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Transcranial magnetic stimulation (TMS) is a well-established tool in probing cortical
plasticity in vivo. Changes in corticomotor excitability can be induced using paired
associative stimulation (PAS) protocol, in which TMS over the primary motor cortex
is conditioned with an electrical peripheral nerve stimulation of the contralateral hand.
PAS with an inter-stimulus interval of 25 ms induces long-term potentiation (LTP)-
like effects in cortical excitability. However, the response to a PAS protocol tends to
vary substantially across individuals. In this study, we used univariate and multivariate
data-driven methods to investigate various previously proposed determinants of
inter-individual variability in PAS efficacy, such as demographic, cognitive, clinical,
neurophysiological, and neuroimaging measures. Forty-one right-handed participants,
comprising 22 patients with amnestic mild cognitive impairment (MCI) and 19 healthy
controls (HC), underwent the PAS protocol. Prior to stimulation, demographic, genetic,
clinical, as well as structural and resting-state functional MRI data were acquired.
The two groups did not differ in any of the variables, except by global cognitive
status. Univariate analysis showed that only 61% of all participants were classified
as PAS responders, irrespective of group membership. Higher PAS response was
associated with lower TMS intensity and with higher resting-state connectivity within the
sensorimotor network, but only in responders, as opposed to non-responders. We also
found an overall positive correlation between PAS response and structural connectivity
within the corticospinal tract, which did not differ between groups. A multivariate random
forest (RF) model identified age, gender, education, IQ, global cognitive status, sleep
quality, alertness, TMS intensity, genetic factors, and neuroimaging measures (functional
and structural connectivity, gray matter (GM) volume, and cortical thickness as poor
predictors of PAS response. The model resulted in low accuracy of the RF classifier
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(58%; 95% CI: 42 − 74%), with a higher relative importance of brain connectivity
measures compared to the other variables. We conclude that PAS variability in our
sample was not well explained by factors known to influence PAS efficacy, emphasizing
the need for future replication studies.

Keywords: TMS, paired associative stimulation, resting-state fMRI, sensorimotor network, DTI, corticospinal
tract, random forest

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a well-established
non-invasive brain stimulation tool that can be used to probe
cortical plasticity. Changes in corticomotor excitability can be
induced using a paired associative stimulation (PAS; Stefan et al.,
2000). This involves the repeated application of an electrical
peripheral nerve stimulus (e.g., median nerve stimulation; MNS)
paired with a single-pulse TMS to the primary motor cortex.
The TMS leads to a contralateral muscle contraction that can be
measured in the form of a motor evoked potential (MEP). PAS
is related to Hebbian principle of activity-dependent long-term
modification of synaptic plasticity (Hebb, 1949). Depending on
the inter-stimulus intervals and stimulation duration, PAS may
induce either long-term potentiation (LTP)-like or long-term
depression (LTD)-like effects (Ziemann et al., 2008). Such shifts
in corticomotor excitability are quantified by topographically
specific changes in the MEP amplitudes.

The PAS protocol consists of a short pre-measurement period
(i.e., baseline MEP), followed by the PAS intervention, and
finally a post-measurement period to evaluate stimulation effects.
PAS-induced LTP-like effects are associated with increased MEP
amplitudes following stimulation. However, research shows that
the PAS response is not always robustly elicited but is rather
affected by considerable inter- and intra-individual variability
(Müller-Dahlhaus et al., 2008; Ridding and Ziemann, 2010;
Karabanov et al., 2016). For instance, a number of different
studies have shown that PAS targeting the primary motor
cortex elicited the expected effect in only 60% or less of all
participants (for a review, see Karabanov et al., 2016). Due to
this variability, the division into responders and non-responders
has been used in previous works by applying a dichotomous
cut-off (Müller-Dahlhaus et al., 2008; List et al., 2013b; López-
Alonso et al., 2014; Klöppel et al., 2015; Lahr et al., 2016b). More
specifically, the grand average of the post-stimulation sessions is
calculated, normalized to the mean MEP at baseline. Participants
are then divided into PAS responders (with post/baseline ratios
above 1) and PAS non-responders (with post/baseline ratios
equal to or below 1).

To date, fluctuations in post-stimulation effects among
participants are poorly-understood. PAS-induced LTP-like effects
have been reported to decrease with age (Müller-Dahlhaus et al.,
2008) as well as in clinical populations, such as Alzheimer’s
patients (Battaglia et al., 2007) and Parkinson’s patients
(Morgante et al., 2006), among others. Other potential sources of
intra-and inter-individual variability in responses to PAS include
circadian fluctuations and time of day (Sale et al., 2007; López-
Alonso et al., 2014), alertness (Kamke et al., 2012), attentional

state (Stefan et al., 2004), sleep (Kuhn et al., 2016), stimulation
intensity (Müller-Dahlhaus et al., 2008), as well as genetic
traits (Missitzi et al., 2011), such as brain-derived neurotrophic
factor (BDNF) polymorphism (Cheeran et al., 2008; Fried et al.,
2017) and possibly also Apolipoprotein E (APOE) genotype
(Peña-Gomez et al., 2012; Lahr et al., 2016b). Additionally,
neuroanatomical determinants, such as cortical thickness (Conde
et al., 2012; List et al., 2013b) and microstructural properties
of white matter (WM) (Klöppel et al., 2008; List et al., 2013a),
seem to influence cortical excitability, as well. Previously, it has
been shown that resting-state functional connectivity patterns
measured prior to repetitive TMS intervention in depression may
also predict individual therapeutic response (Downar et al., 2014;
Salomons et al., 2014).

All the various potential determinants of inter-individual
variability in PAS efficiency have been investigated in isolation
by different studies but have not been replicated systematically.
Here, we propose a multivariate explorative approach to
investigate to what extent PAS response rate can be predicted
using different factors of variability, including demographic
variables and factors (e.g., age, gender, education, IQ), genetic
characteristics (e.g., BNDF, APOE), neuroanatomical measures
(e.g., cortical thickness, structural and functional connectivity
patterns), neurophysiological qualities (e.g., sleep quality,
attention, alertness), and neuropsychological variables (cognitive
status, depression). For this purpose, we used a Random
Forest (RF) classifier, an ensemble machine learning algorithm,
which consists of a collection of decision trees trained with
different subsets of the original data (Breiman, 2001). Among
the advantages of RF is that it is robust to noise, is invariant to
the scaling of features, can handle high-dimensional, redundant
data and can be used for ranking the importance of predictors
by randomly permuting the values of each predictor at a
time and estimating the decrease in prediction accuracy.
The aim of our study is twofold. First, we hypothesize that a
combination of different factors would be best suited to predict
the efficiency of the PAS outcome, and, second, we aim to
assess the hierarchical importance of these determinants of PAS
variability, which could be used to inform future studies focusing
on TMS-induced plasticity.

MATERIALS AND METHODS

Participants
A total of 48 participants were included in the original study
(Lahr et al., 2016b). Among them, 24 were patients with amnestic
MCI and 24 were age-, sex- and education-matched healthy
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controls (HC). MCI were diagnosed as being amnestic if memory
function was below 1.5 SD on verbal delayed recall (Petersen
et al., 1999; Albert et al., 2011). One participant with Beck
Depression Inventory (BDI-II; Beck et al., 1996) score of ≥13
and Geriatric Depression Scale (GDS; Yesavage and Sheikh,
1986) score ≥5 was excluded from the study, according to
the cut-off score for a minor depressive syndrome. Further
three participants were excluded due to corrupt or missing
MRI scans, as well as three participants were excluded due
to left-handedness, which was assessed using the Edinburgh
Handedness Inventory (EHI; Oldfield, 1971). Further exclusion
criteria included any history of severe neurological, psychiatric
or other diseases, smoking, or any history of substance abuse.
Thus, the final study sample comprised 41 participants (19 MCI
and 22 HC). Patients were recruited from the Center for Geriatric
Medicine and Gerontology of the Medical Center – University of
Freiburg, Germany, while controls were recruited via newspaper
advertisements and handouts circulated in Freiburg. The study
was approved by the Ethics Commission of the Medical Center –
University of Freiburg (Approval #227/12) and written informed
consent was obtained from all participants prior to participation
according to the Declaration of Helsinki.

Study Procedure
Each participant took part in the study on two consecutive
days. Prior to testing, all participants were asked to complete
the questionnaire of handedness (EHI; Oldfield, 1971), the
Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989)
to assess sleep quality over the 4 weeks prior to testing, as
well as BDI and GDS to assess depressive symptoms. The
total BDI and GDS depression scores were transformed into
z-scores using the sample statistics and combined into one
single composite score (i.e., the average of the two scores)
for subsequent analyses. On the first study day, participants
completed a neuropsychological battery including diverse short
tests assessing executive functioning, verbal and non-verbal
learning, episodic memory, and visuo-constructive abilities, as
reported elsewhere (Lahr et al., 2016b; Peter et al., 2016,
2018a,b). Global cognitive functioning was evaluated using
the Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005). Structural and functional MRI scans were also acquired
during the first day of testing (for more detail, see sections
“MRI Data Acquisition” to “Diffusion MRI” below). On the
following day, TMS was performed in the afternoon and sleep
quality between day 1 and day 2 was assessed using the
Sleep Questionnaire A (SFA; Görtelmeyer, 1985). Alertness and
selective attention were evaluated using the WAF Perception and
Attention Functions Battery (Sturm, 2006) as part of Vienna
Test System1. Finally, blood samples were also collected from all
participants in order to determine APOE allele ε4 genotype and
BDNF Val66Met polymorphism.

PAS Protocol
The stimulation protocol was based on a previously published
and widely used PAS paradigm (Stefan et al., 2000), in which TMS

1https://www.schuhfried.at/test/WAF

over the left primary motor cortex was conditioned by electrical
stimulation of the right hand.

