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As computational models inspired by the biological neural system, spiking neural
networks (SNN) continue to demonstrate great potential in the landscape of artificial
intelligence, particularly in tasks such as recognition, inference, and learning. While SNN
focuses on achieving high-level intelligence of individual creatures, Swarm Intelligence (S)
is another type of bio-inspired models that mimic the collective intelligence of biological
swarms, i.e., bird flocks, fish school and ant colonies. S| algorithms provide efficient
and practical solutions to many difficult optimization problems through multi-agent
metaheuristic search. Bridging these two distinct subfields of artificial intelligence has
the potential to harness collective behavior and learning ability of biological systems. In
this work, we explore the feasibility of connecting these two models by implementing a
generalized SI model on SNN. In the proposed computing paradigm, we use SNNs to
represent agents in the swarm and encode problem solutions with the spike firing rate
and with spike timing. The coupled neurons communicate and modulate each other’s
action potentials through event-driven spikes and synchronize their dynamics around
the states of optimal solutions. We demonstrate that such an SI-SNN model is capable
of efficiently solving optimization problems, such as parameter optimization of continuous
functions and a ubiquitous combinatorial optimization problem, namely, the traveling
salesman problem with near-optimal solutions. Furthermore, we demonstrate an efficient
implementation of such neural dynamics on an emerging hardware platform, namely
ferroelectric field-effect transistor (FeFET) based spiking neurons. Such an emerging
in-silico neuron is composed of a compact 1T-1FeFET structure with both excitatory
and inhibitory inputs. We show that the designed neuromorphic system can serve as an
optimization solver with high-performance and high energy-efficiency.

Keywords: ferroelectric FET, neuromorphic computing, spiking neural network, swarm intelligence, optimization

INTRODUCTION

Recent advances of deep learning models have initiated a resurgence of neural networks in the field
of artificial intelligence (LeCun et al., 2015). Spiking Neural Network (SNN), as the third generation
of neural networks, models the dynamic behavior of the biological neural system and focuses on
the timing of the spikes (Maass, 1997). SNN utilizes spike timing to encode information and is
capable of processing a significant amount of spatial-temporal information with a small number
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of neurons and spikes (Ghosh-Dastidar and Adeli, 2009; Ponulak
and Kasinski, 2011). Meanwhile, neuromorphic computing
hardware that implements SNN continue to gain increasing
attention both in the industry and academia (Merolla et al,
2014; Davies et al., 2018). Moreover, recent progress of emerging
nanotechnologies in devices and materials, such as resistive
RAMs (RRAM) (Indiveri et al., 2013), spintronic devices
(Romera et al,, 2018) and metal-insulator transition (MIT)
materials (Parihar et al., 2018), are facilitating real-time large-
scale mixed-signal neuromorphic computing systems with the
potential to bridge the energy efficiency gap between engineered
systems and biological systems. SNN has been successfully
applied in various computational tasks, such as visual recognition
(Cao et al, 2015), natural language processing (Diehl et al.,
2016), brain-computer interface (Kasabov, 2014), robot control
(Bouganis and Shanahan, 2010). Recently, researchers have
demonstrated ways to use networks of SNNs and similar
neuromorphic systems to solve computationally more difficult
problems. Of particular interest are optimization problems
including NP-hard problem, such as constraint satisfaction
problems (CSP) (Mostafa et al, 2015; Fonseca Guerra and
Furber, 2017), vortex coloring problems (Parihar et al,
2017) and traveling salesman problems (TSP) (Jonke et al,
2016). These neural-inspired computing systems are designed
exclusively so that the system converges at problem solutions
by harvesting both deterministic as well as stochastic dynamics.
Nonetheless, there are very few previous works about SNN
based computing systems that address generic optimization
problems. Although solving CSP with SNN is promising, it
is enticing to note that the computational platform that we
empirically find in the human brain can also solve complex
optimization problems.

On the other hand, swarms of creatures also show collective
behavior and evolve with complex and highly optimized global
strategies. For example, a colony of ants is capable of planning
the shortest path between their nest and their food sources, which
is attributed to the collaborative deposit of chemical pheromone
on the trails (Goss et al., 1989). A school of sardine naturally
optimizes the movement of the swarm to minimize the loss
when it is attacked by sharks (Norris and Schilt, 1988). Bees
can build hives with an optimized structure in spatial efficiency
and locate nearest nectar source plants with temporal efficiency
(Michener, 1969). These swarms are composed of individuals
that have inferior intelligence and simple behaviors. However,
they exhibit highly intelligent collective behavior resulting from
the collaboration. Inspired from these natural swarms, Swarm
Intelligence (SI) constructs the computational models that
describe the collaborative behaviors in decentralized and self-
organized systems (Blum and Li, 2008). In recent years, SI is also
applied to a wide range of fields, such as path planning, control
of robotics, image processing, and communication networks
(Duan and Luo, 2015). Examples of classic SI optimization
methods include ant colony optimization (ACO) (Dorigo and Di
Caro, 1999), particle swarm optimization (PSO) (Kennedy and
Eberhart, 1999). More advanced SI optimization algorithms that
have been proposed recently include the firefly algorithm (FA)
(Fister et al., 2013) and bat algorithm (Yang, 2010).

SNN and SI are apparently two computational intelligence
models that differ in concepts, architectures and applications.
SNN is inspired by the neural system of a high-intelligent
individual, while SI mimics the collaborative behavior of
somewhat simpler creatures. However, these two sets of models
share some similarities. Both of them are bio-inspired, highly
parallelized, and composed of multiple homogeneous units
(agents and neurons) (Fang and Dickerson, 2017). Their
computational capabilities origin from the interaction and
communication between the individual units. For example, both
of the neurons in SNN and agents in SI exhibit the behavior
of phase and frequency synchronization. From the perspective
of computational neuroscience, synchronization of oscillatory
neural activity is currently one of the attractive areas of research,
due to its close connection to the rhythms of the brain, seizures
in epileptic patients and tremor in Parkinson patients (Guevara
Erraetal., 2017). Neural synchronization has also been utilized in
neuromorphic computing based on spiking or oscillatory neural
networks, such as visual processing (Fang et al., 2014), olfactory
processing (Brody and Hopfield, 2003), and solving constraint
satisfaction problems (Parihar et al., 2017). In these applications,
neural synchronization usually indicates the completeness of
computing and the stable state of dynamical systems that
presents the results. Similarly, an SI model can be viewed as a
discrete dynamical system with an energy function that matches
the objective function of the optimization problem. Agents
perform collaborative searches and eventually synchronize and
cluster around the global energy minima, which represents the
global optimal (or near-optimal) solution. Such synchronization
phenomena in SNN and SI model are the primary inspiration of
our work.

