real RRAM devices will be introduced later in section 3.2,
where the performance on the MNIST recognition tasks is
also discussed.

3. RESULTS

3.1. STDP Characteristic of 1T1R Device
As mentioned above, the soft bound STDP (Equation 1) models
different relative weight changes of different weight states

(Equation 2), and the STDP model curves of different W states

are plotted in Figure 5. The programming pulses of designed
waveforms (Figure 3) are applied to 1T1R devices repeatedly

with different initial states using Keithley 4200A-SCS, and the

conductance changes of devices are measured. Figure 6 shows

the obtained experimental data provided with detailed operation
information, indicating that the designed pulse waveforms can
modulate the 1T1R devices’ conductance similar to the synapse
behavior modeled by soft bound STDP.

The A+,A− parameters in Equation 1 could be regarded as
the learning rate of the STDP model. For our devices, the typical
fitted value of A is larger than 0.5, up to 1.0, which indicates
strong potentiation and depression processes (abrupt switching
shown in Figure 1C) of the RRAM devices. The advance in
material and structure of RRAM devices will lead to more
ideal behaviors, such as gradual conductance switching, linear
switching and more stable intermediate conductance states,
which would allow us to model the learning mechanism with
smaller learning rates. In typical SNN training algorithms, the
learning rates are set at the magnitude order around 10−4 ∼
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FIGURE 3 | Waveform design for BL (pre-spikes), SL (post-spikes) and Gate. The voltage across the 1T1R cell is also displayed as VCELL, which equals to VBL – VSL.

(A) A post-spike that fires right before the pre-spike event. (B) A post-spike that fires right after the pre-spike event. (C) A post-spike that fires without overlapping of

the pre-spike event. (D) Time parameters of three channels. The transition time of all channels are the same, and SL pulses and Gate pulses have the same

synchronized width.

10−2 (Masquelier and Thorpe, 2007; Querlioz et al., 2013;
Panda et al., 2018), which would face immense difficulties
applying on current general RRAM devices directly without
other circuit aids. To cooperate with the non-ideal abrupt
switching on RRAM conductances, we propose a novel training
workflow for SNNs, named as pattern/background phases and
greedy training methods (see sections 3.2.1, 3.2.2), which

show immunity to large conductance changes as well as the
device variations.

3.2. SNN Performance on MNIST
3.2.1. Encoding Input: Pattern/Background Phases
MNIST handwritten digits dataset is used as the application proof
of SNNs trained with proposed methods. The dataset consists of
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FIGURE 4 | The architecture of SNN and mechanism of LIF neuron. (A) The two-layer SNN architecture. The input layer is responsible for converting input images into

spike trains. Poisson neurons are used in this layer. The spikes generated by the input layer are transmitted to the synapses in the middle, fully connecting the input

neurons and the output neurons. The synapses modulate the received spikes (defined as pre-spikes) by their weights and pass the spikes to the output layer. LIF

neurons in the output layer process the spikes and generate output spikes properly. The mechanism of LIF neuron is explained in (B). The output spikes (defined as

post-spikes) are passed back to the corresponding synapses and tune the synapse weights via STDP rule. Additionally, output spikes are broadcasted among output

neurons through the lateral inhibition paths, allowing competition during learning. (B) LIF neuron firing mechanism. The LIF neuron has an internal state, i.e.,

membrane potential. It integrates on the presence of received input spikes and decays exponentially with a time constant τmem. Once the membrane potential

reaches a certain threshold Vth, it fires a spike at the output port and the membrane potential is reset to the resting potential Vrest. The fired LIF neuron itself then

enters into a short refractory period, when its membrane potential holds at Vrest and does not respond to any recent input spikes.

60,000 28-by-28 gray-scale images for training, and other 10,000
unseen images of the same size for testing phase1. Each Poisson
neuron in the input layer is responsible for converting one pixel
of the input image into a temporal spike train. The generated
spike events are subject to Poisson distribution and firing rate of
the Poisson neuron is proportional to the corresponding pixel’s
intensity (Diehl and Cook, 2015). At each simulation timestep,
independent Bernoulli trials are conducted to determine whether
to fire a spike event (Boybat et al., 2018). Additionally, the
original gray-scale images from MNIST dataset are normalized
by their total pixel intensity respectively before stimulating the
Poisson neurons.

