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Neuropeptide Y (NPY) is a neurotransmitter or neuromodulator that mainly exists
in the nervous system. It plays a neuroprotective role in organisms and widely
participates in the regulation of various physiological processes in vivo. Studies in
both humans and animal models have been revealed that NPY levels are altered
in some neurodegenerative and neuroimmune disorders. NPY plays various roles
in these diseases, such as exerting a neuroprotective effect, increasing trophic
support, decreasing excitotoxicity, regulating calcium homeostasis, and attenuating
neuroinflammation. In this review, we will focus on the roles of NPY in the pathological
mechanisms of neurodegenerative and neuroimmune diseases, highlighting NPY as a
potential therapeutic target in these diseases.

Keywords: neuropeptide Y, neurodegenerative diseases, Alzheimer’s disease, Parkinson’s disease, neuroimmune
disorders, Guillain-Barré syndrome

INTRODUCTION

Neuropeptide Y (NPY) is a polypeptide composed of 36 amino acid residues, and belongs to
the NPY family of neuroendocrine peptides, which also includes peptide YY and pancreatic
polypeptide. It was first purified from the porcine brain by Caroline Tatemoto, a Swedish scientist
at the Karolinska Institute, in 1982 (Vi et al., 2018). The functions of NPY comprise the regulation
of brain activity, stress coping, digestion, blood pressure, heart rate, body metabolism, and immune
function (Thorsell and Mathe, 2017). NPY is widely distributed in the central and peripheral tissues
of mammals, especially in the nervous system. A growing body of literature, both in humans and
rodent models, has revealed that brain NPY levels are altered in some neurodegenerative and
neuroimmune diseases. NPY also plays an important regulatory role in the immune function and
inflammatory response of the central nervous system (CNS) such as modulation of chemotaxis
of immune cells, phagocytosis, and production and release of cytokines (Ferreira et al., 2010). In
this review, we elucidate the roles of NPY in the pathological mechanisms of neurodegenerative
and neuroimmune diseases and highlight its potential possibility as a therapeutic target in
these disorders.

NPY AND NPY RECEPTORS

In the CNS, the highest concentrations of NPY are present in the hippocampus, produced mainly by
y-aminobutyric acid (GABA) ergic interneurons, which can inhibit the transmission of excitatory
amino acids (Xapelli et al., 2006). NPY is also distributed in the cerebral cortex, hypothalamus,
thalamus, brainstem, and cerebellum. NPY has been implicated in epilepsy, learning, memory,
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feeding, and endocrine secretions (Kovac and Walker, 2013;
O’Loughlin et al., 2014). The different biological actions of NPY
in the CNS are accomplished mainly through binding to and
activating various NPY receptors in several brain regions. NPY
receptors are G-protein-coupled receptors, five of which have
already been cloned from mammals: the Y1, Y2, Y4, Y5, and
Y6 receptors (Diaz-delCastillo et al., 2018). The distribution of
each of these Y receptors in the brain is different. The messenger
ribonucleic acids (mRNAs) of Y1 and Y2 receptors are expressed
at high levels in brain regions involved in memory function, such
as the hippocampus, amygdala, thalamus, hypothalamus, and
cerebral cortex. The expression of Y4 receptors is limited to only
a few brain regions, including the medial preoptic area, nucleus
tractus solitarii, paraventricular nucleus of the hypothalamus,
and area postrema. Y5 receptors are found in several limbic
brain areas, including the hippocampus, cingulate cortex, and
the thalamic and hypothalamic nuclei. Y6 receptors are only
present in some mammals (Gao et al., 2017). Y6 receptors are
non-functional in several mammals including humans, and their
physiological functions are not known yet. Y1 and Y2 receptors
are key receptors of NPY, and are involved in vasoconstriction.
Y1, Y2, and Y5 receptors are essential for the regulation of
animal feeding behavior, whereas Y1, Y2, and Y4 receptors
are essential for the regulation of anxiety and depression in
animals. Y1 receptors are closely related to the regulation of
immune function. NPY affects cell migration, cytokine release
and antibody production through its Y1 receptors (Wheway
et al., 2007; Farzi et al., 2015; Schmitz et al., 2017). NPY
produces neuroprotective effects via Y2 receptors by alleviating
the excitatory neurotoxic effect of kainic acid on CA1 and CA3
pyramidal cells (Xapelli et al., 2008; Gongalves et al., 2012).
Wu and Li (2005) and Farzi et al. (2015) further found that
intraventricular injection of Y2 and Y5 agonists of NPY could
alleviate the apoptosis of vertebral neurons in CAl and CA3
regions caused by kainic acid. The distributions and functions of
NPY receptors are summarized in the Table 1.