As the problem dimension and the swam sizes increase, SI
algorithms can become computationally expensive in terms of
delay and power. On the other hand, SNNs cannot harness the
collective properties of optimization problems. In our previous
work (Fang and Dickerson, 2017), we explored the opportunities
in bridging these two models and proposed a computing
paradigm based on SI and coupled spiking oscillator network to
address optimization problems. In this work, we provide details
and develop an SI-SNN architecture and demonstrate how it is
capable of solving two types of optimization problems, parameter
optimization of continuous objective functions and TSP.

Along with algorithm development, the next generation of
computing systems must harness the computational advantages
of emerging post-silicon technologies. In particular, for
neuromorphic systems, research has started in earnest to identify
materials and device systems that exhibit the inherent dynamics
of bio-inspired neurons and synapses. Various competing
technologies are being explored, including insulator-metal-
transition devices (Parihar et al., 2017), RRAMs (Ielmini, 2018),
spintronic neurons and synapses (Romera et al., 2018) as well as
scaled silicon CMOS implementations (Indiveri and Horiuchi,
2011). In this paper, we explore the use of ferroelectric field-effect
transistor (FeFET) based spiking neurons in the design of
the proposed SI-SNN architecture. An algorithm-hardware
co-design is required to provide the next breakthrough in
computational efficiency, in particularly for neuro-inspired
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systems whose dynamics can be simulated, albeit inefficiently
in a von-Neumann system. The FeFET based spiking neuron
is a compact 1T-1FeFET in-silico neuron with both excitatory
and inhibitory inputs (Wang et al., 2017). It takes advantage
of the hysteresis of the FeFET and operates as a relaxation
oscillator that periodically generates voltage spikes. We extract a
simplified model to capture the critical voltages and spike timing
of FeFET based spiking neuron. This compact model enables the
simulation of SNN that contains a large number of neurons.

First, we show how the proposed SI-SNN organizes multiple
SNNs and performs parallel meta-heuristic searching, which
is conducted by a swarm of collaborative agents in an SI-
inspired algorithm. In this design, the spiking neurons encode
the parameters of the agents with the spiking rate, interact with
each other via spikes and search for globally optimal solutions.
The agents that find better solutions modulate the firing rates of
neurons in other agents. The modulation behavior is performed
through event-based synaptic connections. Specifically, the
excitatory input voltage of a post-synaptic FeFET neuron
is modulated by a small amount whenever a spike arrives.
Eventually, the optimal solution is represented by the firing rates
when the entire swarm synchronizes.

In the second problem demonstration, we use a similar SI-
SNN computing architecture to imitate the ACO (Dorigo and
Di Caro, 1999) algorithm and show how it is capable of solving
the TSP. Each SNN is a winner-takes-all (WTA) network and
the order of its neurons’ spikes represents the traveled route
(solution candidate) of a single agent (ant). The synaptic weight
is updated online by the spikes and shared by multiple SNNs,
resembling the pheromone trails in ACO. The travel routes of
SNNs are adapted according to the distances between cities and
the pheromone distribution. Consequently, the optimal solution
eventually evolves though such a parallel search process.

The remaining sections of this paper are organized as follow.
In Materials and Methods, we describe the dynamical behavior
model of FeFET spiking neuron as a hardware platform; it is
the neuron model we use to develop the SI-SNN computing
paradigm. Then we introduce two SI-SNN paradigms and
demonstrate solutions to different optimization problems—
continuous objective functions and TSP. In section Results, we
provide the simulation results of our proposed method. In the
final section, we draw conclusions.

MATERIALS AND METHODS

Neuromorphic Hardware Technology

Owing to the continuous dynamics of the biological nervous
systems biomimetic SNNs are much less efficient when they
are executed on digital computing machines. Neuromorphic
hardware that specifically supports SNN has been explored
theoretically and experimentally for three decades (Mead, 1989).
Nowadays neuromorphic engineering focuses on developing
large-scale neural processing systems for cognitive tasks (Indiveri
et al,, 2011). In this work, we demonstrated a co-design of the
proposed SI-SNN computing paradigm and neuromorphic
hardware, where the hardware natively implements the

required neuronal dynamics. A neuromorphic hardware system,
comprises of two fundamental functional units:

(a) Neuron: This is the primary focus of this paper. Here, we
explore the spiking dynamics of a FeFET neuron based
on its excitatory and inhibitory interfaces and utilize this
dynamical behavior to enable different SNN functionalities.
The FeFET neuron has also been proven to be energy-
efficient. It costs about one-third of power as traditional
CMOS circuits and can potentially achieve the energy
efficiency of 0.36 nJ/spike with 45 nm FinFET process (Wang
et al., 2018). We discuss the detail dynamical behavior of
FeFET spiking neuron in the next section.

(b) Synapse: Various resistive memory technologies are currently
being investigated to realize synaptic behavior. The synapse
does not show complex dynamics, but rather allows
summation of the outputs of multiple pre-synaptic neurons
to modulate the membrane potential of the post-synaptic
neuron. For the sake of brevity, we do not include a detailed
discussion about the hardware implementation of synapses
because many emerging device technologies can fulfill the
requirements of SI-SNN systems (Kuzum et al., 2013).