For each input image, the input encoding scheme includes
a pattern phase and a background phase. During the pattern
phase, the original image is fed to the input neurons; therefore,
the pattern pixel (of higher intensity) channels are likely to have
more spikes generated. During the following background phase,
the complementary of the original image is used to stimulate the
input layer for another period. The Poisson neurons connected to
the background pixels (of lower intensity in the original image)

1The MNIST dataset used for this study can be found in THEMNIST DATABASE

of handwritten digits.

spike more frequently in the background phase, to depress the
irrelevant synapses which are mapped to the background pixels.

3.2.2. Greedy Training
The simulation is conducted at a time step of 50 ns, to match the
time scale of the waveform configurationsmentioned in Figure 6.
The routine of the training process can be described as follows
and shown as the block diagram in Figure 7:

1. Get the k-th image I(k) from MNIST training set.

2. Normalize I(k) by its total pixel intensity. Let I
(k)
i be the

intensity of the i-th pixel (i = 1, 2, · · · , 784), then Ĩ
(k)
i ←

I
(k)
i /

∑

i I
(k)
i .

3. Pattern phase: The normalized Ĩ
(k)
i is mapped to the i-th

Poisson neuron Pi in the input layer. For Pi, the probability to

fire a spike at a given time t equals to fpattern×Ĩ
(k)
i , where fpattern

is a factor to control the overall activity of the input layer. Note

that
∑

i fpattern Ĩ
(k)
i = fpattern, which represents the average

number of total spiking events in the input layer at a single
time step, as shown in Figure 8A. In this work, fpattern = 1 is
used for all simulations, so that the average firing rate of one
Poisson neuron is 1/(50 ns× 784) ≈ 25.5 kHz.

4. The duration of the pattern phase is variable, with a maximum
of 10 µs (200 steps). Ĩ(k) is persisted to stimulate input layer
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FIGURE 5 | The STDP model curves of different W states. The potentiation of

lower conductance states is stronger than that of higher conductance states,

and vice versa for the depression process. Model parameters:

A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax = 50µS,Wmin = 10µS. A− is

set to be smaller than A+, which fits the experimental behavior of RRAM

devices in Figure 6.

until one post-neuron finally reaches its membrane threshold
and fires a post-spike. Then pattern phase is switched to
background phase immediately. The input layer expects to
activate only one post-neuron during the pattern phase, this
is so-called “greedy” training (Figure 8B).

5. Background phase: The complementary version of I(k) is
defined as Ī(k) = 255 − I(k). Normalization is also conducted
to the complementary image, such that normalized ˜̄I

(k)
i ←

Ī
(k)
i /

∑

i Ī
(k)
i . Similarly, the normalized complementary image

stimulates the input layer by a factor fbackground = 7, resulting
in an average firing rate of one Poisson neuron at around
128 kHz, as illustrated in Figure 8C. The background phase
has a constant duration of 500 ns (10 steps).

6. Training iteration process of image I(k) is completed. Get the
(k+ 1)-th image fromMNIST training set. Repeat from step 2
to step 6.

For LIF neurons in the output layer, the membrane time constant
τmem = 10µs. Resting membrane potential Vrest = 0V, and
initial firing threshold is set as Vth = 0.4V. The refractory
period is disabled for simplicity. Winner-Take-All rule is used
for lateral inhibition, that is, only one LIF neuron in the same
layer is allowed to fire in any single time step (Masquelier et al.,
2009). Once some neuron fires a spike, membrane potentials of
all neurons in that layer are reset to Vrest. If more than one
neuron’s membrane potential increases over the firing threshold
in one simulation time step, the one that exceeds its threshold
the most is fired. The threshold of each LIF neuron is adapted
through homeostasis: it increases by 0.1 × (A − T) at every new
image input, whereA represents the average number of spikes per
time step for recent 1,000 images’ training iterations, and T is the
target number of spikes per time step (Boybat et al., 2018).

For synapses which fully connect the input and output
layers, the soft bound model defined by Equation 1 is used.
The parameters fitted with device experimental behaviors are
used: A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax =

50µS,Wmin = 10µS. Initial synapse weights are uniformly
distributed in [Wmin,Wmax].