We performed TMS using a magnetic stimulator (Magstim
200; Magstim; Whitland, United Kingdom) with a figure-of-
eight coil. The coil was positioned tangentially above the left
primary motor cortex, with the handle pointing backward and
rotated approximately 45◦ away from the midsagittal plane. The
stimulation hotspot was defined as the optimal coil position
to elicit motor responses in the contralateral abductor pollicis
brevis (APB) muscle at suprathreshold stimulator intensity.
The strength of the muscle contraction was recorded as motor
evoked potentials (MEPs), the amplitude of which reflects
cortical excitability from the targeted primary motor cortex.
The stimulator intensity was adjusted in order to evoke a
peak-to-peak MEP amplitude of 1 mV. MEPs were monitored
online and amplified, bandpass-filtered (lowpass-filter: 8 kHz,
time constant: 30 ms, corresponding to a cut-off frequency of
5.3 Hz) and digitized with an analog-to-digital converter at
a sampling rate of 2 kHz (micro1401, Cambridge Electronic
Designs, United Kingdom). Coil position and orientation were
monitored and captured using an optical navigation system
(Localite GmbH, Sankt Augustin, Germany).

Conditioning stimuli represented single pulses of electrical
stimulation through bipolar electrodes applied to the median
nerve at the right wrist, using a constant current stimulator
(Digitimer DS7; Welwyn Garden City, United Kingdom).
Electrical stimulation intensity was set to 300% of the individual
perception threshold. The conditioning stimulus preceded the
magnetic cortical stimulus by a time interval of 25 ms, which
has been shown to result in facilitation of the MEP responses
(Stefan et al., 2000). A total of 180 paired stimuli were applied
at an interval of 5 s.

The PAS protocol consisted of three different conditions: one
pre-measurement as a baseline (PRE), the intervention condition
(PAS), and three post-measurement conditions: immediately
after PAS (post1), after 8 min (post2), and after 15 min (post3),
respectively. During the PRE and POST conditions, 20 TMS
pulses were applied at an interval of 6 s and with a variability
of 20% in order to prevent systematic MEP variability due to
expectation. To keep participants attentive, they were presented
landscape images on a screen during the PRE and POST
conditions. When the PAS intervention started, they were asked
to mentally count blue balls appearing on a computer screen.
Ball counting was meant to ensure that participants did not close
their eyes or fall asleep during PAS, but the total number of balls
counted was not included in subsequent statistical analyses.

Trials with pre-facilitated activity were discarded manually,
affecting on average 6.3± 1.8 out of 80 trials per individual. Based
on previous literature, the three post-sessions were averaged
and divided by the baseline amplitude in order to compute a
marker of potentiation (Müller-Dahlhaus et al., 2008; List et al.,
2013a,b). Based on the recommendations by a previous multi-
centric analysis (Lahr et al., 2016a), we used the logarithms
of the MEP amplitude ratio (i.e., post/baseline quotient) for
subsequent analyses to reduce the possibility that results are
driven by few extreme MEP measurements. Furthermore, we
divided participants into two categories: PAS responders (log
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of MEP-ratio above 0) and non-responders (log of MEP-ratio
equal to or below 0).

Electric Field Simulation
The distribution of the electric field strength (i.e., the vector
norm of the electric field E) induced by TMS was computed in
SimNIBS (Version 2.1.1)2, based on the finite element approach
using individual head models derived from the structural T1 and
T2 MR images (Windhoff et al., 2013; Thielscher et al., 2015).
Following the approach by Antonenko et al. (2018), the middle
layer of the cortex was estimated for each participant based on
segmentation results of the Computational Anatomy Toolbox
CAT12 r13553. Then, the position of the maximum electric field
strength within the middle cortex layer was calculated as the TMS
hotspot for each individual separately.

MRI Data Acquisition
Scanning was performed on a 3 Tesla Siemens MAGNETOM
TrioTim Syngo MR B17 scanner (Siemens Medical Systems,
Erlangen, Germany) with a 12-channel phase array head
coil. A high-resolution whole-brain T1-weighted anatomical
image was acquired for each participant using the following
magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence parameters: TR = 2200 ms, TE = 2.15 ms,
FA = 12◦, FOV = 256 mm, matrix size of 256 × 256 × 176 mm,
and slice thickness of 1.0 × 1.0 × 1.0 mm, without a slice gap.
Additionally, whole-brain T2∗-weighted functional resting-
state scans oriented along the AC-PC line were acquired
for all participants using the following gradient echo-planar
imaging (EPI) sequence: TR = 2610 ms, TE = 30 ms, FA = 80◦,
FOV = 192 mm, matrix size = 192 × 192 × 151 mm, 42 axially
oriented slices acquired in a descending order, slice thickness
of 3.0 × 3.0 × 3.0 mm, without a slice gap, and bandwidth
of 2056 Hz/px. Resting-state scans consisted of 201 volumes.
Participants were instructed to relax and passively stare at a
fixation cross on a monitor display, keeping their eyes open
during data acquisition. Diffusion-weighted images (DWI) were
also acquired for each participant with the following acquisition
parameters: TR = 10 s, TE = 94 ms, number of diffusion
gradient directions = 61 (b = 1000 s/mm2), one image without
diffusion weighting (b = 0 s/mm2), FOV = 208 mm, matrix
size = 208× 208× 138 mm, slice thickness = 2.0× 2.0× 2.0 mm,
and number of slices = 69.

Structural MRI
Raw T1-weighted scans were visually inspected to ensure
proper data quality and the absence of brain pathology
(e.g., stroke or subdural hematoma). One participant
was excluded due to poor data quality. All images were
preprocessed using SPM12 v.6685 (Statistical Parametric
Mapping, Welcome Trust Centre for Neuroimaging4) and the
CAT12 r1355 (see footnote 3), running on MATLAB R2015a
(Mathworks, Natick, MA, United States). They were first

2https://simnibs.github.io/simnibs/build/html/index.html
3http://www.neuro.uni-jena.de/cat/
4http://www.fil.ion.ucl.ac.uk/spm

segmented into gray matter (GM), WM, and cerebrospinal
fluid (CSF) using the IXI550_MNI152 template and the
tissue probability map based on the Unified Segmentation
(Ashburner and Friston, 2005). The segmented images
were used to create an improved anatomical scan for
subsequent co-registration of the functional images. Using
the DARTEL extension for high-dimensional registration
approach (Ashburner, 2007), deformation parameters
were extracted for normalization of the functional images.
CAT12 was used for voxel-based morphometry (VBM)
to calculate GM and total intracranial volumes as well as
for surface-based morphometry (SBM) to estimate cortical
thickness based on the project-based thickness method
(Dahnke et al., 2013). Region-of-interest (ROI) was the left
precentral gyrus (Brodmann area 4) based on the Desikan-
Killiany atlas (Desikan et al., 2006), which corresponds
to the primary motor cortex. Regional GM volume was
corrected for total intracranial volume (TIV) to account for
individual brain size.

Functional MRI
Preprocessing and functional connectivity of the resting-state
fMRI data were completed using the CONN Toolbox v.18a
(Whitfield-Gabrieli and Nieto-Castanon, 2012) in conjunction
with SPM12. The first ten volumes were removed prior to
preprocessing to avoid T1 equilibration effects. Preprocessing
steps then included: slice-timing correction, realignment,
coregistration to the anatomical image, normalization to
MNI space, outlier detection (ART-based scrubbing), and
smoothing with a Gaussian kernel (6 mm FWHM). None
of the participants was excluded due to excessive head
movement (motion artifact threshold: translation >3 mm,
rotation >1◦). One participant was excluded due to incomplete
scans. A component-based noise correction (aCompCor)
strategy (Behzadi et al., 2007) was used to remove the
confounding effects of WM and CSF (five components
each). Motion parameters were also regressed out (12
regressors: 6 motion parameters + 6 first-order temporal
derivatives). Finally, the time-series were linearly detrended and
band-pass filtered (0.01–0.08 Hz) to reduce noise effects and
low-frequency drift.

Functional connectivity analysis was then performed using
a whole-brain seed-to-voxel approach, where individual
correlation maps were generated by extracting the mean
resting-state BOLD time-series from the seed and calculating
the correlation coefficients with the BOLD time-series of all
other voxels. To compute the functional connectivity of the
sensorimotor network, the left precentral gyrus based on the
Desikan-Killiany atlas (Desikan et al., 2006) was used as a
seed. The network was also replicated by replacing the seed
with each individual’s TMS hotspot region that resulted from
the electric field simulation analysis. Bivariate correlation
coefficients were calculated using the General Linear Model
(GLM) and a Fisher’s transformation was applied in order
to normalize the data. Second-level (group) analysis within
the CONN toolbox was used to compute and visualize the
seed-based sensorimotor connectivity network across all
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participants, with p-uncorrected value <0.001 before applying
the False Discovery Rate (FDR) correction at the cluster level
(pFDR < 0.05). Connectivity strengths were then extracted for
further statistical analysis.

Diffusion MRI
The DWI data were processed using standard FLS v.6.0
pipelines (Smith et al., 2004). The raw images were first
corrected for eddy current distortions. The no-gradient (B0)
image was skull-stripped using the Brain Extraction Tool
(BET). Diffusion tensor fitting was completed using DTIFIT
and fractional anisotropy (FA) values were derived from
the tensors. Prior to fiber-tracking, crossing fibers within
each voxel of the brain were estimated with a Bayesian
method implemented in BEDPOSTX (Behrens et al., 2007).
Probabilistic tractography of the corticospinal tract (CST) was
computed in PROBTRACKX (Behrens et al., 2007) using
pre-selected ROIs as seeds and targets based on previous
literature (Wakana et al., 2004; Zhang et al., 2010; Chenot
et al., 2018). More specifically, the left precentral gyrus
was defined as a seed and the cerebral peduncle as a
target. The internal capsule and the pons were defined as
inclusion (i.e., waypoint) masks. In contrast, exclusion masks
included the midline to remove pathways crossing into the
other hemisphere. A WM termination mask was also used
to ensure tracts stopped at the gray/white matter interface,
thus discarding pathways extending into gray matter, CSF or
dura. ROIs were created using the FSL Montreal Neurological
Institute template and the Johns Hopkins University WM
Labels Atlas (Mori et al., 2005). Connectivity distributions
were generated from the seed regions in native space. The
number of streamlines per voxel was set to 5000. The resulting
images were then warped into diffusion space using the
FMRIB’s Linear Image Registration Tool (FLIRT) and overlaid
onto the B0 image for quality control. Each participant’s FA
values were extracted from the CST for further statistical
analysis. The tractography pathways of all participants were
registered to FMRIB58_FA standard MNI space and averaged for
visualization purposes.