Ferroelectric Based Spiking Neuron

FeFET is a semiconductor device that has a similar structure
as the MOSFET or FinFET, except that an additional layer
of ferroelectric (FE) material is integrated into the stack of
gate terminal (Aziz et al., 2018). The spontaneous polarization
of the FE layer is reversible under a certain electric field
applied in the correct direction. The polarization depends
on the current electric field and its history, resulted in a
hysteresis loop. For further details, interested readers are pointed
to Aziz et al. (2018). Such a feature of FE layer induces
a FeFET to switch “on” at a high voltage and “off” at a
low applied gate voltage. Figure 1 illustrate the structure of
a FeFET (red box). A relaxation oscillator based on FeFET
was recently proposed in Wang et al. (2017). Furthermore,
the proposed oscillator was utilized to implement a spiking
neuron with excitatory and inhibitory interfaces (Wang et al.,
2018). The proposed circuits employ the hysteresis of a FeFET
and a traditional NMOS transistor to periodically charge and
discharge a load capacitor and generate spikes of voltage
(Figures 1, 2A). Figure S1 shows a 3D view of the FeFET and
the NMOS transistor.

The FeFET based neuron has only two transistors and exhibits
an advantage in the energy efficiency of spikes, which is discussed
later in section Results. More importantly, this neuron model
is capable of modeling multiple neural dynamics that has been
observed in cortical and thalamic neurons. We can use two
gate voltages, Vgm and Vgp, of two transistors to imitate
the excitatory and inhibitory synaptic inputs, respectively of
biological neurons, and thus enable various neural firing patterns
(Fang et al., 2019). In this section, we describe a compact behavior
model of the FeFET based spiking neuron. This model captures
the critical switching voltages of FeFET and computes the current
that controls spike timing (phase) and spiking frequency. It
neglects the complex physical transitions before device switching
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and reduces the computing cost tremendously, enabling the
simulation of large scale SNN built on FeFET neuron.

Figure 1 depicts the schematic of a FeFET spiking neuron
(Wang et al., 2017). It is a relaxation oscillator that charges and
discharges the load capacitor repetitively with Ip and Ijs, which
are the currents flowing through the FeFET and the NMOSFET.
The former one injects current to capacitor C and the latter one
provides a discharging path. To briefly explain the oscillation,

Yoo S ——— o
I
/ | ng 3
D | ~I-
: C, |
b Vs v,
Ver S

ver— 5 | IC L v

FIGURE 1 | FeFET based spiking oscillator consists of a FeFET and a normal
NMQOS transistor that are used to charge and discharge a capacitor. The
FeFET (red box) can be view as a ferroelectric layer that connected to a
common FET (3D model of FeFET is shown in Figure S1).

we assume Vg, Voum, and Vpp are all fixed. If we start from
the charging phase, the potential across the capacitor, Vs, is low
and thus the Vg of FeFET is large enough to set the FE layer
to coercion and inject charge into the gate node V, and quickly
switches on the FeFET. As a result, Ip increases rapidly and
charges the capacitor until the end of this phase. As the capacitor
gets charged and V5 rises, the discharging phase begins. The FE
layer reaches the opposite coercive threshold, drains the charge
from V, and switches the FeFET to an OFF state. In this phase,
Ip is very small and Iy gets a chance to discharge the capacitor.
Due to the decrease of Vg again, the whole cycle repeats with
these two phases. Therefore, Vs keeps swinging between the two
critical voltages Vy; and Vy,. In Figure 2A, the blue waveform
plots the trace of Vi, illustrates the Fast Spiking mode of a
spiking neuron.

Dynamic Behavior Model

Because the switching process of FeFET is fast when compared
to the oscillation period, we assume the switching of FeFET
is instant in our model. We are primarily interested in the
timing of the spike, instead of other physical metrics of the
FeFET device. We focus our model on the critical voltages when
FeFET switches and the current that charges and discharges the
capacitors. Details of the model have been presented elsewhere
(Fang et al., 2019) and we summarize the key findings here for
the sake of completion. It is also important to point out the
key neuronal dynamics that are achievable in the FeFET neuron,

A B
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4t \|/[2 Vlt 1 —400mV
— ! |
= —~ 3t
<, gb |
> — 2t
1t |
1
0 . o il 1 "
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-2000 -1500
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FIGURE 2 | Demonstration of model simulation: (A) waveforms of Vg (Vgr = 300mV and 400 mV); (B) Ip — Vg plot shows the hysteresis loops of Ip in (A); (C) Vg
v.s. frequency as Vgr = 300 mV; (D) flow diagrams of equation.
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that can be harnessed in the SI-SNN computational framework.
Critical voltages Vy; and Vi, depend on the properties of FeFET,
Vg and Vp (Vgr and Vpp) fed into the gate and drain terminals.
To capture Vy; and Vi, we only need to aim at the boundary
conditions when the FeFET switches. Thus, we can write the
equation based on charge (Fang et al., 2019):

VgCT = Qfe + Cfe Ver + ng Vpp + Cgs Vs
Cr = Cfe+ng+Cgs (1)

where, Qp, is the released bond charge. Here Vo = Vg ~ Vi, Vi,
is the potential across the FE layer and equals to one of the two
coercive voltages, V. and V. Therefore, we can compute the
critical voltages of switching, V;; and Vy, as (Fang et al.,, 2019):

Vi = a® —yOVpp + (14 y9) (Vor = V)i = 1,2
(i) (@) (@)
S = Gt o (CTVE A PTQR) g oy
C,.D Cc,.
gs gs

i = 1,2 represent the cases of switching on and off. a?, @,
Ve, and Viare device parameters that can be calibrated via
experimental measurements (Wang et al., 2018) or estimated
from physics-based models. Thus, we can obtain Vi and Vy
in terms of Vgr and Vpp. An alternative method to obtain Vj;
and Vy, is to calibrate the data experimentally from circuits. In
the case we shown here, we have (V;1 = 187mV, V;, = 111 mV)
when Vgrp=300mV (V;1 = 320mV, Vi, = 219mV), when Vg
=400 mV.

With V;; and Vy, we can model the dynamical behavior of
the FeFET based neuron with a first-order non-linear differential
equation for Vg:

%—l(sl —Iy)
dt_C D M) >

Ip = gr(Vg — Vs — Vo)
I = gm(Vom — Vi) (3)

s=0,Vy — Vp
s=1, th < Vt2

In Equation (3), we use a binary variable s to set the current in two
phases. When s = 1, the load capacitor is being charged, while s
= 0 represent the discharging phase. Ip and Ijs are modeled with
two piecewise linear functions. Transistor parameters gr, g,
V> and Vi, are transconductances and threshold voltages. Vy
is calculated from Equation (1).