3.2.3. Inference Process
After iterating over all training images for one time, the network
will be set to static inference mode. The synapse weights and
membrane thresholds of LIF neurons will remain unchanged
during the inference process. The lateral inhibition mechanism
is still enabled to allow competition among output neurons,
and the greedy manner is also kept, therefore once some post-
neuron fires a spike for the input stimulus, the inference for
this input is completed. The training images are applied to the
network once again, and each image is persisted to stimulate the
network until some post-neuron fires. The fired neuron index
and firing time are recorded. Each image with label gives the
fired neuron a confidence score as 1

firing time
for the corresponding

label, which indicates that the earlier the output neuron fires,
the more confident the neuron is. The scores are summed up
for each neuron and label after the stimulation of all training
images, and all the LIF neurons are marked with the label
with the highest summed confidence score. Then for any input
image, once some post-neuron fires, the label corresponded with
that neuron is recorded as the predicted label, which could be
compared to the truth label. Therefore the recognition accuracy
could be evaluated.

3.2.4. Performance Without Variations
First of all, a single pattern learning task is conducted by
using proposed greedy training method (pattern/background
phases technique is always included for greedy training in
this article unless explicitly pointed out) and conventional
training method respectively. The conventional training method
is armed with self-decaying techniques to forget irrelevant
information more rapidly (Panda et al., 2018). The target
pattern is the first image of MNIST, a handwritten digit “5.”
The network consists of 784 input neurons and one single
output neuron. All parameters for both training methods keep
the same, except for some unique method-specific parameters
such as background firing rate for greedy training and decay
factor for conventional training. The efficacy of synapses is
compared with the target pattern after learning since there
is no supervision and competition among output neurons,
and an ideal learning method should be able to learn all the
details of the pattern. Therefore, the error rates of pattern
pixels and background pixels are calculated to evaluate the
learning accuracy, as shown in Figure 9. The network is
trained by both methods under different learning rates, and
Figures 9A,B show that the proposed greedy training has a better
convergence especially when the learning rate is larger, and
the speed for both methods is comparable (see green curves).
Moreover, greedy training is also able to depress the irrelevant
background synapses with the same speed as the self-decaying
mechanism (Panda et al., 2018), shown in Figures 9C,D. The
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FIGURE 6 | Experimentally measured STDP characteristic of our 1T1R devices, compared with the model. The waveform parameters of BL, SL, G pulses applied on

the devices: VBL
+ = 0.6 V, VBL

– = –1.0 V, VSL
+ = 1.3 V, VSL

– = –1.0 V, VG
RESET = 4.0 V, VG

SET = 1.0 V, pulse width of VBL = 500 ns, pulse width of VSL and VG =

50 ns, all transition time = 20 ns. The model parameters used here to compare with experimental data are the same as those listed in Figure 5: A+ = 1.0,A− = 0.6,

τ+ = τ− = 150 ns,Wmax = 50µS,Wmin = 10µS. (A) The experimentally measured data on 1T1R devices (blue points with errorbar) via Keithley 4200A-SCS

equipment, and model-predicted STDP curve, around W state of 15.3µS. Each plotted experimental data point is the average relative conductance change of over

100 trials, and the standard deviation is shown by the corresponding errorbar. In each trial, the device under test is fine-tuned to the target conductance state first,

and then pulses are applied to device terminals for once, finally the conductance change is measured. (B) Measured STDP and modeled STDP around W state of

25.1 µS. (C) Measured STDP and modeled STDP around W state of 35.3 µS. (D) Measured STDP and modeled STDP around W state of 45.1 µS.

proposed training method lowers the requirement for the device
characteristics, at least in terms of the minimal achievable
conductance change.

