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Cessation of blood flow leads to a complex cascade of pathophysiological events at the
blood-vascular-parenchymal interface which evolves over time and space, and results
in damage to neural cells and edema formation. Cerebral ischemic injury evokes a
profound and deleterious upregulation in inflammation and triggers multiple cell death
pathways, but it also induces a series of the events associated with regenerative
responses, including vascular remodeling, angiogenesis, and neurogenesis. Emerging
evidence suggests that epigenetic reprograming could play a pivotal role in ongoing
post-stroke neurovascular unit (NVU) changes and recovery. This review summarizes
current knowledge about post-stroke recovery processes at the NVU, as well as
epigenetic mechanisms and modifiers (e.g., DNA methylation, histone modifying
enzymes and microRNAs) associated with stroke injury, and NVU repair. It also discusses
novel drug targets and therapeutic strategies for enhancing post-stroke recovery.

Keywords: blood brain barrier, neurovascular unit, stroke injury, inflammation, DNA methylation, histone
deacetylases, microRNA, non-coding RNA

INTRODUCTION

Stroke is defined as an abrupt onset of focal or global neurological symptoms caused by a blockage
of cerebral vessels (ischemic stroke), rupture of blood vessels (hemorrhage), or transient occlusion
of small blood vessels (transient ischemic attack). It is particularly prevalent in the aging population,
with people over 65 years old accounting for ∼75% of all registered cases (Hollander et al., 2003).
Ischemic stroke is further subdivided based on the caliber of occluded vessels into macro- and
microvascular (i.e., lacuna stroke), and based on the origin of clot-causing blockage into (a)
thrombotic stroke where clot form inside brain blood vessels, and (b) thromboembolic/embolic
stroke where clots form elsewhere in the body and travel toward and lodge in brain blood vessels
(Reed et al., 2014; Topcuoglu et al., 2018; Tsai et al., 2018).

Pathophysiologically, cessation of blood flow leads to a complex cascade of events at the blood-
vascular-parenchymal interface which evolves over time and space, and results in damage to neural

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 864

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00864
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00864
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00864&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/articles/10.3389/fnins.2019.00864/full
http://loop.frontiersin.org/people/787024/overview
http://loop.frontiersin.org/people/750720/overview
http://loop.frontiersin.org/people/658114/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00864 August 17, 2019 Time: 15:42 # 2

Stamatovic et al. Epigenetic Regulation of Stroke Recovery

cells and edema formation (Dirnagl et al., 1999; Allen et al.,
2012). The central events in the hyperacute phase (within
minutes and up to 6 h) include compromised mitochondrial
function, anaerobic glycolysis, decreased pH (acid condition),
impaired ATP production and reduced ion pump activity.
As a consequence, cells swell and die, predominantly due
to accumulation of lactic acid, ions (Ca2+ and Na+) and
increased water influx (Dirnagl et al., 1999; Ginsberg, 2008;
Nagy and Nardai, 2017).

There follows a cascade of events in the acute and subacute
phase (hours to 7 days), including blood-brain barrier (BBB),
and neurovascular unit (NVU) damage characterized by
mitochondrial failure, robust production of reactive oxygen
species (ROS) (superoxide O2, hydrogen peroxide, and
peroxynitrite), excitotoxicity (release of glutamate from
dying neurons), activation of matrix metalloproteinases (MMP2,
astrocytes; MMP3, MMP9 endothelial cells and neutrophils),
BBB damage triggering inflammation and blood cell infiltration
(neutrophils, monocytes) that can lead to further cell death, and
cellular and vasogenic edema (Enzmann et al., 2013; Posada-
Duque et al., 2014; Sifat et al., 2017). The secondary damage
mostly takes place in the penumbra surrounding the core infarct
and its progression can extend into the chronic phase after stroke.

Paralleling these injury processes, there is activation of
endogenous protective and repair mechanisms that include
vascular remodeling, angiogenesis, and neurogenesis (Chopp
et al., 2007; Venna et al., 2014). The degree of these ongoing repair
processes on one side and persistent inflammation/damaging
processes on the other determines stroke recovery and the
potential risk of another stroke.

There is mounting evidence on the importance of epigenetic
factors in stroke. The purpose of this review is to examine how
such factors impact the cerebrovasculature in stroke injury and
recovery, focusing on effects at the BBB, and NVU. There is
debate over whether non-coding RNAs should be included as an
epigenetic mechanism and this review will cover their effects as
well as other epigenetic mechanisms.

THE BLOOD-BRAIN BARRIER AND
NEUROVASCULAR UNIT IN STROKE

The blood-brain barrier is a highly complex and dynamic
barrier, formed by an interdependent network of brain capillary
endothelial cells, endowed with barrier properties. The BBB
strictly regulates paracellular permeability due to the presence
of tight junctions (TJs) between endothelial cells. Those TJs are
built by intricate interactions between transmembrane proteins
(claudins -5, -3, -1, -12, occludin, and JAM-A), important for
paracellular space occlusion, scaffolding proteins (ZO-1, -2),
and the actin cytoskeleton vital for physical support and TJ
function (Daneman et al., 2010; Stamatovic et al., 2016). The
transcellular interactions of claudin-5 play the major role in
occluding the paracellular space (Nitta et al., 2003; Ohtsuki
et al., 2007). Any loosening of its adhesive interactions directly
affects BBB integrity and increases paracellular permeability.
The BBB role of other claudins with lower expression is still

uncertain and under investigation (Tietz and Engelhardt, 2015;
Sladojevic et al., 2019). BBB function is also dependent on
the perivascular microenvironment, which contains cells (e.g.,
pericytes, astrocytes, and perivascular macrophages), neuronal
endings and tissue unique extracellular matrix (Mae et al., 2011;
Muoio et al., 2014). Because of this functional integration, nearly
two decades ago, the concept of a BBB was broadened to a new
structure, the NVU.