Compare to physics-based FeFET models proposed in
previous works (Aziz et al., 2016; Lenarczyk and Luisier, 2016),
our model is more concise and friendly to the system-level
simulation of SNN. Despite the simplicity, we still need to capture
the timing of spikes accurately. We verify the model by utilizing
it to recreate the dynamic behaviors and data provided in Wang
et al. (2017). In this case, we adopt the same configuration and
parameters in Wang et al. (2017), in which the FeFET is a 14 nm
FinFET node that connects to a 10nm HfO, FE layer with
mode detail description in Khandelwal et al. (2017). The NMOS
transistor is a FInFET but without the FE layer. For the circuits
simulation, we use the default settings of Vpp =400 mV, Vgy =
350 mV and C = 8 nF. Here we use gr= gy = 1074, Vg, = 250
mV,and Vy, — Vg & 400mV.

We simulate the circuits with varying values of Vgr and Vgu
and demonstrate the results in Figure 2. Figure 2A plots two
waveforms of Vg when Vgr = 300 mV and Vgr = 400 mV. It is
worth noting that when Vigr = 300 mV, the hysteresis of FeFET
produces normal oscillation; when Vgr = 400 mV, Vs operates
between a higher range of V;; and Vy,, which leads to a balance
between the charging and discharging of capacitors and cease
the oscillation. Figure 2B draws the Ip — Vi curves of each case,
showing the FeFET’s hysteretic behavior under Vgr = 300 mV.
To explain the condition of oscillation, Figure 2D plots the flow
diagram of the FeFET based oscillator. When Vgr = 300 mV, the
x-axis dVs/dt = 0 intersects the steep transition of the hysteretic
loop. As a result, there is no attractor or fixed point but a limit
cycle in the system to generate oscillations. On the other hand,
when Vg =400 mV, the first derivative of Vg passes the charging
phase of the hysteretic loop and forms a fixed point near Vg
= 300mV. The fixed point creates a stable state that eliminates
the oscillation. Let us assume Vg as the membrane voltage of
a neuron, its non-oscillatory state can be viewed as the resting
state. The FeFET based oscillator exhibits similar dynamics as a
LIF neuron, except that it fires spikes with an opposite direction.
Namely, the FeFET spiking neuron fires when Vg reaches the
low threshold voltage, Vi, and the action potential of spikes is
reversely integrated from Vpp to 0. Such a dynamical behavior is
validated experimentally in Wang et al. (2018) (Figures S3, $4).
If we fix Vgr, Vgm can be used to tuning the firing rate of the
FeFET spiking neuron. The Vg and frequency curve showed
in Figure 2C here is measured as the instantaneous firing rate
of spikes, instead of the mean frequency obtained from the
power spectrum.

In summary, high Vgr suppress the spiking activities of the
FeFET neuron and keep it at the resting state, thus exhibiting
a prototypical “inhibitory” behavior. When the inhibition of
Vr is disabled, raising Vgy increases the firing rate, and the
corresponding input behaves as an “excitatory” interface.

Biomimetic Neuronal Dynamics

The traditional Leaky Integrate-and-Fire (LIF) Neuron model
is not able to cover the dynamics of multiple ion channels
of biological neurons due to its simplicity of one dimension.
Izhikevich (2003) proposed a 2-D neuron model that efficiently
reproduces various dynamics of cortical neurons. The innovation
of Izhikevich’s model is to use a slow variable to control the leak
current of a LIF model. Inspired from such a design, we propose
to take advantage of inhibitory input Vgr in FeFET spiking
neuron to imitate the function of the “slow variable” because
the FeFET is responsible for the “resetting” phase (discharging)
of a spike (Fang et al., 2019). Associated with the frequency
adaption enabled by excitatory input Vgy, our neuron model
can imitate multiple types of firing patterns (Fang et al., 2019).
We demonstrate two types of spiking dynamics that we utilize for
SNN based computation for this work. These two types of firing
patterns are respectively:

e FS and LTS (Fast Spiking and Low-Threshold Spiking):
firing patterns found in inhibitory cortical cells. They
both feature with spike trains in high frequency. LTS
has a frequency adaptation. We treat them as one
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FIGURE 3 | Two neural firing patterns, FS and RS. The plots on the left column
show the waveforms of input signals to Vigr and V. The right column plot
the waveforms of Vg (blue) and corresponding timing of spike train (red).

firing pattern (FS) for the simplicity of representation in
proposed computing paradigms.

e RS (Regular Spiking): a regular cortical firing pattern
with relatively low-frequency.

Figure 3 illustrates how the application of different configuration
of Vgr and Vi can generate these two firing patterns. Besides FS
and RS, the FeFET spike neuron model is also capable of imitated
other firing patterns such as Intrinsically Busting (IB), Chattering
(CH), and interested readers are pointed to Fang et al. (2019) for
further discussions. In the FS mode, the FeFET neuron operates
in an oscillatory mode with disabled inhibition (low VgF) for a
high frequency of firing. Meanwhile, Vgy can be used to adjust
the firing frequency. In RS mode, spikes are generated through
a periodic inhibitory input which has a large duty cycle. In the
original design of FeFET spiking neuron (Wang et al., 2018), the
polarity of the spike train is inverted using an output inverter and
the input gate voltages, Vgr and Vs accept voltage spikes from
pre-synaptic neurons via RC integrators. The two spiking modes,
FS, and RS can be set by using proper input of spiking trains.
Figure S2 illustrates the frequency modulation via spikes.

Swarm Intelligence (Sl)—Spiking Neural
Network (SNN) Optimization

Having established the electronic equivalent of the biological
neuron, we now focus on the algorithm development which
can harness the dynamics of this neural circuit. In this section,
we introduce the SI-SNNs that imitates the collective behavior
of SI algorithms. First, we provide a general framework of
SI algorithms. Then, we describe the architectures of two
SI-SNNs, which are aimed at two different optimization
problems, respectively.