We have also trained an SNN with 784 input neurons and 50
output neurons to learn and recognize the full MNIST dataset.
The network is of the same structure as the one in Boybat
et al. (2018) but is trained by the proposed greedy method. The
parameter values are set to be device compatible as mentioned
in the caption of Figure 6 and section 3.2.2: timestep = 50 ns
and A+ = 1.0,A− = 0.6, τ+ = τ− = 150 ns,Wmax =

50µS,Wmin = 10µS, fpattern = 1, f background = 7. The learning
windowwidth for STDP rule is set as four timesteps to reduce the

number of update operations. The pattern phase of each training
image is persisted for 200 time steps at most (since the greedy
algorithm may finish the learning of this image ahead of time),
and the background phase lasts for ten timesteps. Sixty thousand
images from the MNIST training set are fed to the network
sequentially (dataset order is not changed), and each image is
learned only once. The training process finishes after around 9.6
million timesteps, which indicates that the average learning time
for one image is around 160 steps, showing that greedy learning
could cut ∼25% off the expected training time (210 steps for one
image). The overall testing accuracy on 10,000 unseen images
from MNIST testing set reaches 78.9% and is 76.8 ± 0.8% on

Frontiers in Neuroscience | www.frontiersin.org 9 August 2019 | Volume 13 | Article 812

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Guo et al. Unsupervised Learning on RRAM-Based SNNs

FIGURE 7 | Block diagram of pattern/background phases and greedy training

methods for learning one single image. The left and the right column represent

the pattern phase and background phase respectively. The dashed lines

annotated with number show the different timing when spikes arrive at the

synapses. The pre-spikes in the pattern phase (1) arrive first, then the

post-spikes from LIF neurons (2), and finally the pre-spikes generated by the

Poisson neurons in the background phase (3). This spikes arriving sequence

allows potentiation during pattern phases [synapses modulated by (1) and (2)],

and depression during background phases [synapses modulated by

(2) and (3)].

average, as illustrated in Figure 10, which is comparable with the
float-precision baseline of 77.2% accuracy in Boybat et al. (2018).

In the next subsection, the immunity to RRAM device
variations of so-trained SNNs is explored.

3.2.5. Performance With Variations
The variations in RRAM crossbar arrays could be classified
as two types: the cycle-to-cycle variation and the device-to-
device variation. The cycle-to-cycle variation is mainly caused
by the intrinsic stochastic physics mechanisms of the memristive

devices. As mentioned in section 2.1, the conductance of our
memristive devices is controlled by the states of the internal
filaments. When a SET operation voltage is applied to the
device, the oxygen vacancies will generate stochastically and vice
versa for the RESET process. Therefore, the switching behaviors
of memristive devices may vary from cycle to cycle, showing
fluctuations even under the same operation conditions, which
is known as the cycle-to-cycle variation. There also exists the
device-to-device variation when it comes to RRAM arrays. The
fabrication mismatches, line resistances, and capacitances will
lead to different behaviors from device to device. For example,
when pre-spikes/post-spikes are applied to one column/row of
the array as illustrated in Figure 2, the actual voltage across
each cell may vary due to the IR drop, and on the other hand,
the threshold of each RRAM device is also different because
of fabrication mismatches. Besides, the non-idealities of sources
such as the misalignment for Gate pulses and SL pulses will
also incur other variations during the training process, since
the effective pulse width may vary in different operation cycles
and for different cells. Proposing accurate physics and electronics
models to predict the device manners is beyond the scope of this
work (Yu et al., 2011a), so the impact of these variations on the
proposed training methods is analyzed based on the variation
of several main parameters on algorithm level, to evaluate the
robustness of the proposed methods.

We have conducted repeated simulations with different levels
of variation on the parameters: A+,A−,Wmax,Wmin, for both
cycle-to-cycle (C2C) and device-to-device (D2D) variations. All
variations are emulated by setting a certain level of the standard
dispersion of the parameter, i.e., σ/µ (Querlioz et al., 2013;
Agarwal et al., 2016; Gokmen and Vlasov, 2016). For D2D
variation, the parameter will be sampled from the Gaussian
distribution independently for all synapses before the start of
one simulation, and this reference value for each synapse keep
unchanged during the whole training process. If a C2C variation
is also added to the simulation, the actual parameter for each
synapse will be sampled from the Gaussian distribution regarding
the D2D-varied value picked initially, every time the update
operation happens.