TABLE 1 | Distributions and effects of NPY in human brain.

NPY Distributions of NPY Effects of NPY receptors

receptors receptors

Y1 hippocampus, amygdala, vasoconstriction, regulating
thalamus, hypothalamus, feeding behavior, regulating
cerebral cortex anxiety and depression

Y2 hippocampus, amygdala, vasoconstriction, regulating
thalamus, hypothalamus, feeding behavior, regulating
cerebral cortex anxiety and depression,

neuroprotective effects

Y4 medial preoptic area, NTS, regulating anxiety and
PVH, area postrema depression

Y5 hippocampus, cingulate regulating feeding behavior,
cortex, thalamic, neuroprotective effects
hypothalamic nuclei

Y6 only present in some

mammals

NTS, nucleus tractus solitarii; PVH, paraventricular nucleus of the hypothalamus;
NPY, Neuropeptide Y.

ROLES OF NPY IN
NEURODEGENERATIVE DISEASES

Neurodegenerative diseases are characterized by late onset,
progressive clinical course, and neuronal loss with regional
specificity in the CNS, such as Alzheimers disease (AD),
Huntington’s disease (HD), Parkinson’s disease (PD), and
Machado-Joseph disease (MJD) (Nobrega et al, 2019).
Alterations in NPY in these neurodegenerative diseases are
summarized in Table 2.

NPY in Alzheimer’s Disease

Alzheimer’s disease is considered as the most common
neurodegenerative disease characterized by impairments in
learning and memory functions. Pathophysiologically, the
hallmarks of AD include formation of amyloid  (AB) plaques,
neurofibrillary tangles, loss of neurons and dysfunction of
synapses, cerebral amyloid angioplasty, and granular-vacuolar
degeneration (Lane et al, 2018). Although the pathogenesis
of AD is poorly understood, several factors, including genetic
factors, inflammation, free radicals, cholinergic alterations, metal
ions, viruses, oxidative stress, and decline in estrogen levels are
involved (Camandola and Mattson, 2015). Beal et al. (1986)
found that neuropeptide Y-like immunoreactivity (NPYLI)
reduced widely in the cerebral cortex of AD by comparing
the concentrations of NPYLI in post-mortem brains of AD
and healthy controls. The alterations of NPY in AD or animal
models of AD were reported in succession (Chen X.Y. et al.,
2019). Plasma NPY levels in patients with AD were significantly
decreased. This finding was revealed by measuring the plasma
content of NPY in AD patients and healthy controls (Koide
et al., 1995). Ramos et al. (2006) found that the expressions of
NPY mRNAs was also decreased in the hippocampal and cortical
regions of a transgenic (tg) mouse model of AD.

Sporadic AD is mainly caused by an imbalance between
AP production and clearance, resulting in AP accumulation.
Rose et al. (2009) elucidated the effect of NPY on AP in AD.
NPY C-terminal fragments (CTFs) were cleaved from full-length
NPY by extracellular endopeptidase neprilysin. This generated
a prominent CTF comprising amino acids 21-36 and 31-
36. Infusion of these NPY CTFs into the brains of mouse
models of AD ameliorated the neurodegenerative pathology
(Rose et al.,, 2009). In addition, the amidated NPY CTFs
protected human neuronal cultures from the neurotoxic effects
of AR (Rose et al, 2009). NPY did not only have an effect
on offsetting the toxic effect of AP, but also restored the
neurotrophin levels in neuroblastoma cells (Croce et al., 2011).
Croce et al. (2013) pre-incubated primary rat cortical neurons
with NPY and exposed them to AP25-35 fragments. They
found that NPY mediated a decrease in miR-30a-5p expression
and an increase in brain derived neurotrophic factor (BDNF)
mRNA and protein levels, which possibly contributed to the
neuroprotective effect of NPY in rat cortical neurons exposed to
AB (Croce et al., 2013).

It is well known that excitotoxicity is a process of
neuronal death caused by excessive or prolonged activation of
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TABLE 2 | Alteration of NPY levels in neurodegenerative diseases.