S| Algorithm Framework

To define the problem, we use the general form of optimization,
which is to find a solution of x to maximize/minimize the
objective/cost function f(x) under certain constraints. Namely,
x = argmin f(x), s.t constraint. For the parameter optimization
of continuous objective functions, we do not take constraints
into consideration.

Different SI algorithms are distinct from each other due
to the different swarm behaviors they mimic. However, a
general framework can be developed to fit most of these
algorithmic principles. In the beginning, a swarm is initialized
with multiple “agents.” Each agents location coordinates in
the solution space represent the parameters of the solution.
In each iteration of the optimization process, the agents move
and search for solutions by updating their parameters. Such a
collaboration operation is meta-heuristic and trades off between
the randomization and the performance of the local search. To
locate the optimal solution and to escape from local minima
simultaneously, each agent follows particular behavioral rules
and seek to balance exploration and exploitation (Crepinsek
et al, 2011). Exploration determines the swarm’s capability
of discovering new candidates of the global solution. On the
contrary, exploitation focuses on the individual local search
within the vicinities of the current best solution. The pseudo-code
in Algorithm 1 describes the framework of most SI algorithms
(Fang and Dickerson, 2017).

Algorithm 1: General SI Frameworks

1: Initialize swarm S with m agents {s1, s2, ..., sm}

2: While t < MAX_ITER or condition satisfy do

3: Update vector of parameters s' = sf_l + Asf_l for each
st e st

4: Evaluate f (sf) for each sf

5: Compute each As! for the next iteration based on f(s})

6: t=t+1

7: end while

Each agent si in swarm S is an n-dimension vector that represents
the variable of f(x) € R"™ — R. The behavior rule of agent that
compute As; vary among different SI algorithms. For example,
PSO updates si based on the history of both the best global and
local solutions. FA only requires the current global best solution.
Despite this distinction, SI algorithms are flexible and model-free
because of their similar characteristics in meta-heuristic search.
In other words, the same method can be used to address different
types of optimization problems.

SI-SNN Model Architecture for Continuous Objective
Function

Figure 4 depicts the architecture of the proposed SI-SNN for
optimizing the parameters of continuous objective functions.
Following the configuration and notation as Algorithm 1, we
consider a swarm of m agents for an n-dimension problem.
Accordingly, we prepare an m X n array of neurons (labeled as
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FIGURE 4 | SI-SNN architecture for parameter optimization of continuous
functions.

green) to represent a parameter s;; (1 < i < m,1 < j < n)in
each agent s;. The black frame with shadow encloses the neurons
that belong to the agent s;. The red frame indicates the neurons
that compose the searching network for the optimization of
one parameter X (I < k < n). Namely, each column of
neurons is a fully connected spiking neural network defined
as a searching network. Each row of neurons represents an
agent. The block E (labeled as orange) evaluates the solution
found by each agent by computing the value of the objective
function f(x). The computing platform of block E depends on
the different optimization tasks and objective functions. For
compatibility, it can be another spiking neural network (Iannella
and Back, 2001), or a digital/mixed-signal computing hardware,
or feedback from the external environment gathered through
sensors such in reinforcement learning problems. The evaluation
of each solution found by an individual agent produces an
m-sized column vector (labeled as blue). These solutions are
compared to each other and used to guide the synaptic update
of the neurons.

In section Ferroelectric Based Spiking Neuron, we introduced
the FeFET spiking neuron and several of its biomimetic patterns.
In this scenario, we explore the use of frequency (firing rate) of
each neuron to represent the value of a parameter. Therefore,
an adaptable voltage-controlled high-frequency spiking mode is

necessary. We choose the FS mode of FeFET spiking neuron
(Figure 3), in which the inhibitory input is oft (Vgr = 300 mV)
and the voltage of the capacitor Vg oscillates between Vy; =
111mV and V;; = 188mV. The firing rate is tuned by the
excitatory input, Vg (Figure 2C).

In a searching network, each neuron belongs to a different
agent. Its firing rate represents the value of the specific parameter
in the current solution. The firing rates are initialized by setting
Vum with random values normally distributed in a specific range.
During the optimization process, these neurons adjust each
other’s firing rates based on the results of the pairwise comparison
between solutions, following the rule described in Equation (4).
For the ith neuron in a searching network, we have

Voumi = Vomi + Avij+ 01, on spike from j™ neuron  (4)

Avij = { w(Vem; - Vo), if f(si) < f(s))
0, otherwise

where 7 is a Gaussian noise term and 6 is a scaling factor of
the stochastic term. Equation (4) explains an event-based rule
of updating Vgar. Once a spike from the pre-synaptic neuron j
arrives at the post-synaptic neuron i and if the jth agent has a
better solution than the ith agent, Vs is updated by adding the
difference between Vg and Vi so that it becomes more close
to Vuj, which reduces the difference between the firing rates of
the two neurons. w is the synaptic weight that controls the step
size of the Vg modulation. This synaptic rule is applied to all the
neurons and enables the agents with better solutions to dominate
other agents by tuning their firing rate. But the dominant agents
change behavior as the searching process continues. Sometimes
passive agents may find better solutions as a result of a stochastic
search and become active and start to modulate the neurons of
other agents. The searching process ends when the neurons in
every searching networks are synchronized with near-identical
frequencies. Such a swarm behavior is inspired by fireflies, which
attract each other via the frequency synchronization of their flash
signaling (Fister et al., 2013).

SI-SNN for Traveling Salesman Problem

TSP is an NP-hard combinatorial optimization problem. Given
the distance between nodes in a graph, the goal of TSP is to
find a path that visits all the nodes in the graph exactly once
with minimal total distance. Among SI algorithm family, ant
colony optimization algorithm (ACO) was proposed to solve TSP
(Dorigo and Di Caro, 1999). ACO is a swarm-based method
inspired by the collaborative behavior of ants. Different from
the rest of the SI algorithms, the agents (ants) in ACO do not
send information to each other directly but leave the shared
information (pheromone) on the edge of graphs (Dorigo and
Di Caro, 1999). Individual ant makes decisions based on the
concentration of pheromone on their travel route. We define a
trip as complete when an agent finishes visiting all the nodes.
In a trip, the amount of pheromone on the edge is updated by
all the ants that have passed by that edge and further influence
their choice of route in the next trip. An iteration is defined as an
event when all the agents have finished one trip. After a certain
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number of iterations, the best route eventually converges to the
optimal solution.