Statistical Analysis and Machine
Learning
Statistical analysis was completed using R version 3.5.2 (R
Core Team, 2016). First, demographic, clinical, and imaging
data were compared between PAS responders and non-
responders. Previously, we found no significant differences
between controls and MCI (Lahr et al., 2016b), but report
results here for completeness. Data normality was assessed
using the Shapiro–Wilk test. Univariate statistical analysis
was conducted using ANOVA/ANCOVA or Mann–Whitney
U tests for continuous variables, as appropriate. Kruskal–
Wallis test was used for ordinal variables and Chi-square
test for dichotomous variables. Our analysis focused on the
PAS response rate (responders vs. non-responders), which is
a dichotomized variable with less statistical power. Therefore,
we also completed a correlation analysis (Spearman’s rank

correlation coefficient) using the log-transformed MEP ratio
between the averaged post-measurements and baseline as a
dependent variable. Correlation coefficients were converted to
z-scores and compared between responders and non-responders.
In all univariate analyses, a p-value < 0.05 (two-tailed) was
considered significant. Adjustment for multiple comparisons was
performed using the Benjamini–Hochberg method (Benjamini
and Hochberg, 1995), controlling for FDR. Of note, due to the
high number of variables and the relatively small sample size, the
univariate analysis is exploratory in nature and may be affected
by false-negative results.

Multivariate data analysis was conducted using a RF classifier,
implemented in the randomForest R package (Liaw and Wiener,
2002). RF is an ensemble machine learning algorithm, which
consists of a collection of decision trees trained with different
subsets of the original data (Breiman, 2001). A detailed
description of the algorithm is provided elsewhere (Liaw and
Wiener, 2002). Briefly, the algorithm draws ntree bootstrap
samples from the original data and grows a classification tree
for each of the bootstrap samples by sampling the predictors
randomly (mtry) and choosing the best split among those
variables. After a large number of trees are generated, each
RF classifier casts a vote for the most popular class. At
each bootstrap iteration, out-of-bag (OOB) predictions (i.e.,
predicting the data not in the bootstrap sample using the tree
grown with the bootstrap sample) are aggregated. On average,
each data point would be OBB around 36% of the times.
An OBB estimate of error rate (i.e., misclassification rates) is
computed representing the classifier’s strength and dependence.
RF also provides a measure of the importance of the predictor
variables by looking at how much prediction error increases
when OBB data for the variable is permuted, while all others
are left unchanged.

We set the optimal number of trees (ntree) to 500 and ran
the model 10 times in order to choose the number of random
variables used in each tree (mtry). We chose mtry = 6 for
our model, where the OOB error rate showed to stabilize and
reach a minimum. We assessed the accuracy of the RF model
in classifying between PAS responders and non-responders
(outcome variable) using the caret R package (Kuhn et al.,
2019). The ROC curve for RF was created using the ROCR R
package (Sing et al., 2005). The following predictive variables
were included in the model: demographic (age, sex, education,
and IQ), clinical (MCI vs. HC, composite depression score,
and global cognitive status based on MoCA), neurophysiological
(sleep quality, attention, and alertness), genetic (APOE and
BDNF), and MRI measures (cortical thickness, GM volume,
functional and structural connectivity). TMS intensity (i.e.,
percent of maximal stimulator output) was also included as
a predictor in the model. The importance of each variable
was assessed using the mean decrease of accuracy, representing
how much removing each variable reduced the accuracy of
the model, as well as the mean decrease in Gini impurity
index used for the calculation of splits in trees. Loosely
speaking, the higher the values of mean decrease in accuracy
and decrease in Gini score, the higher the importance of the
variable in the model.
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TABLE 1 | Sample characteristics.

N Overall (n = 41) HC (n = 22, 54%) MCI (n = 19, 46%) Responders (n = 25, 61%) Non-responders
(n = 16, 39%)

Demographic, cognitive and clinical data

Groups

HC 22 22 (54%) – – 11 (50%) 11 (50%)

MCI 19 19 (46%) – – 14 (74%) 5 (26%)

Age (years) 41 70.2 (5.5) 69.5 (5.9) 71.5 (4.9) 70.3 (5.0) 69.9 (6.5)

Gender (males) 41 24 (58%) 14 (63%) 10 (53%) 15 (60%) 9 (57%)

Education (years) 41 13.0 (7–20) 14.5 (7–20) 13.0 (8–20) 13.0 (7–20) 13.5 (9–20)

MWT-B IQ 41 124 (97–143) 127 (97–143) 121 (97–136) 118 (97–143) 124 (100–136)

MoCA score 40 26 (17–30) 27 (22–30) 23 (17–29) 25 (17–30) 27 (19–30)

BDI-GDS z-score 41 −0.07 (0.90) −0.14 (0.81) 0.16 (0.98) 0.02 (0.95) −0.03 (0.83)

Sleep, attention and alertness

SFA-SQ score 40 4.1 (1.9–5.2) 4.2 (1.9–5.0) 3.9 (2.1–5.2) 4.2 (2.1–5.2) 3.9 (1.9–4.9)

PSQI score 40 6 (2–16) 5 (2–14) 6 (2–16) 6 (2–16) 5 (3–9)

WAF (RT in ms)

Alertness (intrinsic) 40 236 (66) 212 (50) 263 (84) 232 (72) 243 (57)

Alertness (phasic) 41 221 (88) 207 (70) 237 (110) 216 (98) 228 (75)

Selective attention 39 355 (138) 342 (110) 371 (171) 332 (123) 390 (143)

Genetic traits

BDNF (Val66Met) 39 15 (38%) 8 (36%) 7 (41%) 10 (41%) 5 (33%)

APOE4 ε4 carriers 35 17 (49%) 7 (37%) 10 (63%) 12 (55%) 5 (39%)

TMS data

PAS response (log) 41 0.05 (0.2) 0.02 (0.1) 0.07 (0.2) 0.2 (0.2) −0.2 (0.1)

TMS intensity (%) 41 50 (35–82) 54 (38–82) 49 (35–72) 49 (35–82) 54 (38–65)

PAS responders 41 25 (61%) 11 (44%) 14 (56%) − −

Imaging data

CT of M1 41 2.1 (0.1) 2.1 (0.2) 2.1 (0.1) 2.1 (0.1) 2.0 (0.2)

GMV of M1 (TIVcorr.) 41 0.1 (1.1) 0.2 (1.3) 0.1 (0.1) 0.2 (0.9) 0.5 (1.3)

FA of CST 41 0.5 (0.2–0.5) 0.5 (0.4–0.5) 0.5 (0.2–0.5) 0.5 (0.3–0.5) 0.4 (0.2–0.5)

FC of M1-S1 41 0.1 (0.1) 0.2 (0.1) 0.1 (0.1) 0.2 (0.1) 0.1 (0.1)

Data are provided as mean (SD), median (IQR), or n (%). HC, healthy controls; MCI, mild cognitive impairment; MWT-B IQ, multiple-choice word intelligence test, version
B; MoCA, Montreal Cognitive Assessment; BDI-GDS z-score, composite score of the beck depression inventory and the geriatric depression score; SFA-SQ, sleep
questionnaire A – sleep quality; PSQI, Pittsburgh Sleep Quality Index; WAF, Perception and Attention Functions Battery; BDNF, brain derived neurotrophic factor; APOE4,
apolipoprotein allele 4; PAS response, log-transformed MEP ratio between the averaged post-measurements and baseline; CT, cortical thickness; M1, primary motor
cortex; S1, primary somatosensory cortex; GMV, gray matter volume; TIV, total intracranial volume; FA, fractional anisotropy; CST, corticospinal tract; FC, resting-state
functional connectivity z-scores.

RESULTS

A detailed description of the cohort’s demographic and clinical
information is presented in Table 1.

Demographic, Cognitive and Clinical
Data
Of the 41 participants included in the study, 22 (54%) were
HC and 19 (46%) were MCI. The two groups did not differ
in age (F(1,39) = 2.098, p = 0.156), gender (HC: 14 males,
MCI: 10 males; X2

(1) = 0.156, p = 0.693), or education
(Mann–Whitney U = 243, p = 0.378). No difference was
also found between genetic factors such as the presence of
APOE allele ε4 genotype (X2

(1) = 0.138, p = 0.241) or BDNF
Val66mMet polymorphism (X2

(1) = 0, p = 1). As expected
per definition, controls had significantly higher MoCA scores
than MCI (U = 359, pFDR < 0.001), even after adding age,

gender, and education as covariates, but no difference was found
for the IQ score (U = 258, p = 0.102). In terms of sleep,
alertness, and attention, groups differed only in intrinsic alertness
(F(1,38) = 6.532, p−uncorr. = 0.014), but this effect did not survive
the FDR correction.

TMS Data
The PAS intervention led to an increase in MEP amplitude in
only 61% of all participants included in this study. Responder
rate (responders vs. non-responders) did not differ according to
group (X2

(1) = 1.511, p = 0.219) or gender (X2
(1) = 0, p = 1).