Diseases Changes of NPY Regions of NPY References
levels level changes

AD reduced AD cerebral cortex Koide et al.,
neuropeptide Y-like hippocampal and 1995; Ramos
immunoreactivity cortical of transgenic et al., 2006; Chen
(NPYLI) content mouse models X.Y. et al., 2019

decreased NPY
mMRNAs expression
decreased NPY
plasma content
PD increased NPY
mRNA expression

plasmas of AD

Cannizzaro et al.,
2003

caudate nucleus,
putamen and
nucleus accumbens

of PD
HD increased NPY basal ganglia cortex Dawbarn et al.,
expression and the 1985
subventricular zone
of HD
MJD decreased NPY cerebella of MJD Duarte-Neves

level etal., 2015

AD, Alzheimer’s disease; HD, Huntington’s disease; PD, Parkinson’s disease; MJD,
Machado-Joseph disease;, NPY, Neuropeptide Y.

glutamate (Glu) receptors (Lau and Tymianski, 2010). As a
neurotransmitter, Glu is stored in vesicles within the presynaptic
terminals. When nerve impulses stimulate the terminals to
depolarize, voltage-dependent Ca>* channels are activated, and
extracellular Ca?T flows into the presynaptic terminals to
promote the release of Glu into the synaptic spaces in a Ca?*-
dependent manner. Afterward, Glu combines to their receptors in
the postsynaptic membrane, generating neuroexcitatory effects.
The role of NPY in neuroprotection might be related to its ability
to reduce Ca?* influx in presynaptic nerve terminals. The ability
of the AB peptide to form Ca?*-permeable pores in neuronal
membranes is possibly related to the Ap-initiated neuronal death.
This is because Ca?*-permeable pores in neuronal membranes
can induce excessive Ca?* influx and neurotoxic cascades, which
are responsible for neuronal death (Arai et al., 2019). Excessive
Ca’* influx could lead to mitochondrial function failure and
finally result in neuronal death due to excitotoxicity (Connolly
et al, 2014). Qian et al. (1997) reported that NPY reduces
intracellular calcium concentrations via the inhibition of voltage
dependent Ca?*t channels. It was also revealed that NPY has
a neuroprotective effect that can reduce the excitotoxic role of
glutamate, inhibit glutamate receptor overactivity, and rescue
hippocampal, cortical, and retinal cells from necrosis or apoptosis
via activation of Y2 and Y5 receptors. This neuroprotective effect
of NPY was mediated by the activation of protein kinase A and
p38K, which are key proteins in different intracellular pathways
(Santos-Carvalho et al., 2013).

Neuronal loss is an important pathological feature of AD.
Neuronal replacement therapies have already been reported
for the treatment of neurodegenerative diseases (Bachoud-Lévi
et al., 2006; Mendonga et al., 2015). Neurotransmitters and
neuropeptides such as NPY can dynamically regulate adult
neurogenesis (Lee et al., 2018). In this regard, Spencer et al.
(2016) developed a lentiviral vector expressing NPY, which

was fused to a brain transport peptide (apolipoprotein B) for
widespread CNS delivery in an amyloid precursor protein-tg
mouse model of AD in order to explore the function and role
of NPY in neurogenesis of AD (Spencer et al., 2016). The results
showed that the proliferation of neural precursor cells in the
sub-granular zone of the hippocampus increased significantly
without further differentiation into neurons. NPY regulated
neurogenesis in the dentate gyrus, caudal subventricular zone
(cSVZ), and subcallosal zone via the proliferative effect of Y1
receptors on neuroblasts (Howell et al., 2005; Thiriet et al., 2011).
NPY promotes SVZ neurogenesis and increases the number of
functional SVZ neurons through the Y1 receptors (Agasse et al.,
2008). The neuronal proliferative effect of NPY is mediated
by Y1 receptors, and further downstream through a kinase
cascade involving protein kinase C and extracellular signal-
regulated protein kinases 1 and 2 (Lecat et al, 2015). In the
study by Agasse et al. (2008), stress-activated protein kinase/c-Jun
N-terminal kinase (P-SAPK/JNK) was found in the cytoplasm
and neurite-like structures colocalizing with tau, a microtubule-
associated protein mainly present in axons, 6 h after treatment
with NPY. Additionally, treatment with NPY increased the total
length and number of P-SAPK/JNK-positive ramifications. These
data suggest that NPY promotes axonal sprouting and neuronal
differentiation through the activation of the SAPK/JNK pathway
(Agasse et al., 2008). All the evidence indicate that NPY plays a
role in AD by modulating neurogenesis.

Immune response also plays an important role in the
pathogenesis of AD. Microglia are resident innate immune cells
in the brain, and they play a crucial role in AD progression.
Thus, overactivation and dysregulation of microglia might
result in severe and progressive neurotoxicity (Hansen et al.,
2018). Activation of Y1 receptors inhibited microglial cell
activation (Thorsell and Mathe, 2017), while Y2 receptors had
a protective effect against methamphetamine (METH)-induced
cell death and microgliosis (Goncalves et al, 2012). It was
reported that NPY can suppress neuroinflammatory responses
and neurodegeneration by delivering NPY- apolipoprotein B
to the brain, resulting in widespread reduction in astrogliosis.
Therefore, NPY affects the attenuation of neuroinflammation by
activating NPY receptor 1 and receptor 2 signaling pathways
of microglia (Spencer et al, 2016). In general, NPY may
play a therapeutic role in AD by modulating neurogenesis
and neurotrophins, decreasing excitotoxicity, regulating calcium
homeostasis, and attenuating neuroinflammation.