Before we design the SI-SNN for ACO, we notice that a
fully connected SNN with #n neurons can be mapped onto a
graph of n-city TSP (Hopfield and Tank, 1985) and the travel
route can be indicated by the order of spikes (Jonke et al,
2016). However, the behavior of a swarm of ants is difficult
to be represented simultaneously by the spike train within a
single SNN. Therefore, we use multiple SNNs to simulate the
trip of each ant. For each SNN, the difficulty in the design
of dynamics lies on how to make each neuron fire only once
and follow the correct order in one trip. In previous work
(Jonke et al., 2016), multiple WTA SNNs are used to show
the travel path of one trip. By exerting the inhibitory and
excitatory interfaces of FeFET spiking neurons, we can use the
spike train of a single SNN to represent the travel path of
one agent.

Figure 5A shows the modified architecture of SI-SNN for
solving TSP. We start with an m x n array of neurons (green)
and each neuron represents a city (node) ¢;; (1 < i < m,1 <
j < mn) in the travel path of the agent (ant) A;. A red frame
indicates a fully-connected WTA network, which models the
traveling behavior of an ant A;. In one trip, each neuron in
a WTA network only fires once and the solution of the TSP
pi (labeled as blue) is represented as the order of firing of a
spike train. The collaboration between agents does not rely on
the evaluation of p;. Hence, the SI-SNN architecture for ACO
has no feedback loop and search networks as shown in the
previous section. Instead, these WTA networks simultaneously
access and update a set of shared weights that mimic the
pheromone trails of the ant colony. Meanwhile, to enable the
winner-takes-all mechanism, we employ an instant inhibitory
synapse and a delayed excitatory synapse to pair-wise connect
every neuron in the WTA network. Accordingly, we use the
regular spiking (RS) mode of FeFET neuron. Namely, after the

inhibition input Vgp was set to low, the capacitor of FeFET
neuron needs to be discharged from the resting state 300 mV to
the threshold voltage 111 mV to generate a spike. We describe the
dynamical behavior of one WTA network (Figure 5B) as follow:

Step 1. The weight of pheromone 7;; between any neuron i and
jisinitialized as 1. The inhibition of neuron is disabled (Vgr =
300 mV). A randomly selected neuron is set as the start node
with Vgu = 350 mV and the rest neurons are initialized with
Vem < 350 mV.

Step 2. The neuron of the starting node generates the first
spike before the rest of the neurons reach the firing threshold
and immediately set their inhibition to a high state through
the inhibitory synapse, defined as (Vr post = 400mV on a
pre-synaptic spike). In such a circumstance, all the neurons
instantly switch to the charging stage. After they reach the
resting state at 300 mV, the fired neuron will be set as inhibited
till the end of the current trip, while the rest of the neurons
are triggered by the delayed excitatory synapse, which is
defined as:

VGF_post = 300mV
P
VGM_post = K%q +0n+ Vyg,  (after delay At
on pre-synaptic spike) (5)

where the i and j are indices of pre-synaptic and postsynaptic
neurons, Dj; is the distance between two nodes. p and g are
the weights of the pheromone and the distance between the
nodes, used for balancing the global and local information. «
and 0 are scaling factors and 7 is the Gaussian random term.
The rest of the neurons, which have not fired any spike yet,
are free from inhibition and start to discharge (integration
stage). However, their discharge rate is controlled by the
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VGum-» depending on the amount of pheromone, 7;; and Dj; in
Equation (5).

Step 3. The neuron that discharges the fastest become the
winner, fire the second spike of this trip and inhibit other
neurons. The shared weight of pheromone between the two
neurons that fires in a sequence is updated as:

= (1-p)t+ (6)

Dijmn

where p is a decay factor, which represents the vaporization of
pheromone and encourages agents to explore new routes. o is
the scaling factor of the increasing amount of pheromone.

Step 4. The whole process (Step 1 ~3) is repeated until all the
neurons in the WTA network fire a spike.

To demonstrate this process clearly, we plot the trace of Vg of
neurons and the raster plot of a WTA network in Figure 5C.
The raster plot indicates the firing order of spikes in a trip of a
10-city TSP (solution provided in Figure 8).

During the optimization, the process described above is
executed by m WTA networks simultaneously and the
pheromone trails are shared and updated on the fly. Once
all the WTA networks (agents) complete a trip, a new
iteration starts with the updated pheromone weights. The
whole optimization process terminates when the maximum
iteration number is reached.

RESULTS

Parameter Optimization of Continuous

Functions

We simulate the SI-SNN computing paradigm with BRIAN,
an open source SNN simulator based on Python (Stimberg
et al, 2014). We use the dynamical model discussed in Section
2.2 to simulate FeFET based spiking neurons. For the first
demonstration, the continuous objective function we aim at is the
2-D Schwefel’s function:

fG) =" sin(v/lxi) )
i=1

The dimension of this function is n = 2, and x; € [—500, 500].
This function has more than 50 local minima and a global
minimum at x = (418.92, 418.92). Figure 6A plots the landscape
of 2-D Schwefel’s function as a 3-D surface. In this case, we

TABLE 1 | Parameter optimization of benchmark objective functions.