Using 4× 2 repeated-measures ANOVA analysis (TIME: Baseline
(PRE), Post1, Post2, Post3 and GROUP: HC, MCI), we found
no significant effect for TIME (F(1,39) = 0.154, p = 0.697) or for
the TIME x GROUP interaction (F(3,117) = 0.776, p = 0.510),
even if only responders were included in the analysis (F(3,69) =
2.34, p = 0.081).
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The correlation analysis revealed a weak, non-significant
negative association between PAS response (i.e., the logarithm of
the MEP amplitude ratio) and age (rs = −0.22, p = 0.17), which
did not differ between HC and MCI, or between responders and
non-responders. In terms of stimulation strength, TMS intensity
was negatively correlated with PAS response (Figure 1A), but
only in responders (rs = −0.52, p = 0.008) as opposed to non-
responders (rs = 0.12, p = 0.66). However, no association was
found between TMS intensity and PAS response when dividing
the groups into HC (rs = −0.029, p = 0.9) and MCI (rs = −0.35,
p = 0.051).

Using the SimNIBS toolbox, we visualized the location of
the TMS hotspot to verify that the hotspot was within the
motor cortex. An exemplary TMS-induced field distribution is
illustrated in Figure 1B, while each individual’s coordinates in
MNI space are provided in the Supplementary Table S1.

Functional and Structural Data
The seed-based functional connectivity analysis of the resting-
state fMRI group data revealed a consistent sensorimotor
network (SMN; Figure 2A). More specifically, the SMN
comprised one large cluster that overlapped with the following
brain regions (Table 2): bilateral precentral gyrus, corresponding
to the primary motor cortex (M1), bilateral postcentral gyrus,
including the primary sensorimotor cortex (S1), supplementary
motor area (SMA), bilateral superior parietal lobule (SPL),
and bilateral supramarginal cortex (SMG). PAS response and
functional connectivity of M1-S1 were positively correlated in
responders (rs = 0.45, p = 0.023) and negatively correlated at trend
levels in non-responders (rs = −0.49, p = 0.055) and correlation
coefficients differed between the groups (z = 2.918, p = 0.001;
Figure 2B). This effect was not observed when dividing the
groups into HC (rs = 0.3, p = 0.18) and MCI (rs =−0.032, p = 0.9).

Figure 3A illustrates the corticospinal tract (CST), averaged
across all participants, resulting from the probabilistic fiber
tractography analysis. The weighted average FA values did not
differ between MCI and HC (U = 162, p = 0.224), and showed
only trend significance between responders and non-responders

(U = 127, p = 0.053). The correlation analysis showed a significant
positive correlation between FA values and PAS response across
all participants (Figure 3B; rs = 0.39, p = 0.011), but no
difference in the correlation coefficients between responders and
non-responders (z = 0.741, p = 0.229). In terms of cortical
thickness and GM volume of the primary motor cortex, no
significant differences between groups or associations with PAS
response were found.

Prediction of PAS Response Rate
A RF classifier was trained with ntree = 500 and mtry = 6 using
19 different features in order to classify participants into two
groups: PAS responders and non-responders. The RF classifier
was not able to reliably predict the PAS response rate, showing
a low estimated accuracy of 58% (95% CI: 42–72%). The results
of the OBB estimations (i.e., confusion matrix) are shown in
Table 3. We observed an estimated classification sensitivity
[TP/(TP+ FN)] of 65% and an estimated classification specificity
[TN/(TN + FP)] of 50%, suggesting high susceptibility to large
Type I error (false positives) of the model. The receiver operating
characteristic (ROC) curve for the classifier is illustrated in
Figure 4A. The area under the curve (AUC) was 0.49. The
relative importance of variables is summarized in Figure 4B,
showing that brain connectivity measures (i.e., microstructure of
CST and functional connectivity of SMN) had the highest Gini
impurity index. However, it should be noted that while RF can
handle correlated variables well, multicollinearity may affect the
relative importance of variables and should be interpreted with
caution. The correlation matrix of all variables is provided in the
Supplementary Figure S1.

DISCUSSION

Paired associative stimulation (PAS) is a well-established method
to non-invasively probe cortical plasticity in vivo, but PAS effects
tend to vary considerably among individuals. In this study,
we addressed this issue by investigating the role of different

FIGURE 1 | TMS results: (A) Correlational analysis between TMS intensity and PAS response, divided into responders and non-responders. (B) An exemplary
TMS-induced field distribution from the simulation computed in SimNIBS.
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FIGURE 2 | Resting-state fMRI results: (A) Average functional connectivity map of the sensorimotor network with the TMS hotspot as a seed (p−FDR < 0.05). The
color bar represents T-values. (B) Correlation analysis between PAS response and functional connectivity between primary motor cortex (M1) and primary
somatosensory cortex (S1).

TABLE 2 | Functional connectivity results: brain regions that positively correlated with the TMS hotspot seed.

Anatomical labels Cluster size (voxels) MNI coordinates T p−FDR

x y z

Postcentral gyrus (S1) L 3708 −50 −22 52 20.70 <0.001

Precentral gyrus (M1) L 3548 −38 −10 62 19.36 <0.001

Precentral gyrus (M1) R 3413 24 −10 58 14.34 <0.001

Postcentral gyrus (S1) R 3065 52 −14 56 14.14 <0.001

Supplementary motor area (SMA) 1021 2 −6 52 16.46 <0.001

Superior Parietal Lobule (SPL) L 882 −38 −42 62 15.25 <0.001

Superior Parietal Lobule (SPL) R 650 24 −40 68 10.38 <0.001

Supramarginal gyrus (SMG) L 401 −60 −26 42 9.38 <0.001

Supramarginal gyrus (SMG) R 251 50 −26 44 7.66 <0.001

FIGURE 3 | DTI results: (A) Probabilistic fiber tractography of the corticospinal tract (CST). (B) Correlation analysis between PAS response and average fractional
anisotropy (FA) of the CST.
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TABLE 3 | OBB estimation confusion matrix.

REFERENCE

PAS responders PAS non-
responders

PREDICTION PAS responders TP = 20 FP = 5

PAS non-responders FN = 11 TN = 5

TP, true positive; TN, true negative; FN, false negative; FP, false positive.

factors that may affect PAS efficacy. In line with previous
reports (Müller-Dahlhaus et al., 2008; López-Alonso et al., 2014;
Lahr et al., 2016a), we found that only 61% of all participants
included in our study showed the expected MEP facilitation
as a function of the PAS intervention. More importantly,
responder rate was independent of whether participants were
HC or MCI. Using uni- and multivariate data analyses, we
sought to determine if the observed high inter-individual
variability could be predicted by factors that have previously
been reported to influence PAS response, such as demographic,
clinical, genetic, neurophysiological or neuroanatomical ones.
We hypothesized that no single variable would be sufficient to
predict the PAS outcome but expected that a combination of
different determinants would have a synergetic effect on the
predictability of the PAS response. Contrary to our expectations,
our multivariate model could not sufficiently predict PAS
response rate using these previously proposed determinants of
PAS variability. To our knowledge, this is the first study to
attempt predicting PAS efficacy using a multivariate classifier.

Demographic, Clinical, and Genetic
Factors
From the demographic data, age is considered a major factor
that is known to influence LTP-like cortical plasticity and
sensorimotor integration (for a review, see Bhandari et al., 2016).
For instance, PAS-induced changes in MEP amplitude have
previously been reported to be substantially smaller in elderly
healthy individuals relative to young ones (Müller-Dahlhaus
et al., 2008), while another study found only a trend toward

a main effect of age, with young adults showing increases in
MEP amplitude relative to older adults (Dickins et al., 2017).
Here, we found only a trend for a negative association between
age and PAS response, with no significant differences between
HC and MCI, or between PAS responders and non-responders.
However, it should be noted that the current study was not
explicitly designed to investigate age-dependent effects on PAS-
induced plasticity. Particularly, we included only older adults
with a relatively narrow age range (60–77 years). While we agree
that age should be regarded as an important confounding factor
in TMS studies in general, we argue that PAS variability found in
our study was not due to age differences. The same was also the
case for other demographic determinants, such as sex, education,
IQ, and global cognition.

The effects of clinical measures, including depression score
and presence of cognitive impairment, were also considered
in our analysis, motivated by previous findings. For instance,
a recent study reported that depression may impair PAS-
induced plasticity, with depressive patients showing lower PAS
potentiation compared to HC (Noda et al., 2018). However, we
found no correlation between depressive symptoms and PAS
response, as well as no difference in depression scores between
PAS responders relative to non-responders. This suggests that
the inter-individual PAS variability observed in our sample could
not be explained by depressive symptoms. Of note, depression
symptoms were among the exclusion criteria in the current study
in order to ensure that cognitive complaints in MCI were not
due to depression. The initial goal of the study was to investigate
whether PAS-induced plasticity differed between MCI and HC
(Lahr et al., 2016b). Not only did we not confirm this hypothesis,
but we also found that almost the same amount of HC were
PAS non-responders, as observed in the MCI group. Since we
found no main effect of group (except for MOCA) or interaction
effects of group with any of the variables, we included the whole
sample in the multivariate analysis. Limiting the analysis to
controls only would have decreased statistical power without
changing the conclusions of the study. Importantly, MCI is
not a specific disease, but rather represents a “stage” along the
aging continuum that does not necessarily need to progress to
dementia. By definition, MCI participants present with mild

FIGURE 4 | Random forest analysis: (A) Receiver operating characteristic (ROC) curves for the RF model with 19 features (AUC 0.49). (B) Importance of single
variables.
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cognitive deficits that do not impair their abilities to carry out
normal daily activities.