The neurovascular unit is composed of BBB-endowed
endothelial cells and a perivascular milieu composed from
cells including pericytes, smooth muscle cells, astrocytes,
perivascular macrophages/microglia, neurons/neuronal endings,
and extracellular matrix. The NVU mediates neurovascular
coupling, modulating vessel tone (Mae et al., 2011; Muoio et al.,
2014). These intimately and reciprocally linked cells and matrix
generate a complex structure that regulates exchange between
blood and brain, oxygen and nutrient delivery, and regional
cerebral blood flow. It is essential for maintaining circulatory and
brain homeostasis.

In stroke, blood-brain barrier, and neurovascular unit
dysfunction actively contributes to injury pathogenesis, being
a “solid substrate” for ongoing injuring processes (oxidative
stress, inflammation, and cytotoxicity), contributing to ischemic
core (infarct) formation in the acute phase of stroke, and
facilitating the progression of injury in the subacute and
chronic phases. For example, in the early (acute) phase of
stroke, NVU dysfunction is characterized by disruption of
BBB integrity/BBB breakdown (disassembly of TJ complex,
decreases in the TJ proteins claudin-5, occludin, and ZO-1)
that leads to vasogenic brain edema, a life-threatening acute
stroke complication (Bauer et al., 2010; Zehendner et al., 2011;
Sladojevic et al., 2014). The cell components of the NVU undergo
a series of transformations during injury. Brain endothelial
cells, for example, are affected very early by cytotoxic effects
with dysfunction of ion channels and transporters (e.g., Na+-
K+-Cl− cotransporter, and Na+/H+ exchanger), release of
extracellular vesicles and conversion of brain endothelial cells
toward a proinflammatory and prothrombotic phenotype due
to upregulation of protease-activated receptor 1 (PAR-1), tissue
factor, and matrix metalloproteinases (MMPs) (Zhu et al., 2008;
Bauer et al., 2010; Yamashita and Abe, 2011; Chen et al.,
2015). The proinflammatory phenotype of brain endothelial
cells involves an upregulation of endothelial adhesive molecules
(ICAM-1, VCAM-1, P-, and E- selectins) that guide leukocyte
infiltration in the acute inflammatory phase response and T and
B cells infiltration in the late phase (Kleinschnitz et al., 2013;
Zhou et al., 2013; Sladojevic et al., 2014). Overall, inflammation is
thought to worsen acute ischemic injury, contributing to chronic
focal inflammation and restricting functional recovery. However,
inflammation is also involved in tissue repair.

In the hyperacute phase after stroke, pericytes may be involved
in vasoconstriction, causing capillary occlusion (no-reflow
phenomenon), while later, by switching to pro-inflammatory
phenotype, they may enhance BBB permeability, and brain
edema formation (Hall et al., 2014; Underly et al., 2017).
Ischemia triggers a series of damaging reactions in astrocytes
including mitochondrial dysfunction, energy depletion, ion
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disequilibrium, increased glutamate and Ca2+, aquaporin 4
(AQP4) channel activation, increased water permeability, and
cell swelling (Friedman et al., 2009; Ito et al., 2009; Hertz et al.,
2014; Mogoanta et al., 2014). It results in the release of oxidative
stress products and inflammatory cytokines/chemokines (IL1,
IL6, IL15, CCL2, CXCL1, CXCL10, CXCL12, and IP-10),
proinflammatory associated small molecules [S100 Ca2+-binding
protein B (S100B) and nitric oxide (NO)] that enhance the
inflammatory post-stroke response (Yamashita et al., 2000; Hill
et al., 2004; Mori et al., 2008; Shin et al., 2014; Liu H. et al., 2015;
Chen et al., 2018).

Perivascular macrophages and microglia play an important
role in the stroke-induced inflammatory response via production
of proinflammatory cytokines (IL1|upbeta TNFα IL6, IL12) and
ROS (Drake et al., 2011; Liu H. et al., 2015; Wu et al., 2016; He
et al., 2019). They trigger the first line of inflammation at the
NVU in the acute phase of stroke. Notable changes also occur
in the extracellular matrix. At early time points (within hours),
there is MMP-related basement membrane degradation with
reductions in agrin, SPARC, perlecan, laminin, and fibronectin
(Sole et al., 2004; Castellanos et al., 2007; Lee et al., 2011; Ji and
Tsirka, 2012; Lloyd-Burton et al., 2013). This ultimately leads
to increased BBB disruption, accumulation of new extracellular
matrix proteins (i.e., chondroitin sulfate proteoglycan neurocan
and osteopontin) and leakage of plasma proteins, such as
fibrinogen, into the CNS. This mediates inflammation, edema,
and potentially hemorrhagic transformation (Figure 1).

THE BLOOD-BRAIN BARRIER AND
NEUROVASCULAR UNIT IN STROKE
RECOVERY

In post-stroke conditions, the NVU has the ability and
capacity for remodeling, and this is becoming a very important
therapeutic target for enhancing stroke recovery. Remodeling
involves complex and tightly tuned interactions between
neurons, glial and brain endothelial cells, recruitment of
endothelial and neural progenitor cells, and inflammatory blood
cells (monocytes, T and B lymphocytes), governing new blood
vessel formation, glial cell remodeling of extracellular matrix, for
augmented improvement of the NVU, and neurological recovery.

Blood-brain barrier recovery involves de novo synthesis of
junctional proteins and reestablishing barrier integrity to reduce
further brain damage. It is important to highlight that BBB
recovery is limited and complete pre-stroke impermeability is
difficult to achieve. Ongoing angiogenic processes, as well as
defects in the structural repair (e.g., imbalance in the synthesis
of claudins essential for TJ function) play a role in the prolonged
BBB leakiness days after stroke (Yang Y. et al., 2015; Xu H.
et al., 2017; Sladojevic et al., 2019). Whether there are benefits
of BBB post-stroke leakage is still a controversial issue. From
the perspective of stroke treatment, it may facilitate brain drug
delivery. However, it may allow uncontrolled entry of blood
components into brain fueling inflammation.

