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INTRODUCTION

Accumulating evidence suggests that sleep is important for plasticity and memory consolidation
(Maquet, 2001; Walker and Stickgold, 2004; Datta and Maclean, 2007; Diekelmann and Born,
2010; Tononi and Cirelli, 2014; Dudai et al., 2015)—the transformation of new labile memories
encoded in wakefulness into stable representations that integrate into long-termmemory networks.
A central model accounting for memory consolidation during sleep is that of coupling between
hippocampal (HC) and neocortical networks (Buzsáki, 1996). According to this two-stage model
of memory formation [also termed the hippocampal—neocortical dialoguemodel (Buzsáki, 1989)],
the dominant direction of information flow across the brain differs between wake and sleep periods.
During wakefulness, acquisition of sensory information mainly drives signal propagation from
cortex to hippocampus (HC) (Buzsáki, 1998;Mormann et al., 2008). By contrast, during subsequent
non-rapid eye movement (NREM) sleep, this model suggests a central role for information
flow from HC to cortex especially around sharp-wave ripples (SWRs) events (Buzsáki, 1998).
Accordingly, slow waves that originate in the neocortex repeatedly reactivate the newly encoded
HC information when SWRs occur, driving subsequent activity in select cortical circuits (Siapas
and Wilson, 1998). However, it is clear that information flow is not strictly unidirectional (Wagner
et al., 2010) and may involve complex loops (Rothschild et al., 2017). HC reactivation tends to
co-occur with sleep spindles that optimize plasticity (Seibt et al., 2017), resulting in long-term
modification of synaptic efficacy. Thus, hippocampal–neocortical coupling requires interregional
cross-frequency coordination between sleep oscillations, including slow waves and sleep spindles
in thalamo-cortical circuits as well as HC ripples.

The underlying prevalent assumption is that sleep oscillations (slow waves in particular) are
global events that co-occur nearly simultaneously across different brain regions. But in fact, they
have been described as traveling waves propagating from anterior-to-posterior cortex (Massimini
et al., 2004), and they typically occur out of phase across different cortical sites (Nir et al., 2011;
Vyazovskiy et al., 2011;Malerba et al., 2019). How can we reconcile models requiring co-occurrence
of sleep oscillations with accumulating evidence of non-uniform timing of oscillations across
the brain? In this article, we first review the current data that sheds light on this question, and
highlight recent studies that link regional coupling of sleep oscillations with consolidation of
specific memories. Then, we highlight the gap between sleep and memory theory and experimental
evidence. Based on studies that monitor and manipulate specific cortical circuits, we propose that
coupling can occur between sleep oscillations in general, and between HC and cortex specifically,
but that such coupling likely involves different brain regions at each point in time, contributing to
memory consolidation in select circuits.
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SLOW WAVES, SPINDLES, AND THEIR
REGIONAL MODULATION FOLLOWING
LEARNING

Slowwaves and sleep spindles constitute electroencephalographic
(EEG) hallmarks of NREM sleep (Gibbs and Gibbs, 1950;
Steriade, 2003). These robust oscillations are easily identified
using non-invasive EEG and form the main criterion for sleep
stage definition across mammalian species (Iber et al., 2007).
Both oscillations are implicated in memory consolidation as we
review below. While EEG represents summed activity across
large cortical territories (Nunez, 1995), we will focus here on
accumulating evidence that characterizes slowwaves and spindles
as local phenomena.

Neocortical slow waves reflect slow (1–4Hz) alternations of
cellular active (up-) and inactive (down-) states of neuronal
activity (Steriade et al., 2001; Nir et al., 2011). Although
not perfectly coherent, these oscillations represent the most
synchronous event in the healthy brain, and traveling waves
across large cortical territories may mediate diverse sleep
functions including downregulation of synaptic strengths
(Vyazovskiy et al., 2008; Norimoto et al., 2018), maintenance of
cellular homeostasis (Tononi and Cirelli, 2014), andmediation of
memory consolidation and synaptic plasticity (Diekelmann and
Born, 2010).

