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The study of dynamic functional network connectivity (dFNC) has been important to
understand the healthy and diseased brain. Recent developments model groups of
functionally related brain structures (defined as functional domains) as entities that can
send and receive information. A domain analysis starts by detecting a finite set of
connectivity patterns known as domain states within each functional domain. Dynamic
functional domain connectivity (DFDC) is a novel information theoretic framework for
studying the temporal sequence of the domain states and the amount of information
shared among domains. In this setting, the information flow among functional domains
can be compared to the flow of bits among entities in a digital network. Schizophrenia
is a chronic psychiatric disorder which is associated with how the brain processes
information. Here, we employed the DFDC framework to analyze a dataset containing
resting-state fMRI scans from 163 healthy controls (HCs) and 151 schizophrenia patients
(SZs). As in other information theory methods, this study measured domain state
probabilities, entropy within each DFDC and the cross-domain mutual information
(CDMI) between pairs of DFDC. Results indicate that SZs show significantly higher
(transformed) entropy than HCs in subcortical (SC)-SC; default mode network (DMN)-
visual (VIS) and frontoparietal (FRN)-VIS DFDCs. SZs also show lower (transformed)
CDMI between SC-VIS vs. SC-sensorimotor (SM), attention (ATTN)-VIS vs. ATTN-SM
and ATTN-SM vs. ATTN-ATTN DFDC pairs after correcting for multiple comparisons.
These results imply that different DFDC pairs function in a more independent manner
in SZs compared to HCs. Our findings present evidence of higher uncertainty and
randomness in SZ brain function.

Keywords: fMRI, functional network connectivity, functional domain, ICA, schizophrenia, information theory

Abbreviations: ATTN, attention; BOLD, blood oxygenation level dependent; CDMI, cross-domain mutual information;
DFDC, dynamic functional domain connectivity; dFNC, dynamic functional network connectivity; DMN, default mode
network; EPI, echo planar imaging; FBIRN, functional biomedical informatics research network; FDR, false discovery
rate; fMRI, functional magnetic resonance imaging; FNC, functional network connectivity; FRN, frontoparietal; FWHM,
full width at half maximum; GIFT, group ICA of fMRI; HCs, healthy controls; ICA, independent component analysis;
ICs, independent components; MI, mutual information; MNI, montreal neurological institute; PCA, principal component
analysis; PCs, principal components; RMS, root mean square; RSN, resting-state networks; SC, subcortical; SFNR, signal-to-
fluctuation noise ratio; SM, sensorimotor; STR, spatio-temporal regression; SZs, schizophrenia patients; TCs, time courses;
VIS, visual.
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INTRODUCTION

Schizophrenia is a chronic psychiatric disorder whose
mechanism is not well understood yet. Its pathological and
genetic background is complex and has not provided a clear
understanding of the cause of the disorder. As a result, interest
is growing in the functional neuroimaging of schizophrenia to
provide additional clues about how this disorder impacts brain
function (Kahn et al., 2015). The symptoms of schizophrenia
can be broadly divided into positive, negative and cognitive
categories. For instance, positive symptoms, characterized by
abnormal salience processing and hallucinations, have shown
links to abnormal functional activation in midbrain, speech and
auditory cortices in SZs (Murray et al., 2008; Sommer et al.,
2008). Negative symptoms related to reward processing and
social cognition have shown association with reduced activation
in amygdala in SZs (Aleman and Kahn, 2005; Juckel et al., 2006).
Broad impairment of cognitive function, such as working and
episodic memory, manifest as abnormal activation in dorsolateral
prefrontal cortex in SZs (Brunet-Gouet and Decety, 2006; Fusar-
Poli et al., 2013). Recent results suggest that these regional
alterations are best understood as abnormalities in functional
connectivity. For example, dorsolateral prefrontal cortex
connectivity is altered in SZs and individuals at risk (Wolf et al.,
2009; Esslinger et al., 2013). Methods from network topology
has shown that small-world properties may be altered in SZs
(Bassett et al., 2008; van den Heuvel et al., 2013). Schizophrenia is
therefore associated with subtle changes in neural cell population
and cell to cell communication and the study of brain functional
connectivity is critical in understanding its causes.