In neurovascular unit remodeling after stroke, cellular
elements have important roles in recovery. Pericytes are a

FIGURE 1 | Blood brain barrier (BBB) and neurovascular unit (NVU) in
ischemic injury and post-stroke recovery. (A) In healthy conditions, the BBB is
intact and other NVU components, including the extracellular matrix (ECM),
support and preserve brain homeostasis. (B) Cessation of blood flow triggers
a chain reaction at the BBB and NVU. The early events are mostly
characterized by cytotoxicity, mitochondrial dysfunction and accumulation of
ROS which further cause BBB breakdown (tight junction, TJ, disruption),
neuronal injury guided by astrocytes, and triggering an acute inflammatory
response. Brain endothelial cells (BEC) increase adhesion receptor expression
allowing leukocyte (predominantly polymorphonuclear neutrophils; PMNs)
entry which adds to BBB injury. Microglia and astrocytes produced large
amount of proinflammatory cytokines and chemokines amplifying
inflammation. Early pericyte detachment support BBB instability and
breakdown. This support vasogenic brain edema formation. (C) The subacute
and chronic phase of stroke is characterized by increased second wave of
inflammation with monocyte (MO) and lymphocyte (Lym) entry but also

(Continued)
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FIGURE 1 | Continued
ongoing repair processes (BBB recovery and angiogenesis). Microglia become
source of anti-inflammatory cytokines and have a role in phagocytosing dead
cells. Astrocytes are a source of growth factors supporting angiogenesis, and
also source of extracellular matrix building a gliotic scar. Pericytes establish
interactions with BEC, supporting barrier stabilization and new vessel
formation. The BBB, with new TJ protein synthesis, undergo partial sealing.

source of neurotrophins and have a role in stabilizing the BBB
and protecting brain parenchyma from leukocyte infiltration
(Shimizu et al., 2012; Yang et al., 2017). They also promote
angiogenesis and neurogenesis. Astrocytes undergo structural
and functional transformation (reactive gliosis), manifested as
increased expression of the intermediate filament protein glial
fibrillary acidic protein (GFAP), cell proliferation, and synthesis
of extracellular matrix to form the glial scar and demarcate the
infarct necrotic core. Higher production of GFAP, nestin and
vimentin in NVU negatively affect cell-cell communication at
NVU during the subacute and chronic phase of stroke, while
production of insulin-like growth factor, transforming growth
factor β (TGFβ), and other growth factors as well as laminin by
astrocytes enhance NVU recovery processes (Cekanaviciute et al.,
2014; Yao et al., 2014; Okoreeh et al., 2017). During post-stroke
NVU recovery, microglia transform to a M2 pro-remodeling
phenotype, releasing anti-inflammatory cytokines (e.g., IL10)
and growth factors. They switch astrocytes to anti-inflammatory
phenotype, supporting clean-up phagocytosis, diminishing
leukocyte-endothelial cells interaction, decreasing expression
and activation of cytokine receptors, promoting NO-induced
vasodilatation, and reducing ROS production and oxidative
stress by inhibiting NADPH oxidase (Weston et al., 2013;
Brifault et al., 2015; Yang Y. et al., 2015).

The extracellular matrix also plays an important role in
NVU remodeling and stroke recovery. Interaction between the
matrix and its receptors on NVU cells regulate cell survival,
migration and focal bioavailability of growth factors essential
for repair processes, including angiogenesis and neurogenesis.
For example, while osteopontin is normally produced in
development, its activity post-stroke, via αvβ3 receptors on
astrocytes, promotes astrocyte migration and glial scar formation
(Ellison et al., 1999; Suzuki et al., 2010). On the other
hand, fibrinogen shifts its mechanism of action from the
αvβ3 receptor to regulating transforming growth factor -β on
astrocytes promoting reactive astrocytosis (Schachtrup et al.,
2010; Beck and Schachtrup, 2012). Synthesis and upregulation
of new extracellular matrix components like chondroitinase
ABC may rescue the “injury type” of extracellular matrix by
degrading proteoglycans (neurocan) that affect neuronal growth
to further enhance the recovery processes (Hill et al., 2012;
Chen et al., 2014; Figure 1).

Overall, targeting the NVU in stroke may have long
lasting effects by preventing tissue damage in the early
hours after stroke and enhancing ongoing recovery processes
chronically after stroke. It is, however, very important to
highlight that the functional response of NVU cells to stroke
as well as the degree of recovery post-stroke will depend

on the functional status of the NVU before the stroke
which is affected by many co-morbidities (e.g., age, diabetes
and hypertension).

EPIGENETIC REGULATION OF BBB AND
NVU RECOVERY AFTER STROKE

An overview of decades of stroke research and a variety of
identified targets, has unfortunately highlighted that current
therapeutic approaches to limit ischemic brain injury have
almost all failed, the exception being reperfusion. In recent
years, approaches have started to shift toward preventing injury
progression and enhancing repair and regeneration after stroke.
Targets include inflammation and injury progression, neuronal
repair to prevent ischemic cell-death and cerebrovascular
remodeling that may prevent further injury progression.
The NVU has a focal position in these new approaches
to treat stroke.

How to approach treatment of stroke recovery when
many conventional approaches (e.g., anti-oxidative, anti-
inflammatory) have failed? It has to be taken into consideration
that the recovery process is complex and tightly regulated. Many
genes are involved in the temporal and spatial regulation of
restoration of function with a high degree of individual variation
that may depend upon multiple factors. An emerging field,
epigenetics, holds promise for a better understanding of what
regulates recovery after stroke and the potential success of
modulating that process.

Epigenetics is defined as the interaction between
environmental factors and the genome that may be heritable and
modified gene expression or phenotype without changes in DNA
sequences (Hendrich and Willard, 1995). Epigenetic mechanisms
(e.g., DNA methylation, post-translational modification of
histones) provide an additional level of tight control at the
transcriptional level that differentially modifies gene expression
and protein activity. In addition, cells possess a powerful
machinery in non-coding RNAs, particularly microRNAs
(miRs), that regulates gene expression at the post-transcriptional
level. Coordinate and cooperative activity of epigenetics factors
and miRs form circuits that regulate gene expression profiles
and support cell function. Considering the far-reaching effects
of epigenetics and miRs on gene regulation, these factors may
have a key role in regulating plasticity during repair after stroke
and be a key target for enhancing NVU recovery. In this review,
we highlight some of the mechanisms that take place at the
NVU and are involved in epigenetic and miRs remodeling of
the NVU in stroke.