Slow waves are thought to provide a temporal frame for a
dialogue between the neocortex and subcortical structures, which
is necessary for redistributing memories for long-term storage
(Sirota et al., 2003; Sirota and Buzsáki, 2005; Marshall and Born,
2007): On a global scale, a strong increase in EEG coherence
is observed during NREM sleep following learning in humans
(Mölle et al., 2004, 2009). On a local scale, changes in sleep
oscillations occur in specific cortical regions that were involved in
encoding, both in rodents (Vyazovskiy et al., 2000; Hanlon et al.,
2009) and in humans (Huber et al., 2004, 2006; Mölle et al., 2009).
Although very commonly regarded as a global event occurring
near-simultaneously across the cortex, cortical up-states are
typically ignited locally in prefrontal cortex and spread to other
cortical areas over tens to a few 100ms (Massimini et al., 2004).
Neural recordings in rodents were able to pinpoint the ignition
source to layer 5 cells of cortex (Luczak et al., 2007; Chauvette
et al., 2010; Beltramo et al., 2013). Intracranial recordings from
epilepsy patients reveal that most slow waves, and the underlying
active and inactive neuronal states, occur locally (Nir et al., 2011).
This observation goes beyond potential confounds of epilepsy,
since it is readily observed also in rodents and in cats (Chauvette
et al., 2011; Vyazovskiy et al., 2011). Especially during late sleep,
circumscribed slow waves are also detected via EEG recordings
(Siclari et al., 2014; Bernardi et al., 2018).

Sleep spindles are classically defined as waxing-and-waning
10–16Hz oscillations lasting 0.5–2 s (Gibbs and Gibbs, 1950).
Sleep spindles are implicated in plasticity and trigger synaptic
long-term potentiation via calcium transients that are believed
to prime cortical networks for the long-term storage of memory
representations (Timofeev et al., 2002; Rosanova and Ulrich,
2005; Ulrich, 2016; Niethard et al., 2018). On a global scale,
increased spindle activity is observed during NREM sleep
following learning of both declarative tasks and procedural

motor skills (Gais et al., 2002; Eschenko et al., 2006; Fogel
and Smith, 2006; Morin et al., 2008; Mölle et al., 2009). On
a local scale, regional spindle activity correlates with offline
improvement in consolidation of motor memories (Nishida
and Walker, 2007). Importantly, despite the fact that spindles
engage thalamo-cortical “loops,” they are also mostly a local
phenomenon occurring in select circuits at a time (Rasch and
Born, 2013). Even when observed near-simultaneously across
regions, their precise timings varies across cortical locations (Nir
et al., 2011; Muller et al., 2016). Accordingly, learning different
types of memories changes the properties of spindles in different
topographically-restricted regions (Bergmann et al., 2012; Cox
et al., 2014).

Not only are slow waves and sleep spindles each related
to memory consolidation separately, recent evidence suggests
that their precise interaction may play a role. For example,
many sleep spindles tend to be “nested” in the “up” phase of
the slow oscillation as revealed by phase-amplitude coupling
(PAC) analysis (Diekelmann and Born, 2010; Staresina et al.,
2015). However, slow wave and spindle oscillations behave as
traveling waves at a whole-brain scale [for an extensive review
see (Muller et al., 2018)], which translates to a delay of up
to hundreds of milliseconds between oscillation peaks across
different cortical areas. Thus, the temporal relationship between
sleep oscillations across cortical regions varies substantially.
Locally, within each brain region, the coupling of sleep spindles
to slow wave up-states occurs in a topographically restricted
fashion (Cox et al., 2014) and local slow waves coordinate
spindle activity at virtually every cortical site (Cox et al., 2018).
In contrast, coupling between distant brain regions does not
necessarily occur regularly. For example, while parietal spindles
are coupled to parietal slow waves, they are not necessarily
coupled with frontal slow waves (Figure 1). Along this line, the
strength of slow wave-spindle coupling differs between global
and local slow waves, as well as between cortical locations
(Malerba et al., 2019), highlighting the complexity of cross-
frequency coupling between sleep oscillations across different
brain regions.