In general, there is only limited evidence supporting the
clinical application of PAS, especially at prodromal stages
of neurodegenerative diseases (Ziemann et al., 2008). So far,
impaired M1 plasticity has been reported in Parkinson’s disease
(Morgante et al., 2006). Similarly, a previous study observed
a PAS-induced increase in MEP amplitude in HC relative to
patients with Parkinson’s disease and essential tremor (Lu et al.,
2016). In the cognitive domain, only a few studies have focused
on TMS-induced plasticity in Alzheimer’s disease (for a review,
see Freitas et al., 2011), with some contradicting findings. More
specifically, while most studies reported either no differences or
decreased cortical excitability in AD (e.g., Battaglia et al., 2007),
others suggested a short-term increase in post-intervention
MEP amplitudes (Alagona et al., 2001). Interestingly, it has
recently been suggested that a combination of different TMS
paradigms may differentiate AD from frontotemporal dementia
(Benussi et al., 2017).

The differences in findings among studies could be resulting
from modulatory effects of potential pharmacological agents,
as well as from the synergetic influence of genetic factors,
such as APOE4 and BDNF. In particular, the impact of BDNF
polymorphism on cortical excitability has been confirmed in
mice (Fritsch et al., 2010) as well as in humans (for a review,
see Chaieb et al., 2014). For instance, Kleim et al. (2006)
showed in a TMS study that training-dependent facilitation
of MEP amplitude was reduced in young healthy participants
with a Val66Met polymorphism relative to those without the
polymorphism. Moreover, Val/Val participants showed increased
motor map areas of muscle representation, measured on T1-
weighted images, relative to Val/Met and Met/Met participants,
but this effect was only present after repeated training, suggesting
that the physiological consequences of BDNF polymorphism
may not manifest in the basal state but only occur in response
to training-driven increases in neural activity, e.g., by reducing
BDNF secretion in response to neuronal stimulation (Kleim
et al., 2006). However, the small sample size (9 Val/Val, 11
Val/Met and 6 Met/Met participants) included in the study
warrants some caution in interpreting these results. Here, we did
not find a differential effect of BDNF polymorphism on PAS-
induced plasticity but, possibly, the association between BDNF
polymorphism and LTP-like facilitation may not manifest after a
single PAS session.

Neurophysiological and
Neuroanatomical Factors
Following previous recommendations (Sale et al., 2007), the PAS
experiment was completed in the afternoon for all participants. In
this way, we aimed to avoid potential effects of circadian rhythms
and time of day effects, thus providing a greater reproducibility
between sessions. Furthermore, we evaluated sleep quality within
the past 4 weeks as well as during the night prior to testing
to ensure that PAS after-effects were not dependent on sleep.
Previously, it has been shown that sleep deprivation leads to
decreases in TMS-induced plasticity (Kuhn et al., 2016). In the

present study, sleep quality did not significantly differ between
groups and was not associated with PAS response.

With regard to controlling for attention and alertness during
the TMS session, there is currently no consensus on the optimal
approach. Here, we used a simple visual task to ensure that
participants kept attentive and did not fall asleep during the
session. It has previously been shown that a low visual load had
no modulatory effects on PAS (Kamke et al., 2012). In addition,
selective attention and alertness were evaluated on the day before
the TMS session and no correlation was found with PAS response,
which is in contrast to a similar study investigating TMS-induced
plasticity in young adults, where we showed that higher LTP-like
plasticity, in both motor and visual system, was associated with
higher subjective alertness (Klöppel et al., 2015). While sleep,
attention, and alertness are undoubtedly important factors to
control for in brain stimulation interventions, here we found no
significant associations with PAS after-effects, lending support
to the idea that PAS variability in our study was caused by
different factors.

Among all the determinants of PAS variability investigated
in our study, the most promising ones seemed to be functional
and structural connectivity measures. Neuroanatomical
determinants, including cortical thickness, GM volume and
microstructural properties of WM have previously been
proposed to affect cortical excitability (Klöppel et al., 2008;
Conde et al., 2012; List et al., 2013a,b). Our findings suggested
that only the microstructure of the CST had a small, albeit
significant, contribution to PAS efficacy. However, other studies,
using tract-based spatial statistics (TBSS) of the corticospinal
tract (CST) in healthy adults (Hübers et al., 2012) and in patients
with Parkinson’s disease and essential tremor (Lu et al., 2016),
showed that CST microstructure did not play a significant role
in the generation of LTP-like plasticity. It is unclear whether
these discrepancies are merely due to methodological differences
among studies and, thus, warrants further examination.
Considering that the CST is the major afferent pathway of
the motor cortex, it is reasonable to expect that its anatomical
integrity would be essential in defining the final motor output.

An advantage of functional connectivity measures over
anatomical measures is their potential to provide useful insights
into individual brain states as well as the effects of cortical
excitability on neural processing. Although there is little
understanding of the mechanisms underlying complex network
organization and TMS-induced neuromodulation, available data
highlight the utility of using task-based and resting-state fMRI
to predict cortical excitability and TMS intervention outcomes
(Fox et al., 2012, 2014; Cárdenas-Morales et al., 2014; Heba
et al., 2017; Fiori et al., 2018; Ingemanson et al., 2019). For
instance, a recent review on resting-state fMRI and treatment
response in major depressive disorder reported that response to
repetitive (rTMS) was consistently predicted by subcallosal cortex
connectivity. Additionally, connectivity within default mode and
cognitive control networks differed between treatment-resistant
and treatment-sensitive patients (Dichter et al., 2015).

In our study, resting-state connectivity within the
sensorimotor network was positively correlated with PAS-
induced cortical plasticity, but only in responders relative to
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non-responders. In contrast, a previous study investigating
intermittent theta-burst stimulation (iTBS)-induced increases
in MEP amplitude found that resting-state connectivity did
not predict iTBS after-effects (Cárdenas-Morales et al., 2014).
However, they showed that task-dependent effective connectivity
between left premotor areas and M1 prior to stimulation was
predictive of post-intervention M1 excitability, implying that
plasticity-related changes seem to depend on brain connectivity
within the task-dependent network.

Of note, our study showed a correlational effect of SMN
connectivity, but limited predictive value of PAS efficacy, as
evident from our multivariate analysis. In order to evaluate
causal effects of stimulation protocols on changes in functional
connectivity, we propose that studies should acquire fMRI data
both prior and following TMS interventions. Moreover, task-
based fMRI designs might be better suited to investigate specific
task-dependent changes in network connectivity as well as the
short-term transfer of TMS-induced plasticity. An alternative
approach to study the neuronal communication within the
sensorimotor network is the use of bifocal, cortico-cortical PAS
protocols, in which an impulse over the target area (e.g., M1)
is followed by a second impulse over an interconnected target
area (e.g., premotor areas) in an inter-stimulus interval consistent
with the activation of short-latency connections between the two
target areas (Rizzo et al., 2009; Arai et al., 2011; Buch et al.,
2011). Recently, it was shown that this kind of modified PAS
protocol cannot only induce cortical plasticity but also improve
performance on a motor task involving the stimulated pathway
(Fiori et al., 2018).

Further Methodological Factors
An important consideration is whether the electrical field
of the TMS indeed targeted the motor cortex with the
intended direction and strength. In our study, we defined the
stimulation hotspot as the optimal cortical location to elicit
MEPs in the contralateral APB muscle. Furthermore, we used a
neuronavigation system and each individual’s anatomical scan to
register and track the coil position during the whole TMS session.
In this way, we effectively controlled for motion effects since
minimal movements away from the optimal stimulation region
may lead to attenuation of the MEP amplitude. Additionally,
using the SimNIBS software, we examined the distribution of
the electric field strength and the coordinates of the stimulation
hotspot for each participant separately in order to ensure that we
indeed targeted the motor cortex.

It can be argued that defining the optimal TMS hotspot
by using brain stimulation might not be optimal. Indeed, this
approach has both its strengths and limitations. One shortcoming
is that the search for the optimal hotspot might take longer in
some participants than others, leading to an unanticipated bias.
An alternative approach would be to define a neuroanatomical
hotspot by first segmenting the individual’s T1 scan prior to the
TMS session and then using an anatomical landmark, such as
the left precentral gyrus. However, a limitation of this approach
is that it does not take into account that the motor cortex
consists of functionally and histologically distinct subregions and
there is still no consensus which motor subregion should ideally

be targeted (Bungert et al., 2017). In our study, we chose to
functionally define the hotspot using the motor-evoked response
and then inspect whether the coordinates of the TMS hotspot
corresponded to the motor cortex.

Another methodological aspect is the choice of stimulation
intensity. As generally recommended, we did not use a fixed
intensity across all participants but, instead, defined it as
the strength that evoked a peak-to-peak MEP amplitude of
1 mV, therefore ensuring that it was sufficient to induce the
expected plasticity changes in each participant. Interestingly,
our results suggest that higher TMS intensity does not lead to
higher cortical excitability per se, emphasizing the importance
of response-dose dependencies. Furthermore, TMS intensity can
be influenced by (neuro-)anatomical features such as skull and
cortical thickness, leading to individual differences in coil-to-
cortex distance (McConnell et al., 2001; List et al., 2013b).
To overcome this issue, we computed the distribution of the
electric field strength (i.e., the vector norm of the electric field
E) induced by TMS using the SimNIBS simulation approach,
which takes into account neuroanatomical features such as CSF-
skull boundaries and gyrification patterns, thus providing an
anatomically more accurate modeling (Thielscher et al., 2015).