Benchmark function Convergence time Success
(dimension) (Mean =+ Std) rate
Michalewicz'’s (n = 16) 348 £ 98 ms 89%
Schwefel’s (n = 64) 782 £ 223ms 92%
Ackley’s (n = 128) 1,379 + 928 ms 99%
De Jong’s (n = 256) 945 £ 105ms 100%

Global
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FIGURE 6 | (A) Landscape of 2-D Schwefel’s function; (B) Contour map with solution traces of each agent in the optimization process of (A); (C,D) Evolution of Vg,

in two searching networks with raster plots.
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prepare an SI-SNN with 100 agents and two searching networks
(m =100, n = 2). The scaling factor of random noise 8 = 0.02.
For such a configuration, we randomly initialize the Vgy of
each FeFET spiking neuron in the range of [255mV, 355mV]
with a uniform distribution. Consequently, the firing rates of
neurons range from 0.801 to 9.852kHz in FS mode and are
mapped to the range of x; € [—500,500]. We note that when
the network synchronizes, the Vgy of most of the neurons

8
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FIGURE 7 | Average convergence time to optimize 2-D Schwefel’s function in
different m and w. The error bars indicate the maximum and minimum time
cost.

cluster around 339mV and the firing rates are stabilized at
9.186 kHz. Such a value of Vs corresponds to the global minima
where x; = 418.92. There exist errors between the parameter
represented by the firing rate due to the nonlinearity in the Vg
- Frequency curve. It needs to be calibrated and compensated in
the hardware design. In this simulation, we did not consider a
hardware implementation of the evaluation blocks. Figures 2C,D
plots the Vg of each neuron in two searching networks along
the optimization process. The convergence of the SI-SNN takes
1.5 ms, which is ~14 cycles of spiking. Meanwhile, we notice that
the firing rates of a few of the neurons are initially attracted to
local minima and then get pulled out by the neurons of other
agents with better solutions. This phenomenon indicates that
SI-SNN model is capable of escaping from the “trap” of local
minima. Figures 6C,D also show the raster plots of all the spikes
during the simulation process. Figure 6B is a contour map of
Figure 6A with the traces of the best solutions found by each
agent during the optimization. The red circles mark the initial
positions of 100 agents in the solution space. Eventually the
swarm converges into the global minimum.

We set synaptic weight w and swarm size m to different values
and run the simulation 200 times for each configuration. Figure 7
shows the average time for the optimization problem under
different configurations of w and m. The result indicates that
larger m and w can speed up the optimization process. However,
the best choice of w falls within a certain range. An extremely
large or small value may lead to failure in synchronization or
the network may miss of global optimum. Having more agents
improves the efficiency and performance of optimization but also
increases the demands for computing resources.
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FIGURE 8 | Distance of the best solution to a 10-city TSP in each iteration of SI-SNN.
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TABLE 2 | Performance of solving TSP.

TSP benchmark Iteration number (Mean + Std) Performance
problem (SI-SNN/Multi-SNN random Walk) (RPD %)
my10 (n = 10) 59 + 28/343 0
ulysses16 (n=16) 147 £ 75/1,751 0
bays29 (n = 29) 364 + 143/Fail 0

att48 (n = 48) 625 + 237/Fail 3%
berlin52 (n = 52) 574 + 126/Fail 1%

Apart from Schwefel’s function, we also test the SI-
SNN on several other benchmark objective functions with
different dimensions. The equations and landscape of these
benchmark functions can be found in Pohlheim (2005). For
the evaluation of the optimization performance, we use Relative
Percentage Deviation (RPD), which we defined as the absolute
percentage error between the objective function evaluation
of best solution founded by algorithms and the correct
optimal solution.

abs(f (best) — f(opt))
flopt)

RPD = x 100% (8)

Table 1 show the average convergence time with corresponding
standard deviation and the success rate in finding the near
optima with an RPD smaller than 2%. In such a test, we
employ swarms with 200-agent to optimize the parameter
of four benchmark functions. In these simulations, we keep
the same configuration of the FeFET neuron model. The
time constants are the same as previous tests and the firing
frequencies of neurons still range from 0.801 to 9.852kHz.
The parameters such as time and voltage, are scalable with
different devices and capacitors in the FeFET based circuits,
e.g., smaller capacitors may reduce the time of charge and
discharge from microsecond to nanosecond (Wang et al,
2018).

Solving TSP

We use the same method to simulate the modified SI-SNN model
for solving TSP. However, since the simulator does not support
conditionally terminating the simulation process, we run each
iteration separately in sequence. After all the WTA networks
finish the trip of their agents, we reset the system and continue
to run the next iteration with the updated pheromone weights.
Each iteration contains m x n spikes but the time cost only
depends on how fast the slowest agent fires n spikes. The whole
simulation process ends when the maximum iteration number is
reached. The performance and convergence speed of the original
ACO are sensitive to the hyperparameters. In the simulations
of this section, we set the swarm size twice as the size of the
problem (m = 2n), k 0.01, &6 = 0.03, p 0.03, ® = 2.
For g and p, it is recommended to use values within 2 and 4.
However, to reduce the complexity of the hardware design, we
can set both of them to 1. Figure 8 demonstrates the optimization
process of solving a 10-city TSP. It demonstrates the distances

of solutions searched in each iteration and display the best route
in several iterations. The optimal travel route was found at the
53rd iteration.

Next, we run a set of benchmark tests with our customized 10-
city TSP and four other TSP from a standard TSP library TSPLIB.
The sizes of these problems are respectively [10,16,29, 48, 52].
For each problem, we run the optimization 200 times using SI-
SNN and also using SNNs that performs random-walk-based
searches without any shared information (pheromone). Table 2
shows the mean and standard deviation of iteration numbers to
reach the best solution and the corresponding RPD. The standard
deviation is not shown for multi-SNN random search because the
successful runs are fewer than five times and such a strategy fail to
find any near-optimal solution when the problem size increases.
The results in Table 2 demonstrate that without collaboration,
the random search performed by a swarm is much less effective.
We also notice that for complex TSPs, the SI-SNN can only
approach near-optimal solutions due to the limitations inherited
from the original ACO algorithm.