INTERREGIONAL COUPLING BETWEEN
HIPPOCAMPUS AND SPECIFIC CORTICAL
REGIONS DURING SLEEP, AND ITS ROLE
IN SUCCESSFUL MEMORY
CONSOLIDATION

During NREM sleep, hippocampal (HC) activity is concentrated
in sharp wave ripple (SWR) events, which correspond to a
summed synchronous depolarization of a large fraction of the
neurons in the CA1 sub region of the hippocampus (O’keefe
and Nadel, 1978; Buzsáki et al., 1983; Buzsáki, 1986). Extensive
animal research established a tight link between HC SWRs
and memory consolidation in both wakefulness and sleep:
SWRs accompany the sleep-associated re-activation of HC
neuron ensembles that were active during the preceding awake
learning experience (Nadasdy et al., 1999; Eschenko et al., 2008;
Peyrache et al., 2009). SWRs occurrence increases in previously
potentiated synaptic circuits (Behrens et al., 2005), and may
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FIGURE 1 | Local sleep oscillations and memory consolidation: theory vs. experimental findings. (Top) Theory suggests that the nesting of hippocampal ripples

(green) to sleep spindle troughs (orange), which in turn are nested in slow wave up-phase (orange), is critical for memory consolidation during sleep. (Bottom)

Experimental data indicates that timing of both slow waves and spindles (as well as spindle nesting phase; Andrillon et al., 2011) varies across cortical regions (purple

and blue), such that the nesting of each ripple (green) inevitably corresponds to different cortical locations (dashed vertical lines). Thus, each hippocampal ripple

occurring at a specific time is associated with hippocampal-cortical coupling in different circuits, likely supporting memory consolidation related to that circuit.

further modulate synaptic strength (Buzsáki et al., 1987; King
et al., 1999; Norimoto et al., 2018). Finally, selective manipulation
of SWRs through electrical or optogenetic stimulation in HC
modulates memory consolidation (Girardeau et al., 2009; Ego-
Stengel and Wilson, 2010; Fernandez-Ruiz et al., 2019). Thus,
SWRs represent important time epochs for offline HC activity,
and their occurrence in NREM sleep carries a privileged role in
plasticity and memory consolidation.

In deep layers of medial prefrontal cortex (mPFC), where
most of the HC fibers make contacts, pyramidal cells respond
phasically to SWRs (Siapas and Wilson, 1998; Mölle et al., 2006;
Peyrache et al., 2011). Conversely, the occurrence of SWRs is
modulated by neocortical inputs (Isomura et al., 2006), revealing
bidirectional interactions between HC and cortex. Multiple
studies revealed the fine temporal relationship between SWRs
and neocortical sleep oscillations (Sirota et al., 2003; Sirota and
Buzsáki, 2005; Staresina et al., 2015; Wang and Ikemoto, 2016),
in which SWRs tend to be phase-locked to cortical spindle
troughs, which in turn are phase-locked to slow wave up-
states. Human studies are typically limited in SWR detection, as
non-invasive EEG cannot reliably monitor local high-frequency
activities in deep brain structures. Nevertheless, sleep studies in
epilepsy patients implanted with intracranial electrodes support
the notion that SWRs during sleep preferentially occur at specific
times in relation to neocortical slow waves and spindles (Clemens
et al., 2007, 2011; Nir et al., 2011; Staresina et al., 2015), extending
the temporal tuning finding from rodents to human sleep. Given
that spindles are mostly a local phenomenon, and their precise
timing varies across cortical locations (Nir et al., 2011; Muller
et al., 2016), temporal tuning between one cortical area and HC

during a specific spindle does not necessarily imply temporal
tuning between other cortical areas to HC at that time (Figure 1).