The aim of the proposed greedy training method is to
cooperate with the inevitable abrupt switching behavior existing
in memristive devices, so the A+,A− parameters are set to
relatively large values (A+ = 1.0,A− = 0.6 according to the
experimental results in Figure 6), and the STDP learning window
is as narrow as 4 timesteps to reduce the update operations on
each synapse (update operations only happen when |1t| ≤ 2τ ).
Therefore a single update may cause a 1W at the magnitude of
8 ∼ 100% of the dynamic range, which indicates that 20-level
devices could be sufficient for greedy training. Table 1 shows
the impact of the A+,A− variations. With both cycle-to-cycle
and device-to-device variations, the accuracy drops from 76.8
to 73.9% at 30% variation level, which is already an extremely
high level of variation for an electron device, but typical for
research nanodevices (Querlioz et al., 2011). When the device-
to-device A+,A− variation reaches 50%, around 5% of devices
could not be programmed properly in at least one direction (A+
or A− becomes negative), i.e., , the conductance of these defected
devices always decreases whenever potentiation process happens
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FIGURE 8 | Greedy training and pattern/background phases. (A) The schematic of greedy training. Each row with the time axis represents the spiking activity of one

neuron over time. Spikes are marked out by the blue vertical arrows. There are two phases for each image stimuli. During the pattern phase, the input neuron

corresponding to the pattern pixels are more likely to fire spikes. The pattern phase continues until any of the LIF neurons at the output layer spikes. The LIF neuron’s

spike switches the input layer into the background phase immediately, allowing the background pixels to strongly stimulate the Poisson neurons. Therefore, the

learning window shown by the gray shaded area could help the synapses learn the pattern and forget the irrelevant background efficiently. (B) The firing probability

map of Poisson neurons in one single time step. This subfigure shows that the neurons corresponding to the “0” pattern have a higher firing probability during the

pattern phase. (C) The firing probability of all pixels during the background phase. The Poisson neurons associated with background pixels are strongly stimulated

during the background phase, to enable efficient forgetting of the network.

and vice versa. In this situation, the accuracy drops around 10%.
However, the functionality of the network is not challenged. On
the other hand, the greedy training is immune to large cycle-to-
cycle write variation up to 50%, since each device may suffer from
a potentiation/depression disorder with a probability of only 5%,
every time the update operation happens.

We also simulated the impact of the dynamic range
(Wmax,Wmin) variations, as shown in Table 2. The initial
dynamic range is set to 10 ∼ 50µS, meaning that the on/off ratio
equals to only 5, which is easy to fulfill for typical memristive
devices (Kuzum et al., 2013). The network can tolerate 10%
variation level of Wmax and Wmin with <2% accuracy loss, and
still functions well with 30% cycle-to-cycle and device-to-device
Wmax,Wmin variation with a 67% testing accuracy. When the
variation goes to 50%, around 10% of devices in the simulation
are stuck at the initial value since the maximal conductance

becomes less than minimal conductance, which incurs severe
accuracy loss for MNIST application. Querlioz et al. (2011) have
shown that this type of unsupervised SNN can tolerate 50%
Wmax,Wmin variation well, however with a dynamic range of
104, which allows larger variations but is hard to implement for
most nanodevices.

Table 3 compares the performance between greedy-trained
unsupervised SNNs and conventional-trained unsupervised
SNNs (Querlioz et al., 2011; Boybat et al., 2018). The
listed three networks are of the same structure, 784 inputs
together with 50 output neurons. The learning increments and
decrements (normalized by dynamic range) for greedy training
and conventional training are compared, and we can see that
conventional training requires the synapses to be able to tune
their conductances at the magnitude of 0.5% to 1% regarding
the switching window width (Wmax − Wmin), which needs
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FIGURE 9 | Comparison between the proposed training method (GREEDY) and conventional training method (CONVENTIONAL) on learning one single pattern. (A)

Error rate of pattern pixels versus training epochs of greedy training. (B) Error rate of pattern pixels versus training epochs of conventional training. The convergence of

conventional training with large learning rates is much worse than that of greedy training. (C) Error rate of background pixels versus training epochs of greedy training.