NPY in Parkinson’s Disease

Parkinson’s  disease is the second most common
neurodegenerative disease. The most important pathological
features of PD are selective degeneration and loss of
dopaminergic neurons in the substantia nigra and the presence of
Lewy bodies, primarily composed of fibrillar a-synuclein in the
surviving neurons (Trigo-Damas et al., 2018). The etiology and
pathogenesis of PD remain unclear, but are generally believed
to be associated with genetic and environmental factors and
aging. In Kerkerian et al. (1986), showed that the loss of the
nigrostriatal dopamine pathway led to a significant increase in
the number of NPY-expressing cells in the striatum in animal
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models of PD. Using in situ hybridization, it was shown that
the expression of NPY mRNA in the caudate nucleus, putamen,
and nucleus accumbens in patients with PD was markedly
increased compared to that in healthy individuals (Cannizzaro
et al., 2003). These suggest that NPY may be involved in the
pathogenesis of PD.

In order to elucidate the role of NPY in PD, Decressac
et al. (2012) investigated the survival of dopaminergic cells
both in vitro and in vivo with animal models of PD. The
study found that NPY exerted neuroprotective effect against 6-
hydroxydopamine (6-OHDA)-induced toxicity both on nigral
dopamine cell bodies and striatal terminals (Decressac et al.,
2012). The neuroprotection of NPY is preferentially mediated
via the Y2 receptors and may involve the activation of
mitogen-activated protein kinase (MAPK) and Akt pathways
(Decressac et al., 2012). It was shown that NPY interacted
with different neurotransmitter systems and may play a role
in the interaction between glutamate and dopamine-containing
neurons (Cannizzaro et al, 2003). NPY protects dopamine
neurons by inhibiting the release of glutamate in PD. Striatal
cells are the targets of cortical glutamatergic neurons (Goto
et al., 2013). Therefore, NPY could be a potential therapeutic
target for PD by inhibiting the release of glutamate from the
cortico-striatal neurons. A recent study suggests a direct effect
of NPY on neuroglial elements. Using 6-OHDA-lesioned rats
as a PD experimental model, the neuroprotective effect of
NPY on microglia caused inflammation was identified through
the specific binding of a ligand on the receptor translocator
protein localized on microglial elements in the striatum and
substantia nigra (Pain et al., 2019). Further studies from different
perspectives are needed to elucidate the potential use of NPY as a
therapeutic target in PD.

NPY in Huntington’s Disease

Huntington’s disease is an autosomal dominant inherited
degenerative disease of the nervous system, specifically the
lesions in the cerebral cortex and striatum. HD is one of
the polyglutamine disorders caused by an abnormal repetition
of the GAG trinucleotide repeats (36 to 121 copies) within
the coding sequence of the IT15 gene, which leads to the
expansion of the polyglutamine chain in the huntingtin protein
(Sameni et al., 2018). There is no effective way to prevent or
palliate the disease of HD. The pathological process of HD
can lead to encephalatrophy, especially causing damage in the
striatum (Nopoulos, 2016). NPY is expressed by medium-sized
GABAergic neurons in the striatum, which receives inputs from
both cortical glutamatergic and nigral dopaminergic neurons and
connects with neighboring cells. Dawbarn et al. (1985) measured
NPY-LI both in HD brains and post-mortem human brains of a
control group. The expression of NPY in HD was increased in
the basal ganglia, cortex, and the subventricular zone (Dawbarn
et al., 1985). In order to determine the mechanism underlying
the function of NPY as a potential therapeutic target in tg
mice model of HD, Decressac et al. (2010) further investigated
the effects of a single intracerebroventricular (ICV) injection
of NPY in a tg mouse model of HD (R6/2) by observing
animal survival, body weight, changes in behavior, and pathology