DNA METHYLATION

DNA methylation is an epigenetic mechanism characterized by
covalent addition of methyl (CH3) group to DNA that modifies
gene function and expression. The best characterized methylation
process occurs on the 5-carbon of the cytosine ring resulting in
5-methylcytosine (5-mC). 5-mC is found exclusively as paired
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symmetrical methylation of a CpG site where cytosine nucleotide
is located next to a guanidine nucleotide (Zeng and Chen,
2019). In genomic DNA, most CpG sites are methylated while
CpG islands (clusters) located in proximity to promoter regions
endure unmethylated allowing the regulation of gene expression,
transcriptional repression (Bird, 1986). DNA methylation occurs
via a family of enzymes, the DNA methyltransferases (DNMTs).
Five types of DNA methyltransferases have been described:
DNMT1- maintains existing methylation patterns following
DNA replication, DNMT2 -which can act as a nuclear as well
tRNA methytransferase, DNMT3a and DNMT3b responsible
for establishing de novo methylation patterns and DNMT3L
which does not mediate methylation but interacts with histone
deacetylase 1 (HDAC1) (Hsieh, 1999; Aapola et al., 2002; Goll and
Bestor, 2005; Goll et al., 2006; Ren et al., 2018). It is also important
to highlight that DNMT may regulate the expression of certain
miRs by direct methylation of miR promoter regions, adding
additional layer of DNMT activity at the post-transcriptional
level via miRs (Dakhlallah et al., 2013; Nicholson et al., 2017).

Early research investigating epigenetic changes following
middle cerebral artery occlusion (MCAO) in mice demonstrated
upregulated global DNA methylation within the brain, and
genetic or pharmacologic DNMT inhibition decreased stroke
severity (Endres et al., 2000). Within the NVU, altered
DNA methylation is associated with both BBB injury and
recovery, suggesting a biphasic pattern of post-stroke DNA
methylation. Mouse MCAO leads to hypermethylation of the
tissue inhibitor of metalloproteinase 2 (TIMP2) promoter.
The resulting decrease in TIMP2 expression is associated
with increased matrix metalloproteinase 9 (MMP9) activity
and BBB hyperpermeability, with DNMT inhibition rescuing
BBB permeability (Mondal et al., 2019). However, increased
DNMT activity post-stroke is also implicated in angiogenesis.
Oxygen-glucose deprivation (OGD) in cerebral endothelial cells
promotes hypermethylation of the thrombospondin-1 promoter.
As thrombospondin-1 inhibits angiogenesis, such promoter
hypermethylation suggests DNMT activity promotes post-stroke
angiogenesis (Hu et al., 2006). While research investigating post-
stroke DNMT activity within the NVU is limited, current studies
suggest a dual role of DNMTs within the NVU. An intriguing
recent clinical study by Baccarelli et al. (2010) found that blood
DNA hypomethylation was associated with a high risk stroke
occurrence and total mortality, suggesting that DNMT activity
could be a potential biomarker in post-stroke recovery.

To fully delineate the effects of post-stroke DNMT activity,
future research must investigate: (1) specific genes with altered
methylation patterns, and (2) the pattern of DNA methylation
over time. As post-stroke DNMT activity is implicated in both
BBB injury and recovery, investigating post-stroke methylation
temporal patterns will begin to elucidate the complex roles of
DNMTs in ischemic stroke.

HISTONE MODIFICATIONS

DNA wraps around histones forming nucleosomes and creating
organized chromatin. Histones are octameric proteins containing

modifiable N-terminal residues and post-translational histone
modifications alter chromatin accessibility, leading to either
transcriptional activation or repression. One well-characterized
histone modification is the addition or removal of an acetyl group
to lysine residues. Generally, histone acetyltransferases (HATs)
add acetyl groups to lysine residues allowing transcription, as
the acetyl group disrupts the interaction between the histone
residue and DNA. Histone deacetylases (HDACs) remove acetyl
groups, leading to transcriptional repression. Ultimately, a
balance between HAT and HDAC activity regulates histone
acetylation (Narlikar et al., 2002; Li et al., 2007; Kassis et al.,
2017). Another form of histone modification is methylation.
Methyl group are added on histone N terminal tails at either
lysine or arginine residues (Klose and Zhang, 2007). The
combination of methylation/demethylation pattern and interplay
between lysine or arginine methylases and demethytransferases
governs the transcriptional activation/repression of certain genes
(Klose and Zhang, 2007; Migliori et al., 2010).

The HDAC superfamily consists of 18 different subtypes in
four different classes. Expression of different HDACs within
the brain varies by cell type, and mouse MCAO alters HDAC
expression in a cell-specific manner (Baltan et al., 2011). Within
the NVU, ischemic stroke upregulates astrocytic expression of
HDAC2 and HDAC8 (Baltan et al., 2011; Demyanenko et al.,
2018). Interestingly, ischemic stroke prominently upregulates
HDAC2 in astrocytic processes and end-feet, suggesting HDAC2
affects the NVU post-stroke (Baltan et al., 2011). Current research
has demonstrated that increased HDAC expression leads to BBB
injury, as HDAC inhibition rescues BBB permeability observed
in rodent models of ischemic stroke, including those with
increased stroke severity (Park and Sohrabji, 2016; Shi et al.,
2016). OGD upregulates endothelial HDAC9 expression and is
associated with decreased expression of TJ proteins, such as
ZO-1, claudin-5, and occludin. Genetically targeting HDAC9
pre-OGD rescues altered TJ protein expression in endothelial
cells (Shi et al., 2016). Other studies indicate post-stroke HDAC
expression induces inflammation and oxidative injury. Although
contextualized within post-stroke neuroprotection, these studies
potentially indicate a mechanism through which altered HDAC
expression contributes to barrier injury as well (Wang et al., 2012;
Patnala et al., 2017). HDAC inhibitors show a variety of effects
after stroke. Valproic acid and sodium butyrate (class I, IIa and
III inhibitor) repressed the nuclear translocation of NFκB subunit
p65, mitigate MMP9 activity and restore the BBB integrity after
stroke by regulating the expression of tight junction proteins,
claudin-5, and ZO-1 (Wang et al., 2011; Park and Sohrabji,
2016). Non-specific HDAC inhibition also switches the pro-
inflammatory microglial response to anti-inflammatory (Patnala
et al., 2017). Likewise, pre-OGD HDAC inhibition promotes
anti-oxidative enzyme expression in macrophages in a histone-
independent manner (Wang et al., 2012).