Implications and Future Directions
Taken together, our study suggests that inter-individual
variability in responsiveness to PAS was present even if variables
known to influence cortical excitability were controlled for,
highlighting the need for further replication studies. A major
limitation of our study is that several of the variables had a
relatively small range since the initial design of the study aimed
to control for potential confounders. Therefore, it could be
argued that the low predictive value of our multivariate model in
terms of the inter-individual variability in PAS response is not
surprising. Still, our findings have important implications, as we
show empirically that low PAS responders rates are still present,
even after controlling for potential confounding variables.
Therefore, the underlying sources of variability in PAS efficacy
are not well-understood and warrant further investigation. We
put a special emphasis on the importance of avoiding publication
bias by encouraging authors to publish negative results as well
as to report non-responders in their analyses. Additionally,
the generalizability of findings can be improved by optimizing
sample size in order to ensure sufficient statistical power.
Alternatively, future studies may refine their selected population
by first evaluating individual state-dependent measures in order
to homogenize the study sample. Modifications of existing
protocols, instead of applying protocols in a “one-size-fits-all”
fashion, may improve intervention outcomes (Karabanov
et al., 2016). If PAS is to be used as a biomarker of cortical
plasticity, a better mechanistic understanding of the variability
in the responsiveness to PAS, as well as to other non-invasive
brain stimulation protocols in general, is necessary. In line
with previous recommendations (Karabanov et al., 2016), we
emphasize that future studies should further focus on the
application of state-informed open-loop (i.e., offline feedback)
stimulation protocols (e.g., by using fMRI data to assess changes
in brain states prior to and following stimulation), as well as
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the application of adaptive closed-loop (i.e., online feedback)
approaches (e.g., by use of neurofeedback).

DATA AVAILABILITY

The data that support the findings of this study are available from
the corresponding author upon reasonable request.

ETHICS STATEMENT

This study was approved by the Ethics Commission of the
Medical Center – University of Freiburg (Approval #227/12) and
written informed consent was obtained from all participants prior
to the participation according to the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS

LM acquired, analyzed, and interpreted the data, and drafted
the manuscript. JP, SK, and JL designed the study, acquired,
analyzed, and interpreted the data, and revised the manuscript.
LS acquired the data and revised the manuscript. AA, CK, and
CN interpreted the data and revised the manuscript. All authors
read and approved the final manuscript.

FUNDING

This study was funded by an intramural grant from the Faculty
of Medicine – University of Freiburg. The manuscript processing
charges were funded by the German Research Foundation (DFG)
and the University of Freiburg in the Open-Access Publishing
Funding Program.

ACKNOWLEDGMENTS

The authors would like to thank Christian Münkel (Department
of Neurology, Freiburg) for his help with genotyping, as well
as Verena Landerer (Center for Geriatrics and Gerontology,
Freiburg), Eliza Lauer (Department of Internal Medicine I,
Freiburg), and Hansjörg Mast (Department of Neuroradiology,
Freiburg) for assistance in data acquisition, and Volkmar Glauche
(Department of Neurology, Freiburg) for his technical advice
on data analysis.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00841/full#supplementary-material

REFERENCES
Alagona, G., Bella, R., Ferri, R., Carnemolla, A., Pappalardo, A., Costanzo, E.,

et al. (2001). Transcranial magnetic stimulation in Alzheimer disease: motor
cortex excitability and cognitive severity. Neurosci. Lett. 314, 57–60. doi: 10.
1016/S0304-3940(01)02288-1

Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox,
N. C., et al. (2011). The diagnosis of mild cognitive impairment due to
Alzheimer’s disease: recommendations from the national institute on aging-
Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s
disease. Alzheimers Dement. 7, 270–279. doi: 10.1016/j.jalz.2011.03.008

Antonenko, D., Nierhaus, T., Meinzer, M., Prehn, K., Thielscher, A., Ittermann, B.,
et al. (2018). Age-dependent effects of brain stimulation on network centrality.
NeuroImage 176, 71–82. doi: 10.1016/j.neuroimage.2018.04.038

Arai, N., Müller-Dahlhaus, F., Murakami, T., Bliem, B., Lu, M.-K., Ugawa, Y.,
et al. (2011). State-dependent and timing-dependent bidirectional associative
plasticity in the human SMA-M1 network. J. Neurosci. 31, 15376–15383.
doi: 10.1523/JNEUROSCI.2271-11.2011

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm.
NeuroImage, 38, 95–113. doi: 10.1016/j.neuroimage.2007.07.007

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. NeuroImage. 26,
839–851. doi: 10.1016/j.neuroimage.2005.02.018

Battaglia, F., Wang, H.-Y., Ghilardi, M. F., Gashi, E., Quartarone, A., Friedman, E.,
et al. (2007). Cortical plasticity in Alzheimer’s disease in humans and rodents.
Biol. Psychiatry 62, 1405–1412. doi: 10.1016/j.biopsych.2007.02.027

Beck, A. T., Steer, R. A., and Brown, G. K. (1996). Manual for the Beck Depression
Inventory-II. San Antonio, TX: Psychological Corporation.

Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., and Woolrich, M. W.
(2007). Probabilistic diffusion tractography with multiple fibre orientations:
what can we gain? NeuroImage 34, 144–155. doi: 10.1016/j.neuroimage.2006.
09.018

Behzadi, Y., Restom, K., Liau, J., and Liu, T. T. (2007). A component based
noise correction method (CompCor) for BOLD and perfusion based fMRI.
NeuroImage 37, 90–101. doi: 10.1016/j.neuroimage.2007.04.042

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Benussi, A., Di Lorenzo, F., Dell’Era, V., Cosseddu, M., Alberici, A., Caratozzolo,
S., et al. (2017). Transcranial magnetic stimulation distinguishes Alzheimer
disease from frontotemporal dementia. Neurology 89, 665–672. doi: 10.1212/
WNL.0000000000004232

Bhandari, A., Radhu, N., Farzan, F., Mulsant, B. H., Rajji, T. K., Daskalakis,
Z. J., et al. (2016). A meta-analysis of the effects of aging on motor
cortex neurophysiology assessed by transcranial magnetic stimulation. Clin.
Neurophysiol. 127, 2834–2845. doi: 10.1016/j.clinph.2016.05.363

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:
1010933404324

Buch, E. R., Johnen, V. M., Nelissen, N., O’Shea, J., and Rushworth, M. F. S. (2011).
Noninvasive associative plasticity induction in a corticocortical pathway of the
human brain. J. Neurosci. 31, 17669–17679. doi: 10.1523/JNEUROSCI.1513-11.
2011

Bungert, A., Antunes, A., Espenhahn, S., and Thielscher, A. (2017). Where
does TMS stimulate the motor cortex? combining electrophysiological
measurements and realistic field estimates to reveal the affected cortex position.
Cereb. Cortex 27, 5083–5094. doi: 10.1093/cercor/bhw292

Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., and Kupfer, D. J. (1989).
The Pittsburgh sleep quality index: a new instrument for psychiatric practice
and research. Psychiatry Res. 28, 193–213. doi: 10.1016/0165-1781(89)90047-4

Cárdenas-Morales, L., Volz, L. J., Michely, J., Rehme, A. K., Pool, E.-M.,
Nettekoven, C., et al. (2014). Network connectivity and individual responses
to brain stimulation in the human motor system. Cereb. Cortex 24, 1697–1707.
doi: 10.1093/cercor/bht023

Chaieb, L., Antal, A., Ambrus, G. G., and Paulus, W. (2014). Brain-derived
neurotrophic factor: its impact upon neuroplasticity and neuroplasticity
inducing transcranial brain stimulation protocols. Neurogenetics 15, 1–11.
doi: 10.1007/s10048-014-0393-1

Cheeran, B., Talelli, P., Mori, F., Koch, G., Suppa, A., Edwards, M., et al. (2008). A
common polymorphism in the brain-derived neurotrophic factor gene (BDNF)

Frontiers in Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 841

https://www.frontiersin.org/articles/10.3389/fnins.2019.00841/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00841/full#supplementary-material
https://doi.org/10.1016/S0304-3940(01)02288-1
https://doi.org/10.1016/S0304-3940(01)02288-1
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.neuroimage.2018.04.038
https://doi.org/10.1523/JNEUROSCI.2271-11.2011
https://doi.org/10.1016/j.neuroimage.2007.07.007
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://doi.org/10.1016/j.biopsych.2007.02.027
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1212/WNL.0000000000004232
https://doi.org/10.1212/WNL.0000000000004232
https://doi.org/10.1016/j.clinph.2016.05.363
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1523/JNEUROSCI.1513-11.2011
https://doi.org/10.1523/JNEUROSCI.1513-11.2011
https://doi.org/10.1093/cercor/bhw292
https://doi.org/10.1016/0165-1781(89)90047-4
https://doi.org/10.1093/cercor/bht023
https://doi.org/10.1007/s10048-014-0393-1
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00841 August 12, 2019 Time: 16:41 # 13

Minkova et al. Determinants of Variability in PAS Efficacy

modulates human cortical plasticity and the response to rTMS. J. Physiol. 586,
5717–5725. doi: 10.1113/jphysiol.2008.159905

Chenot, Q., Tzourio-Mazoyer, N., Rheault, F., Descoteaux, M., Crivello, F., Zago,
L., et al. (2018). A population-based atlas of the human pyramidal tract in 410
healthy participants. Brain Struct. Funct. 224, 599–612. doi: 10.1007/s00429-
018-1798-7

Conde, V., Vollmann, H., Sehm, B., Taubert, M., Villringer, A., and Ragert,
P. (2012). Cortical thickness in primary sensorimotor cortex influences
the effectiveness of paired associative stimulation. NeuroImage 60, 864–870.
doi: 10.1016/j.neuroimage.2012.01.052

Dahnke, R., Yotter, R. A., and Gaser, C. (2013). Cortical thickness and central
surface estimation. NeuroImage 65, 336–348. doi: 10.1016/j.neuroimage.2012.
09.050

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker,
D., et al. (2006). An automated labeling system for subdividing the human
cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage
31, 968–980. doi: 10.1016/j.neuroimage.2006.01.021

Dichter, G. S., Gibbs, D., and Smoski, M. J. (2015). A systematic review of
relations between resting-state functional-MRI and treatment response in
major depressive disorder. J. Affect. Disord. 172, 8–17. doi: 10.1016/j.jad.2014.
09.028