as well as adult neurogenesis (Decressac et al., 2010). They
found that a single ICV injection of NPY in a tg mouse
model of HD (R6/2) increased survival time and ameliorated
the associated motoric and cognitive symptoms. Additionally,
the number of newborn neuroblasts in the SVZ was enhanced
compared with saline-treated animals. Thus, they proposed that
ICV NPY promoted SVZ neurogenesis in wild-type mice. It was
suggested that activated microglia contributed to the pathology
of HD, and microglial activation was likely to increase over
the course of the disease using [11C] (R)-PK11195 PET ([11C]
raclopride positron emission computed tomography, a marker
for dopamine D2 receptor binding) as an in vivo marker for
activated microglia (Hansen et al., 2018). The distribution of NPY
in retinal and cortical macroglial as well as the levels of NPY
and the number of Y1 receptors were increased upon microglial
activation (Li et al., 2014; Thorsell and Mathe, 2017; Campos
etal., 2018). Increasing evidence was found to support the role of
NPY in modulating microglial inflammatory responses (Ferreira
et al,, 2011, 2012). Microglial can regulate rapid rearrangement
of the actin cytoskeleton enabling the cells to phagocytose.
NPY inhibits IL-1B-induced phagocytosis by binding to Y1
receptors, a process accompanied by p38 MAPK and HSP27
activation (Ferreira et al., 2011, 2012). In addition, NPY was also
observed to protect hippocampal cells against METH-induced
toxicity through the release of BDNF from microglia, which
has been shown to attenuate neuroinflammation by reducing
astrocytosis and pro-inflammatory cytokine production (Xapelli
et al, 2008). It is well known that activated microglia can
release a variety of mediators including cytotoxic substances
such as nitric oxide (NO), oxygen radicals, and inflammatory
factors. We thus hypothesized that the mechanisms underlying
NPY-mediated anti-inflammatory effects in neurodegenerative
disorders may involve suppression of excessive inflammatory
response and/or activation of the BDNF signaling pathway. In
addition to reducing neuroinflammation in AD and PD, as
mentioned above, NPY is also involved in inhibiting glutamate
release, which could reduce glutamate excitotoxicity in HD
(Decressac and Barker, 2012).

NPY in Machado-Joseph Disease

Machado-joseph disease or spinocerebellar ataxia type 3 is a
rare and progressive autosomal dominant neurodegenerative
disorder. MJD has similar features to other polyglutamine
diseases such as HD (de Assis et al., 2017). The pathogenesis of
MJD involves CAG triplet expansion in exon 10 of the ATXN3
gene. The expanded polyglutamine stretch in mutant ataxin-3
protein leads to a gain of toxic function that eventually causes
neurodegeneration predominantly in oculomotor, cerebellar,
pyramidal, extrapyramidal, and peripheral motor systems
(Toonen et al., 2017). Duarte-Neves et al. (2015) administered
stereotaxic injection of adeno-associated viral vectors encoding
NPY to obtain overexpression of NPY into the striatum
and cerebellum of two different MJD mouse models. Their
results demonstrated that NPY overexpression alleviated motor-
coordination and balance disabilities, prevented mutant ataxin-
3-induced increase in microglial immune reactivity, up-regulated
BDNF levels, and reduced IL-6 mRNA levels in MJD mouse
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models (Duarte-Neves et al., 2015). Increased levels of BDNF
and reduction of neuroinflammation are implicated as the
beneficial effects of NPY on MJD (Duarte-Neves et al,
2015). The mechanisms underlying these effects need to be
further investigated.

In  summary, NPY modulates neurogenesis and
neurotrophins,  increases  trophic  support,  decreases
excitotoxicity, regulates calcium homeostasis, and attenuates
neuroinflammation. Additionally, NPY also influences the
common clinical manifestations of neurodegenerative diseases,
such as depression and weight change (Cassie et al., 2017; Brown
et al., 2018). Alterations in neurogenesis and neurotrophic
factor expression or neuroinflammation, impairments in the
serotonergic and noradrenergic systems, and hypothalamic-
pituitary-adrenal (HPA) axis dysfunction, all contribute to
the depressive symptoms of neurodegenerative disorders
(Ayuob et al., 2018). NPY stimulated neurogenesis, increased
BDNF levels, promoted the survival of newborn neurons,
counteracted neuroinflammation, inhibited the release of
pro-inflammatory cytokines, and attenuated the toxic effects
of activated microglia (Decressac et al,, 2011; Duarte-Neves
et al, 2015). NPY also played a role in increasing the
levels of serotonin and norepinephrine, decreasing HPA
axis hyperactivity, and reducing plasma adrenocorticotropic
hormone and cortisol plasma levels (Painsipp et al., 2008;
Bahry et al., 2017).