While most studies focus on enzyme-mediated changes in
histone acetylation, another mechanism through which histone
acetylation may be altered in ischemic stroke is through histone
eviction. Exposing endothelial cells to hypoxic conditions results
in histone eviction from specific promoter regions, such as the
eNOS promoter, and replacement with hypoacetylated histones
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(Fish et al., 2010). Overall, studies investigating the role of histone
acetylation in post-stroke recovery indicate that increased HDAC
expression and histone hypoacetylation promotes BBB injury.

The specific pattern of histone methylation, and activity of
histone lysine methylases and demethylases are important for
stroke occurrence and regulation of stroke injury and recovery
(Chisholm et al., 2015; Miao et al., 2015; Chakravarty et al., 2017).
For example, the pattern of histone 3 methylation of lysine 4
or 9 residues in astrocytes, regulates different gene expression
and may regulate the severity of stroke in rodents (Chisholm
et al., 2015). The activity of histone lysine methylases (G9a lysine
methylases) and demethylases (KDM4B lysine demethylases) was
linked to inflammation by regulating TNFa mediated ICAM-1
and VCAM-1 expression in cerebral blood vessels and neutrophil
infiltration (Choi et al., 2017). In addition, TNFa serum levels
were closely correlated with H3K9Ac and H3K4me3 activity,
suggesting an effect on stroke outcomes (Gomez-Uriz et al.,
2014). Histone arginine methylation also plays a role in the
inflammatory response after stroke. Hypomethylation of histone
arginine residues and low asymmetric dimethylarginine (ADMA)
levels are associated with increased inflammation and stroke risk
in a hyperhomocysteinemia rodent model (Esse et al., 2013).
Furthermore, ADMA and symmetric dimethylarginine (SDMA)
expression levels were reported to be linked with inflammatory
mediator expression (CCL2, IL6, S100B, MMP9, and tissue
inhibitor of matrix metalloproteinase-1) and the expression of
these mediators and inflammation closely correlated with histone
arginine methylation (Chen et al., 2012). ADMA levels are
potential biomarkers for stroke injury.

Multiple HDAC inhibitors have already undergone clinical
testing for a variety of diseases, with vorinostat approved
for treating T cell lymphoma and panobinostat for multiple
myeloma (McClure et al., 2018). A non-specific HDAC inhibitor,
valproic acid, has been used for many years in the treatment
of epilepsy, although there are questions over whether those
effects are mediated by HDAC inhibition. The knowledge from
those clinical trials may help facilitate translation of HDAC
inhibitors to the clinic, as may the generation of new inhibitors
of specific HDAC subtypes that might lessen drug side effects
(Cao et al., 2018).

Intriguing candidates for regulating BBB and NVU recovery
after stroke are the sirtuins. Sirtuins are nicotinamide adenine
dinucleotide (NAD+) dependent class III histone deacetylases,
first discovered in Saccharomyces cerevisiae as silent information
regulator 2 (Sir2). There are seven mammalian sirtuins
homologs (Sirt1-7) localized in nucleus (Sirt1, Sirt6, and Sirt7),
mitochondria (Sirt3, Sirt4, and Sirt5), and cytoplasm (Sirt2).
Generally, they are implicated in regulating aging, metabolism
and cell cycle (Inoue et al., 2007). Besides targeting histones,
sirtuins (i.e., Sirt1) can interact with specific DNA binding
transcription factors and coregulators (i.e., FOXO, hypoxia
inducible factor 1a, PGC1a) and deacetylation of these non-
histone targets are responsible for transcriptional regulation and
both negative and positive regulation of target gene expression
(Andreou et al., 2012; Shukla et al., 2016; Chen et al., 2019).

Epigenetic roles of sirtuins, predominantly Sirt1 and 3, are
described in stroke injury via acetylation/deacetylation of targets.

Limited data highlight the role of Sirt1 in neuroprotection in the
settings of stroke by deacetylation and subsequent inhibition of
p53- and NFkB-induced inflammatory and apoptotic pathways,
regulation of microglia activity via CX3CR1, brain endothelial
cell protection by inhibiting nitric oxide synthesis, and balancing
Sirt3 (mitochondrial Sirt) activation after stroke injury (Yang F.
et al., 2015; Sellner et al., 2016; Chen T. et al., 2018). Resveratrol,
a potent activator of Sirt1, has neuroprotective effects after stroke
(enhancing neurite outgrowth and synaptogenesis) and vascular
protective effects, reducing the chance of recurrent stroke (Tang
et al., 2017). In addition, Sirt1 regulates BBB integrity in aging
and CNS infection (Castro et al., 2016; Stamatovic et al., 2019).
Although the role of sirtuins in NVU and BBB recovery after
stroke is still largely unexplored, emerging data on sirtuin effects
on the BBB, endothelial cells, and stroke, put these molecules, and
particularly Sirt1, as important targets for epigenetic modification
of NVU and BBB in stroke recovery (Table 1).

To determine the mechanisms leading to BBB injury in
ischemic stroke, future research should determine which genes
have altered expression due to aberrant HDAC activity. Because
both HDAC and HAT activity determine histone acetylation
patterns, post-stroke HAT activity within the NVU also needs
to be determined.

NON-CODING RNAs (ncRNAs)

Non-coding RNAs represent a group of untranslated regulatory
RNA molecules able to modify one or more genes/protein
function affecting multiple cellular pathways in biological
processes. Non-coding RNAs include ribosomal RNA (rRNA),
transfer RNA (tRNA), small (<200 nucleotides), and long
(>200 nucleotides) RNAs. Small ncRNA include large group
of miRs, piwi-interacting RNAs (piRNA), small nuclear RNAs
(snRNA), small nucleolar RNAs (snoRNA), and promoter
associated small RNAs. Long ncRNAs are divided into long
intergenic ncRNAs, long iontronic ncRNAs, telomeric ncRNAs,
pseudogene transcripts, enhancer RNAs and promoter associated
long RNAs. Small and long ncRNAs differ in origin, processing
and mechanisms of action (Wei et al., 2017).