(D) Error rate of background pixels versus training epochs of conventional training.

devices to have over 200 levels under consecutive programming
pulses (Querlioz et al., 2011). Since this requirement is hard
to fulfill for most memristive devices (Gao et al., 2015; Park
et al., 2016), an architecture wrapping N devices as one single
synapse has been proposed by Boybat et al. (2018), and they
have proved that training SNNs using up to 9 devices/synapse
can achieve over 70% testing accuracy on MNIST, reducing
the required device levels to around 20, which is easy to
implement. On the other hand, the greedy training method
proposed in this work dilutes the spiking activities in the time
domain, and forces the synapses to learn greedily, with large
learning increments and decrements of 30 to 50% regarding
the switching window, therefore using one memristive device

with 20 levels as one synapse could be sufficient to achieve the
same functionality.

4. DISCUSSION

4.1. Device Endurance
Online training for neural networks on RRAM devices often
requires a large number of conductance tuning operations, where
we must consider the device endurance problem. The core
concept of greedy training is to dilute spike trains in the time
domain, thus reducing the number of device operations. Typical
update count map after training with 60,000 images is shown in
Figure 11A, where update count of an individual synapse is no
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FIGURE 10 | Training result on MNIST recognition. (A) The normalized weight map corresponding to 50 post-neurons. Most patterns of 10 digits are impressively

learned without any supervision. (B) Testing accuracy on MNIST testing set of 10,000 unseen images during training. The overall testing accuracy is around 76.8%,

and most of the categories could be classified with acceptable accuracy.

TABLE 1 | The testing accuracy for different levels of variation on A+,A−.

Variation level 10% 30% 50%

C2C 76.22 ± 0.81% 75.30 ± 1.14% 74.84 ± 1.22%

D2D 76.42 ± 1.78% 76.17 ± 1.03% 65.42 ± 1.88%

Combined 75.74 ± 1.24% 73.94 ± 1.53% 63.48 ± 2.09%

Results for cycle-to-cycle (C2C) variation, device-to-device (D2D) variation, and C2C-D2D

combined variation are listed. Simulations are repeated for 12 times with each condition,

and the testing accuracy is shown as µ± σ , where µ, σ represents the mean value and

standard deviation respectively.

more than 200 times. The endurance related problems could be
ignored for greedy training learning MNIST digits since these
problems usually appear after 105 operating pulses (Zhao et al.,
2018). The parameters used by Boybat et al. (2018) indicate that
the learning window for STDP lasts for over 200 timesteps, and
at each time step, about ten spikes (calculated according to the
MNIST statistics and firing rate mentioned) are generated at the
input layer. The output layer is expected to have five spikes fired
for each image as well. Therefore, an estimate of update operation
number would be 200 × 10 × 5 = 10 k for one training image,
while the value for the proposed greedy training is around 6
× 3 × 1 ≈ 20, reducing update operations by a factor of 500.
The conventional training method may be affected by endurance
related problems more severely. Besides, reducing the number of
update operations could also make the algorithm more energy
efficient theoretically.

4.2. Array Failure Rate
Although the endurance related device failure problem could
be ignored for greedy training, we have conducted simple
simulations to explore the influence of yield. A SNN with four

TABLE 2 | The testing accuracy for different levels of variation on Wmax,Wmin.

Variation level 10% 30% 50%

C2C 76.67 ± 0.76% 71.90 ± 1.75% 63.94 ± 1.34%

D2D 74.91 ± 1.09% 71.60 ± 0.69% 65.20 ± 1.15%

Combined 75.34 ± 0.94% 67.20 ± 2.21% 56.16 ± 1.73%

Results for cycle-to-cycle (C2C) variation, device-to-device (D2D) variation, and C2C-D2D

combined variation are listed. Simulations are repeated for 12 times with each condition,

and the testing accuracy is shown as µ ± σ , where µ, σ represents the mean value and

standard deviation respectively.

TABLE 3 | Comparison table of memristive-device-based SNNs for MNIST

handwritten recognition.