Functional magnetic resonance imaging is a non-invasive
imaging technique which can be used to study normal brain
function in healthy individuals and disrupted brain function
in patients with brain disorders. It captures signals from brain
regions using a BOLD contrast in response to tasks or at rest.
Resting-state fMRI reveals that even in the absence of a task,
anatomically separate brain regions show large-scale neuronal
activity which are functionally synchronized to one another
(Biswal et al., 1995; Greicius et al., 2003). FNC refers to the
temporal coherence of low-frequency BOLD activity between
separate networks of neurons. The temporal coherence also
shows variation with time thus characterizing a dFNC signal
(Allen et al., 2014). Two of the most widely used methods for
the analysis of FNC are seed-based approaches (Biswal et al.,
1995) and data-driven approaches. Among the data driven
approaches, ICA is in widespread use (Calhoun et al., 2009).
The spatial ICA approach expresses the temporal fMRI data
as a linear combination of spatially (statistically) independent
sources known as functional networks (hereafter referred to
as simply “networks”) (Erhardt et al., 2011a). Unlike a seed-
based approach, ICA requires no prior information about the
pattern of the networks or their TCs. In this work, we perform
ICA analysis of multi-subject fMRI data using the group ICA
approach (Calhoun et al., 2001; Calhoun and Adali, 2012). This
approach allows for estimation of the spatial networks common
across subjects, and the associated TCs. These TCs can then be
used to study dynamic brain function in different populations.

A growing number of studies of dynamic brain function
using data-driven analysis of fMRI have shown links to the
genetic risks, brain biology and clinical state of schizophrenia.
Common approaches for studying dFNC of the human brain
identifies replicable patterns of correlation among brain regions,
known as brain states (Allen et al., 2014; Barttfeld et al., 2015;
Leonardi and Van De Ville, 2015; Abrol et al., 2016; Chen
et al., 2017). It has been found that SZs tend to linger in a
state of weak connectivity at rest (Damaraju et al., 2014; Du
et al., 2016; Lottman et al., 2017; Rabany et al., 2018; Sanfratello
et al., 2019). Similar findings have been reported in patients
with bipolar disorder and mild cognitive impairment (Rashid
et al., 2016; Zhi et al., 2018). SZs also demonstrate reduced
connectivity dynamism in the higher dimensional meta-state
space compared to the HCs (Miller et al., 2016b). Another prior
study indicated that the combined auditory-visual-sensorimotor
network in HCs show increased sensitivity to connectivity in
the other functional domains (groups of functionally related
brain networks) in terms of measures derived by taking the
transition probabilities of the inter-domain and intra-domain
correlation patterns into account (Miller et al., 2016a). Group
ICA methods have also identified potential biomarkers for
schizophrenia, bipolar disorder and schizoaffective disorder
(Du et al., 2015) and links with reduced brain volume and
dFNC in schizophrenia (Abrol et al., 2017). These studies have
demonstrated widespread disruption of interaction within the
brain in schizophrenia and other mental disorders by employing
whole-brain dFNC analysis.