MICRORNAS

MicroRNAs are a class of short (∼20–25 nucleotides) non-
coding RNAs capable of regulating gene/protein expression by
inhibiting translation. Located in cytoplasm, miRs build RNA-
induced silencing complexes (RISCs) by binding with Argonaute
(Ago) proteins. Direct binding of miR-RISCs to complementary
and unique 3′ UTR (untranslated) sequence motifs on target
mRNAs, leads to sequestration or degradation of the target
mRNA and translational silencing. miRs have multivalent
properties, targeting multiple genes, and regulating protein
expression in several key cellular processes (cell differentiation,
cell cycle progression and apoptosis) (Ambros, 2001; Vishnoi and
Rani, 2017). miR expression and function is closely associated
with and dependent on interaction with epigenetic factors
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TABLE 1 | NVU HDAC cell expression profile and effect in post-stroke recovery.

NVU cells Target Effect References

HDAC class I

HDAC1 Neurons ? Neurotoxic Formisano et al., 2015; Demyanenko et al.,
2018

HDAC2 Neurons Astrocytes ?PSD-95, synapsin Regulate neuroplasticity Formisano et al., 2015; Tang et al., 2017

HDAC3 Neurons ? Neurotoxic Chen et al., 2012

HDAC8 Microglia ?MMP9, Cox2/iNOS Microglia Demyanenko et al., 2018

HDAC class II (a and b)

HDAC4 (a) Neurons BEC HMBG1 HIF- a, VEGF
CREB Nox4, MMP9

Neuronal death Angiogenesis Neurogenesis
Tight junctions

He et al., 2013; Kassis et al., 2015; Zhang Q.-Y.
et al., 2017

HDAC5 (a) Neurons Neurotoxic (HMBG1) He et al., 2013

HDAC7 (a) Undefined

HDAC9 (a) BEC Tight junction proteins
Cox2/iNOS, NFkB

BBB integrity Inflammation Shi et al., 2016; Lu et al., 2018

HDAC6 (b) Neurons Nrf2 Oxidative stress Gaisina et al., 2018

HDAC10 (b) Undefined

HDAC class III

SIRT1 BEC, astrocytes BBB integrity angiogenesis Zheng et al., 2018; Sun et al., 2019; Xu et al.,
2019

SIRT2 Neurons FOXO3a Apoptosis She et al., 2018

SIRT3 BEC, astrocytes, microglial p53, NFkB Oxidative stress Chen T. et al., 2018; Yang et al., 2018

SIRT4 Neurons FOXO Neurotoxic Sangaletti et al., 2017

SIRT5 BEC Diminish BBB integrity Diaz-Cañestro et al., 2018

SIRT6 Neurons Nrf2 Zhang W. et al., 2017

SIRT7 Undefined ? Post-stroke biomarker Wong et al., 2015

HDAC class IV

HDAC11 Undefined ? Neurotoxic ? Chen et al., 2012

BEC, brain endothelial cells; NVU, neurovascular unit; HDAC, histone deacetylase; Sirt, sirtuin; PSD-95, postsynaptic density protein 95; HMBG1, high-mobility group
protein 1; FOXO, forkhead box protein; HIF-a, hypoxia inducible factor-a; CREB, cAMP response element binding protein.

(DMNT and HDAC) (Dakhlallah et al., 2013; Lee et al., 2017;
Nicholson et al., 2017). Together they form complex circuits
for transcriptional and post-transcriptional regulation of genes.
To date, ∼2000 miR family members have been identified in
human, and it is assumed that miRs could regulate ∼60% of
all mammalian mRNAs. The family classification is based on
a common miR ancestor (Vishnoi and Rani, 2017). Family
members share similar physiological function but not always
primary sequence or secondary structure. miRs are linked to
many disease conditions and represent both potential therapeutic
targets but also biomarkers.

MicroRNA are highly differentially expressed in brain tissue
and they play key roles in development, physiology, and
disease. Cerebral ischemia triggers selective and temporally
regulated miR expression that regulate stress responses (e.g.,
excitotoxicity, oxidative stress, and apoptosis) as well as a
spectrum of other processes (e.g., transcription, inflammation,
and angiogenesis) (Mirzaei et al., 2018). Intriguingly, miR
expression in brain is mirrored by differential expression of
miRs implicated in endothelial cell and vascular function,
erythropoiesis, angiogenesis, neural function, and hypoxia, even
several months after the onset of stroke. This suggests that miRs
play role in the response to cerebral ischemia and can serve
as clinical biomarkers of stroke and post-stroke injury/recovery.
In stroke and post-stroke remodeling of the BBB and NVU, a

spectrum of miRs are involved varying with time, cell-specific
target and recovery process. Importantly, due to the ability of
miRs to target multiple molecules, often one miR is found to be
on the interface of ongoing angiogenesis, inflammation, and/or
oxidative stress.

Several miRs play a critical role in regulating post-stroke
inflammation at the NVU. miR126 is highly expressed and
considered as endothelial specific. It is one of the most
heavily studied miRs and it is a potent regulator of vascular
inflammation. miR126 modulates/downregulates expression
of an adhesion molecule, VCAM, and controls leukocyte
extravasation into brain (Yuan et al., 2016). Similarly, miR31
and miR17-3p regulate/antagonize the expression of E-selectins
and ICAM-1 reducing neutrophil adhesion and post-stroke
leukocyte infiltration (Staszel et al., 2011). miR98 and let-7g
decrease leukocyte adhesion to and migration across the BBB
(Rom et al., 2015). Two other miRs, miR155 and let-7, also
have anti-inflammatory effects. They regulate expression of
molecules important in stroke recovery including IL4, IL10,
and BDNF in microglia and down-regulate iNOS and IL6 (Rom
et al., 2015; Xiang et al., 2017; Greco et al., 2018; Lu et al., 2018).
Intriguingly, miR155 has proinflammatory effects in the brain
after stroke. It regulates macrophage signaling, differentiation
and proinflammatory phenotype by diminishing the balance
between suppressor of cytokine signaling 1 (SOCS-1) protein,
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and upregulating of inflammatory molecules such as iNOS
(Lopez-Ramirez et al., 2014; Liu Y. et al., 2015; Cerutti et al.,
2016). miR155 also stimulates expression of TNFα and IL1β