Dickins, D. S. E., Kamke, M. R., and Sale, M. V. (2017). Corticospinal plasticity
in bilateral primary motor cortices induced by paired associative stimulation
to the dominant hemisphere does not differ between young and older adults.
Neural. Plast. 2017:8319049. doi: 10.1155/2017/8319049

Downar, J., Geraci, J., Salomons, T. V., Dunlop, K., Wheeler, S., McAndrews,
M. P., et al. (2014). Anhedonia and reward-circuit connectivity distinguish
nonresponders from responders to dorsomedial prefrontal repetitive
transcranial magnetic stimulation in major depression. Biol. Psychiatry
76, 176–185. doi: 10.1016/j.biopsych.2013.10.026

Fiori, F., Chiappini, E., and Avenanti, A. (2018). Enhanced action performance
following TMS manipulation of associative plasticity in ventral premotor-motor
pathway. NeuroImage 183, 847–858. doi: 10.1016/j.neuroimage.2018.09.002

Fox, M. D., Buckner, R. L., Liu, H., Chakravarty, M. M., Lozano, A. M., and Pascual-
Leone, A. (2014). Resting-state networks link invasive and noninvasive brain
stimulation across diverse psychiatric and neurological diseases. PNAS 111,
E4367–E4375. doi: 10.1073/pnas.1405003111

Fox, M. D., Halko, M. A., Eldaief, M. C., and Pascual-Leone, A. (2012). Measuring
and manipulating brain connectivity with resting state functional connectivity
magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation
(TMS). NeuroImage 62, 2232–2243. doi: 10.1016/j.neuroimage.2012.03.035

Freitas, C., Mondragón-Llorca, H., and Pascual-Leone, A. (2011). Noninvasive
brain stimulation in Alzheimer’s disease: systematic review and perspectives for
the future. Exp. Gerontol. 46, 611–627. doi: 10.1016/j.exger.2011.04.001

Fried, P. J., Jannati, A., Davila-Pérez, P., and Pascual-Leone, A. (2017).
Reproducibility of single-pulse, paired-pulse, and intermittent theta-burst TMS
measures in healthy aging, Type-2 diabetes, and Alzheimer’s disease. Front.
Aging Neurosci. 9:263. doi: 10.3389/fnagi.2017.00263

Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G.,
et al. (2010). Direct current stimulation promotes BDNF-dependent synaptic
plasticity: potential implications for motor learning. Neuron 66, 198–204.
doi: 10.1016/j.neuron.2010.03.035

Görtelmeyer, R. (1985). “On the development of a standardized sleep inventory for
the assessment of sleep,” in Methods of Sleep Research, eds S. T. Kubicki and
W. M. Herrmann (Stuttgart: Gustav Fisher Verlag), 93–98.

Heba, S., Lenz, M., Kalisch, T., Höffken, O., Schweizer, L. M., Glaubitz, B., et al.
(2017). Regionally specific regulation of sensorimotor network connectivity
following tactile improvement. Neural. Plast. 2017:5270532. doi: 10.1155/2017/
5270532

Hebb, D. O. (1949). The Organization of Behavior. NewYork, NY: Wiley.
Hübers, A., Klein, J. C., Kang, J.-S., Hilker, R., and Ziemann, U. (2012). The

relationship between TMS measures of functional properties and DTI measures
of microstructure of the corticospinal tract. Brain Stim. 5, 297–304. doi: 10.
1016/j.brs.2011.03.008

Ingemanson, M. L., Rowe, J. R., Chan, V., Wolbrecht, E. T., Reinkensmeyer, D. J.,
and Cramer, S. C. (2019). Somatosensory system integrity explains differences
in treatment response after stroke. Neurology 92, e1098–e1108. doi: 10.1212/
WNL.0000000000007041

Kamke, M. R., Hall, M. G., Lye, H. F., Sale, M. V., Fenlon, L. R., Carroll, T. J., et al.
(2012). Visual attentional load influences plasticity in the human motor cortex.
J. Neurosci. 32, 7001–7008. doi: 10.1523/JNEUROSCI.1028-12.2012

Karabanov, A., Thielscher, A., and Siebner, H. R. (2016). Transcranial brain stim:
closing the loop between brain and stimulation. Curr. Opin Neurol. 29, 397–404.
doi: 10.1097/WCO.0000000000000342

Kleim, J. A., Chan, S., Pringle, E., Schallert, K., Procaccio, V., Jimenez, R., et al.
(2006). BDNF val66met polymorphism is associated with modified experience-
dependent plasticity in human motor cortex. Nat. Neurosci. 9, 735–737.
doi: 10.1038/nn1699

Klöppel, S., Bäumer, T., Kroeger, J., Koch, M. A., Büchel, C., Münchau, A., et al.
(2008). The cortical motor threshold reflects microstructural properties of
cerebral white matter. NeuroImage 40, 1782–1791. doi: 10.1016/j.neuroimage.
2008.01.019

Klöppel, S., Lauer, E., Peter, J., Minkova, L., Nissen, C., Normann, C., et al. (2015).
LTP-like plasticity in the visual system and in the motor system appear related in
young and healthy subjects. Front. Hum. Neurosci. 9:506. doi: 10.3389/fnhum.
2015.00506

Kuhn, M., Wing, J., Weston, S., WIlliams, A., Keefer, C., Engelhardt, A., et al.
(2019). caret: Classification and Regression Training. R package version 6.0-
82. Available at: https://CRAN.R-project.org/package=caret (accessed April 27,
2019).

Kuhn, M., Wolf, E., Maier, J. G., Mainberger, F., Feige, B., Schmid, H., et al. (2016).
Sleep recalibrates homeostatic and associative synaptic plasticity in the human
cortex. Nat. Commun. 7:12455. doi: 10.1038/ncomms12455

Lahr, J., Paßmann, S., List, J., Vach, W., Flöel, A., and Klöppel, S. (2016a). Effects
of different analysis strategies on paired associative stimulation. a pooled data
analysis from three research labs. PLoS One 11:e0154880. doi: 10.1371/journal.
pone.0154880

Lahr, J., Peter, J., Minkova, L., Lauer, E., Reis, J., Heimbach, B., et al. (2016b).
No difference in paired associative stimulation induced cortical neuroplasticity
between patients with mild cognitive impairment and elderly controls. Clin.
Neurophysiol. 127, 1254–1260. doi: 10.1016/j.clinph.2015.08.010

Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R
News 2, 18–22.

List, J., Duning, T., Kürten, J., Deppe, M., Wilbers, E., and Flöel, A. (2013a). Cortical
plasticity is preserved in nondemented older individuals with severe ischemic
small vessel disease. Hum. Brain Mapp. 34, 1464–1476. doi: 10.1002/hbm.
22003

List, J., Kübke, J. C., Lindenberg, R., Külzow, N., Kerti, L., Witte, V., et al. (2013b).
Relationship between excitability, plasticity and thickness of the motor cortex in
older adults. NeuroImage 83, 809–816. doi: 10.1016/j.neuroimage.2013.07.033

López-Alonso, V., Cheeran, B., Río-Rodríguez, D., and Fernández-Del-Olmo, M.
(2014). Inter-individual variability in response to non-invasive Brain Stim
paradigms. Brain Stim. 7, 372–380. doi: 10.1016/j.brs.2014.02.004

Lu, M.-K., Chen, C.-M., Duann, J.-R., Ziemann, U., Chen, J.-C., Chiou, S.-M.,
et al. (2016). Investigation of motor cortical plasticity and corticospinal tract
diffusion tensor imaging in patients with parkinsons disease and essential
tremor. PLoS One 11:e0162265. doi: 10.1371/journal.pone.0162265

McConnell, K. A., Nahas, Z., Shastri, A., Lorberbaum, J. P., Kozel, F. A., Bohning,
D. E., et al. (2001). The transcranial magnetic stimulation motor threshold
depends on the distance from coil to underlying cortex: a replication in
healthy adults comparing two methods of assessing the distance to cortex. Biol.
Psychiatry 49, 454–459. doi: 10.1016/s0006-3223(00)01039-8

Missitzi, J., Gentner, R., Geladas, N., Politis, P., Karandreas, N., Classen, J., et al.
(2011). Plasticity in human motor cortex is in part genetically determined.
J. Physiol. 589, 297–306. doi: 10.1113/jphysiol.2010.200600

Morgante, F., Espay, A. J., Gunraj, C., Lang, A. E., and Chen, R. (2006). Motor
cortex plasticity in Parkinson’s disease and levodopa-induced dyskinesias. Brain
129, 1059–1069. doi: 10.1093/brain/awl031

Mori, S., Wakana, S., van Zijl, P. C. M., and Nagae-Poetscher, L. M. (2005). MRI
Atlas of Human White Matter. Amsterdam: Elsevier.