Weight loss occurs several years before diagnosis and is
correlated with the severity and stage of diseases (Saute et al.,
2012; Soto et al, 2012). Olfactory dysfunction is a clinical
symptom of PD as well as a side effect of acetylcholinesterase
inhibitors and dopaminergic drugs. It usually occurs early in the
course of neurodegenerative diseases and results in inappetence
eventually (Seo et al., 2018). Higher energy expenditure in
PD, HD, and MJD results from dyskinesia and dystonia. Both
increased energy consumption and reduced calorie intake may
contribute to weight loss. NPY plays a vital role in the regulation
of body weight and physiological control of food intake (Zhang
etal., 2019). It is believed that NPY can be a potential therapeutic
target in neurodegenerative diseases. The related mechanisms of
NPY in neurodegenerative disease are summarized in Figure 1.

ROLE OF NPY IN NEUROIMMUNE
DISEASES

Neuroimmune diseases are a type of autoimmune disease related
to hereditary susceptibility, and environmental and various stress
factors. Neuroimmune diseases can be divided into CNS and
peripheral nervous system (PNS) diseases. Multiple sclerosis
(MS) is the most common type of CNS neuroimmune diseases,
and Guillain-Barré syndrome (GBS) is the most common type of
PNS neuroimmune diseases.

NPY in Multiple Sclerosis

Multiple sclerosis is a chronic autoimmune disease of the
CNS characterized by multifocal inflammation in the brain,
extensive demyelination, axonal loss, and gliosis. Although, the

exact pathogenesis of MS remains to be completely elucidated,
CD4™T cell-mediated autoimmunity has been accepted as one
of the most important aspects of MS pathogenesis (Lazibat
et al., 2018). Microglia are resident immune cells in the CNS.
In MS microglial are not only involved in CNS damage
caused by immune response, but also play an important role
in disease recovery and nerve regeneration (Zrzavy et al,
2017). NPY, through its Y1 receptor, can inhibit microglial
activation, IL-IB production, as well as subsequent NF-kB-
iNOS signal transduction, decrease the production of NO
(Sorensen et al., 2012). NPY can also reduce the migration and
phagocytosis of microglia by limiting the activity of microglia
and avoiding excessive release of NO, glutamate, cytokines,
and other cytotoxic substances from microglia. This effect
is achieved by affecting the p38 signal system. It is also
associated with heat shock protein 27 (Ferreira et al., 2012).
Remarkably, NPY can inhibit the secretion of IFN-y and
enhance IL-4 secretion of murine lymphocytes, indicating that
NPY shifts the help T cell 1 (Th)1/Th2 balance toward the
Th2 phenotype (Levite, 2008). It was found that the levels of
NPY were decreased in the cerebrospinal fluid of MS patients
(Maeda et al., 1994).

Experimental autoimmune encephalomyelitis (EAE), an
animal model of MS, is an inflammatory autoimmune disease
which affects the CNS and is induced by myelin self-antigens
(Chen Y. et al., 2019). The suppressive role of exogenous NPY
has been demonstrated in EAE mice (Schmitz et al., 2017).
Furthermore, Bedoui et al. (2004) tested whether repetitive
administrations of NPY would exert any impact on EAE. They
found that NPY can ameliorate symptoms and disease severity
of EAE in a dose-dependent manner (Schmitz et al., 2017). This
effect of NPY presumably occurs by decreasing IFN-y secretion
from autoreactive T lymphocytes and elevating the IgG1-IgG2a
ratio of autoantigen-specific antibodies, which indicate that
NPY favors Th2 response. When the Y1-receptor signaling was
blocked immediately after immunization for EAE, an earlier
onset of the disease was observed. This finding indicated that
endogenous NPY plays a protective role in EAE induction and
exerts its effects directly on T lymphocytes via the NPY Y1
receptor subtype (Schmitz et al., 2017).

The sympathetic nervous system (SNS) is mechanically
and functionally affected in both rheumatoid arthritis and
MS (Sternberg, 2012). Clinical studies also suggested that
the defective crosstalk between SNS and the immune system
might further precipitate the manifestations of MS because of
considerable SNS dysfunction in patients with MS (Shahabi et al.,
2006). Substantial evidence indicated that stress can precipitate
or worsen symptoms of inflammation in MS. NPY significantly
promoted stress coping and resiliency (Wagner et al., 2016).
Neuropeptides secreted under stress could activate microglia
and mast cells to release inflammatory molecules. This results
in the maturation and activation of Th17 autoimmune cells,
destruction of the blood brain barrier (BBB), and T cells entering
the CNS, which can promote brain inflammation and cause MS
(Karagkouni et al., 2013). These indications give us clues to
further investigate the role of NPY in regulating autoimmune
processes and to identify a new therapeutic target of MS/EAE.
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NPY, Neuropeptide Y; ERK, extracellular regulated protein kinases; NO-Cyclic GMP,nitrous oxide- cyclic guanosine
monophosphate; SAPK/JNK, c-Jun N-terminal Kinases/stress-activated protein kinases; BDNF, Brain-derived
Neuro-trophic Factor; CREB,CAMP-response element binding protein; PI3K, phosphatidylinosiyol-3-kinase;
MEK/ERK, methyl ethyl ketone/extracellular regulated kinase; PKA, protein kinase A; P38K, Serine/threonine
protein kinase; HPA hypothalamic pituitaryadrenal axis; ATCH, adrenocorticotropic hormone;