At present, a gap exists between theory on how hippocampal-
cortical coupling supports memory consolidation (usually
considering the entire cortex as a uniform entity) and the
available experimental evidence highlighting that slow waves,
spindles, and SWRs occur at different times in different regions.

COUPLING OF SLEEP OSCILLATIONS IN
SELECT BRAIN REGIONS AND THE
CONSOLIDATION OF SPECIFIC
MEMORIES

A potential way to transcend this discrepancy is to consider
that coupling between sleep oscillations may occur, but may
involve select circuits at each given time—supporting memory
consolidation in specific associated tasks. We illustrate this by
considering two recent studies in rodents that causally link
the coupling of sleep oscillations across specific regions to the
consolidation of specific memories. A recent study (Maingret
et al., 2016) established that co-occurrence of HC ripples and
medial prefrontal cortex (mPFC) slow waves and spindles
correlates with memory consolidation in a spatial learning task.
Boosting this coupling by delivering SWR-triggered electrical
stimulation to deep cortical layers causally improved memory
performance on this hippocampus-dependent task (Maingret
et al., 2016). Another study used a different closed-loop
stimulation protocol to improve memory performance in a
hippocampal dependent task: frontal slow waves triggered
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optogenetic stimulation of the thalamic reticular nucleus during
sleep, resulting in time-locked frontal sleep spindles, and HC
SWRs (Latchoumane et al., 2017). Notably, these experiments,
as well as studies selectively manipulating SWRs, report changes
in coupling between SWRs in a specific hippocampal (HC)
sub-field [mostly CA1 (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010; Maingret et al., 2016)], and spindles in specific
regions [either mPFC (Siapas and Wilson, 1998) or anterior
cingulate cortex (Wang and Ikemoto, 2016)]. Thus, these findings
demonstrate that although each SWR may be coupled with
slow waves and spindle oscillations in different brain regions
(Figure 1), HC-cortical coupling in select circuits may support
memory consolidation in specific tasks.

Although the majority of sleep and memory experiments
focus on temporal coupling between HC and cortex, several
studies also demonstrate the importance of coherence
between specific cortical regions. Miyamoto and colleagues
demonstrated that coordinating slow wave activity between
layer-5 primary somatosensory cortex and secondary motor
cortex via synchronous optogenetic stimulation at 2Hz enhances
memory consolidation of a newly learned non-declarative skill.
Asynchronous stimulation of these two regions (using opposite
phases) reduced performance relative to the no-intervention
controls (Miyamoto et al., 2016).

These experiments (Maingret et al., 2016; Miyamoto et al.,
2016; Latchoumane et al., 2017) highlight the importance of both
temporal and anatomical specificity of interventions designed to
boost the coupling between sleep oscillations across two brain
regions. Accordingly, a brief delay in stimulation timing was
enough to abolish the memory enhancement that is observed
when locking stimulation accurately to HC SWRs (Maingret
et al., 2016).

HOW CAN WE IMPROVE CAUSAL
INTERVENTIONS IN HUMANS LINKING
SLEEP OSCILLATIONS TO LEARNING AND
MEMORY?

Over the last decade, several studies have gone beyond
demonstrating the existence of correlation between sleep
oscillations (slow waves, spindles) and subsequent memory recall
(e.g., Gais et al., 2002; Huber et al., 2004, 2006; Mölle et al., 2009;
Fogel and Smith, 2011; Van Der Helm et al., 2011; Tamminen
et al., 2013), to interventions that link an experimentally-induced
increase in the amplitude of a sleep oscillation to human
learning (Marshall et al., 2006; Ngo et al., 2013; Ladenbauer
et al., 2017, but also see Bueno-Lopez et al., 2019). A recent
study demonstrated that causal interventions affecting memory
consolidation may also be applied locally. Unilateral olfactory
stimulation induced “local targeted memory reactivation” and
elicited both behavioral and EEG effects that were largely
lateralized to one hemisphere (see preprint at - Bar et al., 2019).
Such lateralization seems more difficult to demonstrate in the
auditory modality (Simor et al., 2018), possibly because cortical
auditory processing is less lateralized compared to vision and
olfaction (Schnupp et al., 2011).