This work Boybat

et al., 2018

Querlioz

et al., 2011

Training method Greedy Conventional Conventional

Network structure 784 × 50 784 × 50 784 × 50

Accuracy with variations ∼75% ∼70% ∼80%

Devices per synapse 1 ≥9 1

Learning increments, decrements ∼0.5, ∼0.3 0.01, 0.006 0.01, 0.005

Required device levels ∼20 ∼20 >200

The accuracy with variations of this work is obtained with 30% cycle-to-cycle and device-

to-device A+,A− variation, and 10% cycle-to-cyle and device-to-device Wmax,Wmin

variation. For Boybat et al. (2018), the N-in-1 architecture (non-differential) with N=9 and

with device variation model is listed. And for Querlioz et al. (2011), the data is obtained

with 25% cycle-to-cycle A+,A− variation, and 25% cycle-to-cycle Wmax,Wmin variation.

output neurons is used to recognize 1,000 “0,” “1” digit images,
and trained with different array failure rates. The failed devices
are stuck to their initial states and do not respond to any
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FIGURE 11 | (A) Heat map of the update counts for each synapse after learning 60,000 MNIST training images. The maximum is <200, which could be ignored for

endurance related problems. (B) Impact of array failure rate. A simple SNN of 4 output neurons to recognize 1,000 “0,” “1” images is simulated. The failed devices are

kept at the initial state and do not respond to any input. The failure rate could have an impact on the convergence, and 30% failure rate can be tolerated in this

application. (C) Using algorithm-level parameters to compensate for the common asymmetric switching behaviors for RRAM devices. For the solid red curve, double

the background firing rate factor leads to similar performance with balanced switching conditions.

input during training. Figure 11B shows that the convergence is
affected severely, especially when the failure rate goes over 50%.
Since endurance issues are ignored, a typical failure rate of a
functional array should be around 10% (Wu et al., 2017), and
greedy training is robust for this situation.

4.3. Compensate Asymmetric Switching
Behavior
Commonly, memristive devices have asymmetric switching
behaviors (Kuzum et al., 2013), which is one of the bottlenecks
for hardware neural networks. Thanks to the pattern/background
phases of greedy training, the potentiation and depression during
SNN training happen in different time slots, and the input
firing rate for each phase could be configured independently.
Therefore, we can compensate for the asymmetric switching

behavior partly by tuning the pattern/background firing factors,
as shown in Figure 11C.

4.4. Divide Spikes Into Pattern/Background
Parts
For greedy training, it is guaranteed that potentiation happens in
the pattern phase and depression in the background phase. So we
can divide the pre-spikes and post-spikes into minor parts from
their timing middle points, then we get a negative/positive pulse
pair for each spike (the same manipulation should be applied to
gate-control signals as well). The original design of waveforms
in Figure 3 requires post-spikes and gate-control signals to be
synchronized well, so if the circuit non-idealities result in the
misalignment of post-spikes and gate-control signals, there may
cause unsafe device operations (VG

RESET applied to the gate
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node when SET is expected). Fortunately, breaking each spike
signal into two parts and operates separately in the pattern and
background phase could solve this problem. Jittering between G
and SL signals will only lead to a lower effective overlapped pulse
width, will not cause unsafe operations anymore.

5. CONCLUSION

To work with the inevitable large conductance change step
introduced by RRAM devices, we propose novel approaches of
pattern/background phases and greedy training for unsupervised
SNNs. Pattern/background phases and greedy training method
provide an efficient workflow of unsupervised SNN learning
because they make sure that only the pattern spikes occur
just before the post-spike events, and background spikes will
follow the post-spikes. Furthermore, greedy training guarantees
that only one post-spike will be fired for each stimulus, which
allows larger weight changes. The simulated SNN model
manages to cooperate with the large learning rate incurred by
RRAM devices by diluting spikes in the temporal dimension
and therefore achieves gradual learning with very few spikes,
which significantly reduce the requirement on the number of
gradual levels of memristive devices from over 200 to around
20, and then could be fulfilled by typical memristive devices.
The greedy-trained unsupervised SNNs also have good immunity
to the conductance change variation and switching window
variation and reach ∼75% testing accuracy on the MNIST
test set with moderate variations. Furthermore, the low-density
interaction fashion of greedy training reduces the number of
SET/RESET operations on memristive devices by around 2

orders, for example a maximum of 200 operations is observed
for single-epoch learning 60,000 MNIST training images, and
this could substantially mitigate the endurance related problems
which is one of the bottlenecks for memristive devices based
online learning systems. This work shows the potential of
RRAM devices serving as neuromorphic hardware to implement
practical applications with properly-trained SNNs, even with
various imperfect behaviors.
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