FIGURE 1 | Related mechanism of NPY in neurodegenerative diseases. The neuroprotective and anti-neuroinflammatory roles of NPY in neurodegenerative diseases
include modulating neurogenesis, increasing trophic support, exerting neuroprotective effects, affecting some clinical manifestations, attenuating neuroinflammation,

and stimulating autophagy.
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NPY in Guillain-Barré Syndrome
Guillain-Barré syndrome is

Th17, and Treg cells, the four common subsets

cells, restrict or antagonize each other by releasing their
effector cytokines. The net effects of Th cytokines determine
the direction of immune responses and the consequence of
GBS/EAN (Nyati et al.,, 2011; Zhang et al., 2013). A Th1 oriented
response, which involves an increase in the production of
Thl cytokines, including IFN-y, TNF-a, IL-1f, and IL-6, is
associated with a GBS acute-phase reponse to the immune
response after infection. During the recovery phase, the levels
of IFN-y were decreased and the IL-4 was increased, indicating

that a Th2 response is related to recovery from

(Gigi et al.,, 2008). Th17 cells, which are independent of Thl
cells, have been reported to play an important role in the
progression of the disease in humans and animal models. The
proportion of Th17 cells in the peripheral blood and the levels
of IL-17A in the plasma of patients with GBS were increased

during the acute phase. Moreover, the levels of

a common acute
mediated inflammatory disease of the PNS characterized
by inflammatory infiltration and damage to myelin sheaths
and axons. Experimental autoimmune neuritis (EAN) is an
animal model for studying the pathogenesis and treatment
of GBS. Many studies have confirmed that the pathogenesis
and progression of GBS/EAN involve a variety of immune
cell subsets and a complex network of cytokines.

correlated with the GBS disability scale score (Li et al., 2012).
Tregs, a subset of CD4+4T cells which play a crucial role
in the maintenance of immune tolerance and prevention of
autoimmunity, are significantly reduced in GBS patients and
EAN animals (Harness and McCombe, 2008). Macrophage-
mediated segmental demyelination is the pathological hallmark
of GBS/EAN. The pivotal role of macrophages in nerve damage
during GBS/EAN involves the direct phagocytotic attack
on myelin and the secretion of several pro-inflammatory
cytokines, including IL-1, IL-6, IL-12, and TNF-a (Shen et al,,
2018). Macrophages have been primarily divided into two
distinct subsets: pro-inflammatory macrophages (M1) and
anti-inflammatory macrophages (M2). M1 macrophages are
involved in inflammatory impairments of the myelin sheath
via the release of pro-inflammatory Thl cytokines such as
IL-12 during the early course of GBS (Labonte et al., 2014).
In contrast, M2 macrophages are associated with recovery
from the disease through the secretion of anti-inflammatory
cytokines and the facilitation of Th2 immune responses in
the later stage of GBS (Shen et al., 2018). These cells interact
and promote each other, and even regulate the immune effect
directly. The functions and interactions of these cells are mainly
achieved through the secretion of cytokines. These cytokines
are interconnected, complex, and pleiotropic, and constitute a
complex immune network contributing to the pathogenesis of
GBS/EAN (Zhang et al., 2013).

immune-

Thl, Th2,
of CD4+T

the disease

IL-17A are
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Neuropeptide Y is capable of shifting Th1/Th2 balance
toward the Th2 phenotype by inhibiting the secretion of IFN-
y and enhancing IL-4 secretion of murine lymphocytes (Levite,
2008). The action of NPY on the immune or inflammatory
responses is mediated by Th17 cells, which seems to be
critical in the initiation and perpetuation of autoimmune
responses, facilitating the entry of autoreactive Thl cells into
the target tissue (Gonzalez-Rey etal., 2010). The role of NPY
in down regulating the production of a wide spectrum of
chemokines may be either a consequence of reducing infiltration
of immune cells or a direct effect on Th17 differentiation
and/or migration. This role of NPY in GBS is still poorly
understood and needs intensive investigation (Gonzalez-Rey
et al,, 2010). More importantly, it was shown that NPY can
decrease the secretion of the pro-inflammatory cytokine TNF-a
from macrophages following stimulation with lipopolysaccharide
(Pendharkar et al., 2017). NPY can also increase the production
of anti-inflammatory cytokines including transforming growth
factor beta (Zhou et al., 2008). Thus, NPY influenced the
adherence, migration, phagocytosis of monocytes/macrophages,