One line of causal interventions during sleep employs
a temporally tuned approach, to perform “closed-loop”
stimulation, phase-locked to endogenous sleep oscillations. For
example, auditory stimulation in phase with slow wave up-states
(as measured with scalp EEG) enhances slow wave activity and
slow wave-spindle coupling, and improves the consolidation
of declarative memory (Ngo et al., 2013; Lafon et al., 2017;
Ketz et al., 2018; Goldi et al., 2019). Given that the timing of
sleep oscillations differs across cortical regions, choosing a
specific EEG channel to trigger stimulation, phase-locks the
intervention to the timing of a specific cortical region. An
elegant human study that took this into consideration shows
degradation of learning efficiency following focal perturbation of
slow wave activity over the motor cortex (Fattinger et al., 2017).
Importantly, the perturbation was ineffective when targeting
temporo-parietal cortex slow waves (Fattinger et al., 2017). Such
an experimental approach draws our attention to the role of local
sleep oscillations in specific cortical areas for consolidation of
different types of memory tasks. The exact timing of intervention
is critical for enhancing memory consolidation, and changing
the stimulation phase may abolish memory effects completely
(Ngo et al., 2013; Goldi et al., 2019).

Though impossible to directly compare, memory
enhancement in humans appears to be modest and less
pronounced compared to memory enhancement following
interventions manipulating spindles and SWRs in rodents
(Maingret et al., 2016; Latchoumane et al., 2017). We suggest
that the precise timing of the intervention is critical for memory
enhancement and may constitute an obstacle we need to
overcome to obtain larger effects in human subjects. At present,
human interventions typically rely on scalp EEG summating
neuronal activity across wide regions, whereas animal studies
track activity of specific neural populations in deep brain areas.

When studying coherence of EEG sleep oscillations between
different cortical sites in humans, an important consideration
is the tight and often underappreciated relation between
(i) the amplitude of a sleep oscillation (e.g., slow wave or
sleep spindle) as recorded with scalp EEG or intracranially,
and (ii) its coherent occurrence across neuronal ensembles.
Put simply, high-amplitude oscillations often reflect high
synchronization between neuronal populations. Indeed we have
shown, based on local iEEG recordings, that the amplitude
of each slow wave recorded on the scalp is tightly correlated
with the number of distant brain regions where this wave
occurs near-simultaneously, such that high-amplitude slow
waves are global (Nir et al., 2011). In the case of sleep
spindles, high-amplitude events in scalp EEG likely reflect
a precise coordination among neurons in cortex, thalamus,
and reticular thalamic nucleus (Nunez, 1995). This means
that many findings that link EEG slow wave or spindle
amplitude/power in a given region to learning and memory
may in fact imply stronger coherence within relevant neuronal
circuits. Notwithstanding this, other factors also influence
the amplitude of EEG sleep oscillations, as asynchronous
local generators can also produce an unexpectedly large
scalp signal (Von Ellenrieder et al., 2016). Further research
is needed in order to separate the contribution of high
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oscillatory power vs. high coherence between specific areas to
memory consolidation.

FUTURE OUTLOOKS

Technological advances should allow accurate mapping of the
roles of specific spatially-circumscribed cortical sleep events in
the consolidation of long term memory in humans, and separate
them from other functions carried out by events that travel
and encompass the whole cortex. We expect that maturation
of novel electrophysiology tools will improve both spatial and
temporal resolutions of monitoring human brain activity in
real-time (Khodagholy et al., 2017; Liu et al., 2018), thereby
allowing accurate experimental interventions in humans and
improving their electrophysiological and cognitive effects.
For such advances to make an impact on basic scientific
understanding and create genuine clinical utility, it is imperative
that theory is fine-tuned according to the available data, and
that we go beyond considering the sleeping brain as a uniform
coherent entity.
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