via NFκB and toll-like receptor 4 (TLR4), and downregulation
of myeloid differentiation primary response gene (MyD88)
(Tarassishin et al., 2011). Furthermore, administration of
miR155 antagomir decreased post-stroke inflammation, reduced
neuronal apoptosis and improved neurological deficits (Pena-
Philippides et al., 2016). Similar to the effect of miR155, an
antagomir for miR210 decreased expression of proinflammatory
cytokines IL6, TNFα, IL1β, CCL2, and CCL3 reducing the
neurological impairment, putting miR210 as potent regulator of
inflammation during stroke recovery (Huang et al., 2018).

Intriguingly, miRs are also associated with inflammasome
activity. The inflammasome is a cytosolic complex that plays
a role in ischemic stroke by promoting inflammatory and cell
death mechanisms. miR223 has a role in suppressing the NLRP3
inflammasome by binding to its 3′ UTR sites and consequent
inhibition of IL1β and caspase-1 activity, reducing brain edema
and improving neurological score (Maitrias et al., 2017). The
miRs, miR124, miR132a and 149-5a also have anti-inflammatory
effects after stroke by inhibiting CCAAT/enhanced-binding
protein (C/EBP-alpha) and downstream factor PU.1, promoting
microglia quiescence, and suppressing activation of microglia
and consequently reducing the expression of proinflammatory
cytokines and suppressing proinflammatory mediators like
NFκB, TNFα, and IL6 (Wanet et al., 2012; Yu et al., 2017;
Wan et al., 2018).

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master
regulator of anti-oxidant defense mechanisms that plays a critical
role in limiting ischemia-induced brain injury, including BBB
disruption (Alfieri et al., 2013). Papp et al. (2012) examined
the Nrf2 interactome and identified 85 miRs involved in post-
transcriptional regulation of Nrf2 (Wang et al., 2016). After
transient MCAO in mice, Wang et al. (2016) found a marked
increase in miR93 and that a miR93 antagomir reduced brain
injury. The antagomir markedly increased brain Nrf2 levels as
well as hemeoxygenase-1, a protein regulated by Nrf2; i.e., miR93
acts as a repressor of Nrf2, and antagonizing its actions may be a
therapeutic approach for stroke (Wang et al., 2016).

Another miR, miR1 is indicated to have an important role in
regulating neurotropic factors, apoptosis, neurogenesis and the
generation of synapses (Talebi et al., 2019). Indicated as being an
important target in treating neurodegenerative diseases as well
myocardial infraction, miR1 suppression has a protective effect
in stroke by reducing BBB permeability and brain edema and
improving neurological deficits (Talebi et al., 2019). Similarly,
miR15a is considered as a master regulator of cerebral vascular
dysfunction after ischemic stroke. Intriguingly, after ischemic
episodes, PPARγ and PPARd modulate miR15a expression at
the cerebrovasculature, reducing injury and enhancing vascular
recovery (Yin et al., 2010, 2013). Therefore, targeting miR15a
is a promising strategy for protecting the BBB and the
NVU after stroke.

Other processes regulated by miRs in post-stroke recovery
include angiogenesis and BBB stability. In post-stroke associated
angiogenesis, the miR expression profile is associated with

the degree of post-stroke angiogenisis. Some miRs regulating
angiogenic processes include miR225, miR335, miR139-5p,
miR203, miR708, miR193 and miR494, which are predominantly
downregulated, as well as miR224, miR210, miR204, miR322,
miR100, miR450a, miR322, miR331 and miR101a which are
upregulated in post-stroke angiogenesis (Lou et al., 2012; Yin
et al., 2015). These miRs regulate expression of fibroblast growth
factor (bFGF) and vascular endothelial growth factor (VEGF) in
endothelial cells (miR15a and miR126), tube formation (miR139,
miR335, and miR107), cell migration (miR210), targeting Dicer-
1 and consequently VEGF (miR107) (Tome et al., 2011; Ye et al.,
2014; Li et al., 2015; Zhu et al., 2017). One recent study indicated
that functional polymorphism in the 3′ UTR site of angiopoietin-
1 gene affects the binding sites of miR211, and can reduce the risk
of stroke occurrence, while miR129-5p ameliorates inflammation
and promotes revascularization after stroke (Chen et al., 2010;
Li X.Q. et al., 2017).

Evidence indicates that several miRs are critical in regulating
BBB integrity after stroke. A miR491-5p decrease leads to
increased risk of cerebral ischemia and worsening stroke-induced
BBB disruption by directly regulating expression of MMP9 (Yan
et al., 2011). Suppression of miR155 2 days after ischemia in
an experimental mouse stroke model decreased vascular leakage
and promoted revascularization through stabilization of TJs and
preservation of the BBB (Greco et al., 2018). Two recent studies
showed that inhibiting miR130a in cerebral ischemia reduced
BBB permeability, brain edema and enhanced neurological
function by targeting Homeobox1 (Chen et al., 2010; Saito
et al., 2011). A recent study by Yao et al. (2018) showed that
miR21 suppresses MAP2K3 expression in brain endothelial cells
regulating barrier permeability and exacerbation of brain edema
and ischemic injury. miR149-5p also regulates BBB stability and
NVU remodeling after cerebral ischemia. In addition, a miR149
polymorphism was reported to be associated with ischemic
stroke pathogenesis (Jeon et al., 2013). A recent study by Wan
et al. (2018) reported that miR149-5p targets the sphingosine
phosphate receptor 2 (S1PR2) and regulates pericyte migration
and N-cadherin expression. Thus, treatment with an agomir of
miR149-5p attenuated BBB permeability and improved outcomes
after transient MCAO.