Müller-Dahlhaus, J. F. M., Orekhov, Y., Liu, Y., and Ziemann, U. (2008).
Interindividual variability and age-dependency of motor cortical plasticity
induced by paired associative stimulation. Exp. Brain Res. 187, 467–475. doi:
10.1007/s00221-008-1319-7

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V.,
Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief

Frontiers in Neuroscience | www.frontiersin.org 13 August 2019 | Volume 13 | Article 841

https://doi.org/10.1113/jphysiol.2008.159905
https://doi.org/10.1007/s00429-018-1798-7
https://doi.org/10.1007/s00429-018-1798-7
https://doi.org/10.1016/j.neuroimage.2012.01.052
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2012.09.050
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1016/j.jad.2014.09.028
https://doi.org/10.1155/2017/8319049
https://doi.org/10.1016/j.biopsych.2013.10.026
https://doi.org/10.1016/j.neuroimage.2018.09.002
https://doi.org/10.1073/pnas.1405003111
https://doi.org/10.1016/j.neuroimage.2012.03.035
https://doi.org/10.1016/j.exger.2011.04.001
https://doi.org/10.3389/fnagi.2017.00263
https://doi.org/10.1016/j.neuron.2010.03.035
https://doi.org/10.1155/2017/5270532
https://doi.org/10.1155/2017/5270532
https://doi.org/10.1016/j.brs.2011.03.008
https://doi.org/10.1016/j.brs.2011.03.008
https://doi.org/10.1212/WNL.0000000000007041
https://doi.org/10.1212/WNL.0000000000007041
https://doi.org/10.1523/JNEUROSCI.1028-12.2012
https://doi.org/10.1097/WCO.0000000000000342
https://doi.org/10.1038/nn1699
https://doi.org/10.1016/j.neuroimage.2008.01.019
https://doi.org/10.1016/j.neuroimage.2008.01.019
https://doi.org/10.3389/fnhum.2015.00506
https://doi.org/10.3389/fnhum.2015.00506
https://CRAN.R-project.org/package=caret
https://doi.org/10.1038/ncomms12455
https://doi.org/10.1371/journal.pone.0154880
https://doi.org/10.1371/journal.pone.0154880
https://doi.org/10.1016/j.clinph.2015.08.010
https://doi.org/10.1002/hbm.22003
https://doi.org/10.1002/hbm.22003
https://doi.org/10.1016/j.neuroimage.2013.07.033
https://doi.org/10.1016/j.brs.2014.02.004
https://doi.org/10.1371/journal.pone.0162265
https://doi.org/10.1016/s0006-3223(00)01039-8
https://doi.org/10.1113/jphysiol.2010.200600
https://doi.org/10.1093/brain/awl031
https://doi.org/10.1007/s00221-008-1319-7
https://doi.org/10.1007/s00221-008-1319-7
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00841 August 12, 2019 Time: 16:41 # 14

Minkova et al. Determinants of Variability in PAS Efficacy

screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

Noda, Y., Zomorrodi, R., Vila-Rodriguez, F., Downar, J., Farzan, F., Cash, R. F. H.,
et al. (2018). Impaired neuroplasticity in the prefrontal cortex in depression
indexed through paired associative stimulation. Depress. Anxiety 35, 448–456.
doi: 10.1002/da.22738

Oldfield, R. C. (1971). The assessment and analysis of handedness: the edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Peña-Gomez, C., Solé-Padullés, C., Clemente, I. C., Junqué, C., Bargalló, N., Bosch,
B., et al. (2012). APOE status modulates the changes in network connectivity
induced by Brain Stim in non-demented elders. PLoS One 7:e51833. doi: 10.
1371/journal.pone.0051833

Peter, J., Kaiser, J., Landerer, V., Köstering, L., Kaller, C. P., Heimbach, B.,
et al. (2016). Category and design fluency in mild cognitive impairment:
performance, strategy use, and neural correlates. Neuropsychologia 93, 21–29.
doi: 10.1016/j.neuropsychologia.2016.09.024

Peter, J., Sandkamp, R., Minkova, L., Schumacher, L. V., Kaller, C. P., Abdulkadir,
A., et al. (2018a). Real-world navigation in amnestic mild cognitive impairment:
the relation to visuospatial memory and volume of hippocampal subregions.
Neuropsychologia 109, 86–94. doi: 10.1016/j.neuropsychologia.2017.12.014

Peter, J., Schumacher, L. V., Landerer, V., Abdulkadir, A., Kaller, C. P., Lahr, J., et al.
(2018b). Biological factors contributing to the response to cognitive training in
mild cognitive impairment. J. Alzheimers Dis. 61, 333–345. doi: 10.3233/JAD-
170580

Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., and
Kokmen, E. (1999). Mild cognitive impairment. Arch. Neurol. 56:303. doi: 10.
1001/archneur.56.3.303

R Core Team, (2016). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Ridding, M. C., and Ziemann, U. (2010). Determinants of the induction of
cortical plasticity by non-invasive Brain Stim in healthy subjects. J. Physiol. 588,
2291–2304. doi: 10.1113/jphysiol.2010.190314

Rizzo, V., Siebner, H. S., Morgante, F., Mastroeni, C., Girlanda, P., and Quartarone,
A. (2009). Paired associative stimulation of left and right human motor cortex
shapes interhemispheric motor inhibition based on a Hebbian mechanism.
Cereb. Cortex 19, 907–915. doi: 10.1093/cercor/bhn144

Sale, M. V., Ridding, M. C., and Nordstrom, M. A. (2007). Factors influencing
the magnitude and reproducibility of corticomotor excitability changes induced
by paired associative stimulation. Exp. Brain Res. 181, 615–626. doi: 10.1007/
s00221-007-0960-x

Salomons, T. V., Dunlop, K., Kennedy, S. H., Flint, A., Geraci, J., Giacobbe,
P., et al. (2014). Resting-state cortico-thalamic-striatal connectivity predicts
response to dorsomedial prefrontal rTMS in major depressive disorder.
Neuropsychopharmacology 39, 488–498. doi: 10.1038/npp.2013.222

Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005). ROCR: visualizing
classifier performance in R. Bioinformatics 21, 3940–3941. doi: 10.1093/
bioinformatics/bti623

Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens,
T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural
MR image analysis and implementation as FSL. NeuroImage 23(Suppl. 1),
S208–S219. doi: 10.1016/j.neuroimage.2004.07.051

Stefan, K., Kunesch, E., Cohen, L. G., Benecke, R., and Classen, J. (2000). Induction
of plasticity in the human motor cortex by paired associative stimulation. Brain
123, 572–584. doi: 10.1093/brain/123.3.572

Stefan, K., Wycislo, M., and Classen, J. (2004). Modulation of associative human
motor cortical plasticity by attention. J. Neurophysiol. 92, 66–72. doi: 10.1152/
jn.00383.2003

Sturm, W. (2006). Wahrnehnumgs- und Aufmerksamkeitsfunktionen. Mödling:
Schuhfried.

Thielscher, A., Antunes, A., and Saturnino, G. B. (2015). Field modeling for
transcranial magnetic stimulation: a useful tool to understand the physiological
effects of TMS? Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 222–225. doi:
10.1109/EMBC.2015.7318340

Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C. M., and Mori, S.
(2004). Fiber tract-based atlas of human white matter anatomy. Radiology 230,
77–87. doi: 10.1148/radiol.2301021640

Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). Conn: a functional
connectivity toolbox for correlated and anticorrelated brain networks. Brain
Connect. 2, 125–141. doi: 10.1089/brain.2012.0073

Windhoff, M., Opitz, A., and Thielscher, A. (2013). Electric field calculations in
Brain Stim based on finite elements: an optimized processing pipeline for the
generation and usage of accurate individual head models. Hum. Brain Mapp.
34, 923–935. doi: 10.1002/hbm.21479

Yesavage, J. A., and Sheikh, J. I. (1986). 9/Geriatric depression Scale (GDS). Clin.
Gerontol. 5, 165–173. doi: 10.1300/J018v05n01_09

Zhang, Y., Zhang, J., Oishi, K., Faria, A. V., Jiang, H., Li, X., et al. (2010). Atlas-
guided tract reconstruction for automated and comprehensive examination
of the white matter anatomy. NeuroImage 52, 1289–1301. doi: 10.1016/j.
neuroimage.2010.05.049

Ziemann, U., Paulus, W., Nitsche, M. A., Pascual-Leone, A., Byblow, W. D.,
Berardelli, A., et al. (2008). Consensus: motor cortex plasticity protocols. Brain
Stim. 1, 164–182. doi: 10.1016/j.brs.2008.06.006

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Minkova, Peter, Abdulkadir, Schumacher, Kaller, Nissen, Klöppel
and Lahr. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 August 2019 | Volume 13 | Article 841

https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1002/da.22738
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1371/journal.pone.0051833
https://doi.org/10.1371/journal.pone.0051833
https://doi.org/10.1016/j.neuropsychologia.2016.09.024
https://doi.org/10.1016/j.neuropsychologia.2017.12.014
https://doi.org/10.3233/JAD-170580
https://doi.org/10.3233/JAD-170580
https://doi.org/10.1001/archneur.56.3.303
https://doi.org/10.1001/archneur.56.3.303
https://doi.org/10.1113/jphysiol.2010.190314
https://doi.org/10.1093/cercor/bhn144
https://doi.org/10.1007/s00221-007-0960-x
https://doi.org/10.1007/s00221-007-0960-x
https://doi.org/10.1038/npp.2013.222
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1093/bioinformatics/bti623
https://doi.org/10.1016/j.neuroimage.2004.07.051
https://doi.org/10.1093/brain/123.3.572
https://doi.org/10.1152/jn.00383.2003
https://doi.org/10.1152/jn.00383.2003
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1109/EMBC.2015.7318340
https://doi.org/10.1148/radiol.2301021640
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1002/hbm.21479
https://doi.org/10.1300/J018v05n01_09
https://doi.org/10.1016/j.neuroimage.2010.05.049
https://doi.org/10.1016/j.neuroimage.2010.05.049
https://doi.org/10.1016/j.brs.2008.06.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Determinants of Inter-Individual Variability in Corticomotor Excitability Induced by Paired Associative Stimulation
	Introduction
	Materials and Methods
	Participants
	Study Procedure
	PAS Protocol
	Electric Field Simulation
	MRI Data Acquisition
	Structural MRI
	Functional MRI
	Diffusion MRI
	Statistical Analysis and Machine Learning

	Results
	Demographic, Cognitive and Clinical Data
	TMS Data
	Functional and Structural Data
	Prediction of PAS Response Rate

	Discussion
	Demographic, Clinical, and Genetic Factors
	Neurophysiological and Neuroanatomical Factors
	Further Methodological Factors
	Implications and Future Directions

	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