In Table3, we estimate the “time taken” and “energy
consumption” of several methods that implement ACO to solve
a 48-city TSP. Bali et al. (2016) provides the performance of
ACO executed respectively by a GPU and a CPU on laptop,
although the 48-city TSP they use may not be att48. We
conservatively estimate the energy cost of GPU and CPU
based on their idle power consumption, and subtract the
power consumed by the onboard memory. For the SI-SNN,
we compared the time and energy cost between FeFET spiking
neuron and a few of the previous literature on silicon-based
neurons. We calculate the estimation results with the total spike
numbers, timing, and energy cost per spike. In this scenario,
we do not consider the delay and power consumption of
synapses and assume the neurons of previous works is also
compatible with the WTA network in SI-SNN. For FeFET
based spiking neurons, we provide two sets of data, 45nm
FinFET process with C = 8 nF and 14nm FinFET process
with C = 1 pF. The first one has a relatively lower frequency
in the kHz range and higher energy consumption of ~0.36
nJ/spike. The second one uses a predictive transistor technology
and a smaller capacitor that generates oscillation frequency
in the MHz range. The comparison in Table 3 shows that
the FeFET based SI-SNN is a promising computing paradigm
for optimization in terms of high performance and energy
efficiency. Even with traditional CMOS, event-based SI-SNN
is highly energy efficient compared to CMOS digital systems.
Compared with silicon neurons, we observe that post-CMOS,
emerging devices can effectively reduce the number of transistors
as well by harnessing the inherent neuronal dynamics. In
particular, the FeFET spiking neuron provides both excitatory
and inhibitory interfaces, which benefits the design of the
WTA network. It reduces the number of neurons and synapses.
For example, without inhibition input directly to the neuron,
representing one trip of N-city TSP requires N x N neuron
(Jonke et al., 2016), while we only use a single N-neuron WTA
network in this work. Thus, the energy reduction brought by
the unique feature of FeFET spiking neuron is not shown
in Table 3.
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TABLE 3 | Comparison of proposed computing paradigm and other methods.

Task: ACO for 48-city SI-SNN GPU CPU

TSP

References Indiveri Wijekoon and Dudek Babacan et al. Wang et al. (2017, 2018) Bali et al. (2016) Bali et al. (2016)
(2003) (2008) (2016) used in this work

Technology CMOSs CMOS analog Memristor+CMOS FeFET+CMOS CMOS digital CMOS digital
analog

Manufacturing process | 1.5um 0.35um 0.18 pm 45nm (14 nm) 40nm 22 nm

Neuron model LIF (RS) Izhkevich Izhkevich Izhkevich GPU model: GTX CPU model:

(Dynamics) (RS, FS, CH, IB) (RS, FS, CH, IB) (RS, FS, CH, IB) 480M Intel Core T

i7-4700MQ

Device count/neuron 18T (172.8k) 14T (134.4k) 1T+3M (38.4k) 1T+1FeFET (19.2K) 3 billion on chip 1.4 billion on chip

(total)

Synaptic input Excitatory Excitatory Excitatory Excitatory+Inhibitory / /

Time cost 5min 36 ms 3s 3.9s (0.48ms) 2.4s 6.8s

Energy consumption of| 90 mJ 0.1 md 0.5md 2.2md (~nd) ~190J ~320J

neuron in total

DISCUSSION

In this paper we propose SI-SNN as a computational platform
based on FeFET based spiking neurons. We observe that:

1. The FeFET based spiking neurons exhibit rich neuronal
dynamics. In the SI-SNN architecture, we use the rate-
based representation in the FS mode for the optimization
of the continuous objective function and the phase-based
representation in the RS mode for solving TSP. To the best
of our knowledge this is one of the first demonstrations
of a computing platform that harnesses various neuronal
dynamics for solving different optimization problems.

2. The inhibitory input of FeFET spiking neuron facilitates the
design of the WTA network in solving TSP. In our design,
the spiking behavior of neurons can inhibit and compete
with each other, and naturally mimic path planning of ants.
Without the inhibitory interface, more hardware resources
are required.

3. The design of FeFET spiking neuron is compact. The entire
circuit can run at high frequency with low energy cost.

4. The dynamical behavior model we extract is simple and
effective. It can capture the spike timing but bypass the
complex physical equations of ferroelectric devices, and
improve the efficiency of the simulation.

Given the simulation results of the first SI-SNN model in section
Parameter Optimization of Continuous Functions, we observe
two tradeoffs between the metrics of continuous function
optimizations. The first one is between the spatial cost and
the temporal cost. A larger size of a swarm results in faster
speed of convergence but also requires more neurons and spike
generators, which is equivalent to the tradeoff between efficiency
and energy. The second one is between convergence speed and
accuracy. A larger network weight and less randomization may
improve the efficiency of the search process but also increases
the risk of missing the optima. In particular, the random term
in metaheuristic search becomes increasingly important as the
problem dimension increases, because the search routine covers
less of a solution space in a higher dimension. These observations
can be used to tune model parameters.

In the SI-SNN TSP solver, our design benefits from
the dynamical feature of FeFET based spiking neurons. The
excitatory and inhibitory interfaces enable the design of the
WTA embedded in each SNN. The simulation results emphasize
the importance of shared information between agents in the
collaborative search process of swarms. Further work can be
pursued by invoking more ACO algorithms such as Max-min
ant systems (MMAS) (Stiitzle and Hoos, 2000) and ant colony
system (ACS) (Dorigo and Gambardella, 1997) that can improve
the performance and convergence speed at the cost of more
complicated hardware design.

As far as the hardware implementation is concerned,
the solution-based adaption of synaptic parameters can be
realized with address-event representation (AER) systems
(Park et al., 2012) or memristor crossbar arrays (Long et al.,
2016; Ielmini, 2018). The random terms in the synaptic
rule can be implemented via the emerging stochastic
devices such as spintronic device and memristors (Vincent
et al., 2015). Furthermore, future works may harness more
learning properties from synapse models with non-linear
dynamics. Also, the interplay between swarm intelligence
and individual cognitive intelligence is a research area
that remains active (Rosenberg et al., 2016). The results
will have contributions to fields as varied as multi-agent
artificial intelligence, social psychology, cognitive science and
s0 on.

In summary, we propose a new SNN computing paradigm
built on FeFET spiking neuron that combines swarm intelligence
in agents of spiking neural network to address optimization
problems. We simulate our SI-SNN model with SNN simulator
and demonstrate its capability to optimizing parameters of
continuous objective functions and for solving the traveling
salesman problem. In our design, we utilize two types of
neural dynamics, FS and RS, to encode information with
firing rate and spike timing, respectively, to perform varying
computational tasks. The FeFET based SNN is a promising
hardware platform for achieving the energy-efficiency and
high-performance denoted by future computing systems
(Wang et al, 2018). We demonstrate the computational
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power of neuromorphic systems in the field of general
optimization problems. Above all, our work sheds light
on the connection between individual intelligence and
swarm intelligence.
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