Dimitrijevic and Stanojevic, 2013; Singer et al., 2013; Farzi
et al., 2015). In addition, the peripheral nerve is not only a
significant source of NPY release, but also heavily innervates
peripheral immune organs. In some local tissues, “synapse-
like” structures are formed between sympathetic nerve endings
and macrophages (Iriki and Simon, 2012; Cruz-Topete and
Cidlowski, 2015). The complex immune network formed in
GBS/EAN provides a physiological and anatomical bases for
NPY to regulate directly local inflammation and immune
function. This might offer a theoretical framework to explore
the role of NPY in the progression of GBS/EAN and the
regulating role and the mechanism of the GBS/EAN immune
network. Thus, further research for new therapeutic targets of
GBS/EAN is warranted.

PROSPECTS OF NPY IN THERAPEUTICS

At present, in most animal models of neurodegenerative diseases,
NPY exerts its protective effect through different mechanisms.

and secretion of cytokines (Figure 2; Painsipp et al., 2010; NPY can modulate neurogenesis and neurotrophins, increase
IL-12
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FIGURE 2 | Possible action of NPY in GBS/EAN. T cells are activated by unknown antigens on antigen-presenting cells (APCs) through a combination of major
histocompatibility complex (MHC), T cell receptor (TCR), and co-stimulatory signals in the systemic immune system. These activated neurogenic T cells differentiate
into pro-inflammatory T helper cells (Th1, Th2, and Th17) and regulatory cell (Treg). Th1 secretes pro-inflammatory cytokines such as tumor necrosis factor (TNF)-a
and interferon (IFN)-y and interleukin (IL)-12 to activate macrophages (M®). M® have been primarily divided into two distinct subsets: pro-inflammatory
macrophages (M1) and anti-inflammatory macrophages (M2). M1 macrophages promote breakdown of the blood-nerve barrier (BNB) by releasing nitric oxide (NO),
matrix metalloproteases (MMPs), and TNF-a. M2 macrophages promote remyelination and tissue repair by secreting anti-inflammatory cytokines such as IL-10 and
tumor growth factor (TGF-B) and promoting T-cell apoptosis. NPY shifts the Th1/Th2 balance toward the Th2 phenotype, activating secretion of IL-4 and TGF-B, and
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trophic support, decrease excitotoxicity, and regulate calcium
homeostasis, attenuate neuroinflammation, as well as influence
the clinical manifestations of neurodegenerative diseases. With
extensive research and the deepening of our understating of
NPY, its critical role in neuroimmune diseases has been gradually
established. In the immune system, NPY is known to modulate
immune cell trafficking, T helper cell differentiation, cytokine
secretion, natural killer cell activity, phagocytosis, and the
production of reactive oxygen species (Farzi et al., 2015). Besides
directly affecting immune cells, NPY also acts as a paracrine
and autocrine immune mediator, since immune cells such as
macrophages, dendritic cells, and lymphocytes can produce and
release NPY (Farzi et al., 2015). Based on the regulatory role
of NPY in inflammatory immune response, we hypothesize the
pathological mechanisms of NPY in neuroimmune diseases and
its potential role as a therapeutic target in neurodegenerative and
neuroimmune diseases.

There are a number of limitations of NPY as a therapeutic
target, including a short half-life, the lack of channel of NPY
across the BBB, and the inhospitable environment of the gastric
mucosa. Moreover, the most difficult obstacles to overcome is
the lack of passage across the BBB. Although prior studies have
administered NPY via intravenous infusions, it is unclear how
much, if any NPY enters the CNS (Chapman et al, 2013).
In order to overcome this barrier, considerable effort needs
to focus on seeking a kind of non-peptide agonist that can
selectively act on different receptors of the CNS to exert its
biological effect and achieving targeted treatment. At present,
several selective NPY receptor agonists are already widely
used in research, and new promising small molecules that
can act as NPY receptor agonists or antagonists have been
developed (Duvall et al., 2019). In addition to basic research,
the clinical value of NPY needs to be further explored. There
is an urgent need to explore the molecular mechanism of
protective effect of NPY in neurodegenerative and neuroimmune
diseases, for example which type of NPY receptor is the most
important in CNS and what role does NPY play in different
parts of brain tissue? If NPY can be used as a target to
develop new drugs for treatment of neurodegenerative and
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