A number of miRs are considered as cell specific. In the
line with that, miRs mostly involved in regulating endothelial
cell function include miR126, miR17-92, miR23-27-24, miR222-
22, miR99, miR20b, miR101, and Let-7b (Mishra and Singh,
2013). Astrocytes at the NVU are regulated by miR29b, that
regulates AQP4 expression, as well as by miR130a, and miR320a
(Sepramaniam et al., 2012; Song et al., 2015; Wang et al., 2015).
miR130a is expressed in brain endothelial cells and pericytes.
It regulates occludin expression via HoxA5 as well MMP2 and
-9 (Wang et al., 2018). Intriguingly, miR130a is downregulated
after ischemic conditioning in astrocytes and pericytes which
may indirectly affect TJ complex structure and brain endothelial
barrier permeability. A summary of miR activities at the BBB and
post-stroke NVU recovery is presented in Figure 2.

An important aspect of miRs in stroke and post-stroke
recovery is whether changes in their circulating levels reflect
the degree/type of injury and potential recovery. For example,
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FIGURE 2 | The effects of miRs on different cell types of the NVU during post-stroke recovery. Different miRs modulate inflammation, angiogenesis, apoptosis, and
blood-brain barrier (BBB) integrity and represent therapeutic area to enhance post-stroke recovery. AQP4, aquaporin-4; ICAM, intercellular adhesion molecule; IL-10,
interleukin-10; TGF-β, transforming growth factor beta; VCAM, vascular cell adhesion molecule; VEGF, vascular endothelial growth factor.

blood levels of miR30a and miR126 in patients with ischemic
stroke are reduced for 24 weeks (Long et al., 2013). Another
example is a differential pattern of expression across different
stroke subtypes for a miR, let-7b. Let-7b was lower in stroke
patients of a large atherosclerosis subtype compared to non-
stroke patients, whereas in other ischemic stroke subtypes, let-7b
was higher than in healthy individuals (Long et al., 2013). Thus,
screening of different types of miRs may serve as a useful tool
to assess the risks and prognosis of specific stroke subtypes and
stroke recovery.

It should be noted that while miRs have actions in the cells
where they are produced, they can also have effects on other
distant cells. One mechanism is via the cellular release and
uptake of exosomes. That type of extracellular vesicle contains
a wide range of molecules, including miRs. Exosomes are being
examined both as biomarkers for stroke and as a therapeutic
modality (Hong et al., 2018). Exosomes are produced and taken
up by all cells of the NVU, having an important role in cellular
crosstalk, including in stroke (Zagrean et al., 2018), potentially via
the effects of miRs. Thus, Xu et al. recently found that exosomes
released by neurons regulate BBB permeability in zebrafish (Xu
B. et al., 2017; Zagrean et al., 2018). Those exosomes contained
miR132 and delivery of that miR regulated adherens junction
function in the cerebral endothelium (Xu B. et al., 2017).

Apart from the role of endogenous exosomes, there is interest
in using exogenous exosomes as a delivery platform, including
loading such exosomes with select miRs (Beuzelin and Kaeffer,
2018). Thus, bacterial-based mini-cells have been loaded with a
miR16-based mimic and given to patients with malignant pleural

mesothelioma (van Zandwijk et al., 2017). Such approaches
might be used to limit stroke-induced NBVU/BBB injury or
enhance recovery.

The above description suggests that miR agonists (agomirs)
and antagonists (antagomirs) may be attractive targets for
reducing ischemia-induced BBB and NVU dysfunction and
improving post-stroke recovery, particularly as each miR many
affect multiple processes. There are, however, hurdles that will
need to be overcome. The ability of miRs to affect multiple
pathways suggests that special attention may be required for
potential side-effects of treatment. There is also the question of
delivery of the therapeutic to the appropriate target. Targeting
the cerebral endothelium may be easier than targeting other
cells of the NVU where the miR, agomir or antagomir would
have to cross the BBB. Progress has been made in adeno-
associated viruses that will cross the BBB that might serve as a
route for delivery.

OTHER NON-CODING RNAs

Currently, most studies have focused on the role of small ncRNA
in regulating the BBB and NVU function in stroke. However,
several recent studies have identified stroke-responsive piRNAs
and lncRNAs (Alishahi et al., 2019). LncRNAs are not junk RNA
but act as functional regulator elements in epigenetic regulation.
They regulate gene function at different levels including but
not limited to chromatin modification, and transcriptional and
post-transcriptional mechanisms.
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LncRNAs are longer than 200 nucleotides and have less
sequence conservation than short ncRNA. Similar to short
ncRNAs (miRs), lncRNAs regulate many important physiological
processes including apoptosis, autophagy, immune response, and
angiogenesis. LncRNAs may act as competitors to endogenous
RNAs, acting as miR sponges or antagomirs (Alishahi et al.,
2019). Recently, lncRNAs have been identified as being involved
in human diseases. One lncRNA, Malat1 is involved in protecting
against cerebrovascular ischemic injury. It is upregulated in
brain endothelial cells by ischemia-like conditions and reduces
injury. Malat1 acts by being a sponge for miR26b, regulating
brain endothelial cell autophagy and survival under ischemic
conditions (Li Z. et al., 2017).

CONCLUSION

The epigenetic mechanisms and the non-coding RNAs involved
in BBB and NVU changes in stroke and stroke recovery are
slowly emerging. That information holds great promise for better
understanding of stroke pathology but also for developing new
strategies for successful stroke recovery. In the future, both
epigenetic factors and non-coding RNAs may have dual roles, as
therapeutic targets and as biomarkers mirroring NVU injury and
recovery processes. Epigenetic mechanisms are attractive targets

as they affect multiple pathways. Histone deacetylase inhibitors
are already used clinically for some disease states and more
HDAC subtype-specific inhibitors are being developed. While
the importance of miRs in a wide variety of disease states is
recognized, there are still hurdles to cross in translating that
to the clinic, particularly for neurological conditions such as
stroke. However, the pleiotropic effects of epigenetic mechanisms
and non-coding RNAs make them attractive and exciting
therapeutic targets for limiting post-stroke NVU injury and
enhancing recovery.
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