Recently, Vergara et al. proposed an information theoretic
framework to study communication between brain functional
domains (Vergara and Calhoun, 2017; Vergara et al., 2017).
Functional domains are groups of anatomically and functionally
coherent networks. This approach allows for investigation of
the flow of information between the functional domains by
assigning binary digit values, or bits, to DFDC properties of
the brain and estimating the quantity of bits required for
this communication in terms of entropy and MI. The human
brain is a large and complicated system and information
theory can be a very useful statistical tool for studying such
a system. Information theory was first described in Shannon’s
seminal paper “A Mathematical Theory of Communication”
(Shannon, 1948) and since then has been applied to diverse
fields in science because of its significance and flexibility. The
word “information” may convey different meaning in different
context. In information theory, a random variable X provides
(mutual) information about another random variable Y when
the knowledge about X reduces the average uncertainty about Y
(Cover and Thomas, 2006). MI is non-negative and symmetric,
i.e., X says as much about Y as says about X. The average
uncertainty in a random variable is known as entropy. These basic
concepts of information theory may enable us to assign relative
measures to how information is stored and transferred within the
human brain. Indeed, much of the application of information
theory in neuroscience is on neural information flow, which
concerns the transmission and constraints of information flowing
through the nervous system (Borst and Theunissen, 1999;
Dimitrov et al., 2011). However, apart from the study of neural
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information flow, there is little application of information theory
in the study of healthy and diseased brain function in the
existing literature.

In this work, we use the information theoretic framework of
DFDC to examine group differences between HCs and SZs. We
first use the spatial group ICA technique to estimate spatially
ICs and associated TCs from the fMRI scans of 163 HCs and
151 SZs. Then we use the TCs to estimate the whole-brain
dFNC, from which we extract the DFDC states. We study various
information theoretic properties of these time-varying DFDC
states, such as state probabilities, entropy and CDMI. Finally, we
conduct some statistical analysis on these properties to find links
to schizophrenia.

MATERIALS AND METHODS

Data
The data used in this study were collected under the FBIRN
phase-III study at the following sites across the United States:
University of California, Irvine (UCI), University of California,
Los Angeles (UCLA); The University of New Mexico (NM),
The University of Iowa (IA), University of Minnesota (MN),
Duke University/University of North Carolina, University of
California, San Diego (UCSD; healthy subjects only), and
the University of California San Francisco (UCSF). Informed
consent was obtained from the participants according to the
guidelines set by the Internal Review Boards at each site.
Resting-state fMRI data were originally collected from 186
HCs and 176 SZs. The SZ subjects were diagnosed using
Structured Clinical Interview for DSM-IV-TR Axis I Disorders
(First et al., 2002). The SZ subjects were excluded if they had
a history of major medical illness and tardive dyskinesia or
significant extrapyramidal symptoms or significant changes in
psychotropic medications in the previous 2 months before the
scan. Any healthy subject who had a first degree relative with
a psychotic illness diagnosis or history of major neurological or
psychiatric medical illness was also excluded. Subjects were also
excluded if they did not have any of the following: sufficient
eyesight to see visual displays, normal hearing levels, fluency
in English and ability to perform the study tasks, IQ greater
than 75 or if they had previous head injury or prolonged
unconsciousness, substance or alcohol dependence, migraine
treatments or MRI contradictions. Prior to participating in
scanning procedures, all subjects received extensive diagnostic
evaluations by experienced raters. All patients received the
following symptom ratings: Scales for the Assessment of Positive
(SAPS) and Negative Symptoms (SANS) and a modified Positive
and Negative Symptom Scale (PANSS). The SZs were age and
gender-matched. Imaging data for six of the seven sites were
collected on a 3T Siemens Tim Trio System and on a 3T General
Electric Discovery MR750 scanner at one site. 162 volumes of
EPI, BOLD, fMRI data were collected from each participant
using 3T scanners with the following imaging parameters:
FOV = 220 mm× 220 mm (64× 64 matrix), TR = 2 s, TE = 30 ms,
FA = 770, 32 sequential ascending axial slices with thickness of
4 and 1 mm skip.

Medication Information
Anti-psychotic data was available for 129 patients in the FBIRN
phase-III dataset. We used their respective chlorpromazine
(CPZ) dosage equivalents for the patients with available dose-
level medication data, as specified by Andreasen et al. (2010).

Preprocessing
We preprocessed the fMRI data using the SPM (Friston, 2007)
and AFNI (Cox, 1996) toolboxes and scripts written in the
MATLABTM software. At first, we measured the SFNR (Friedman
et al., 2006) and maximum RMS translation using the INRIAlign
toolbox in SPM (Freire et al., 2002) for all subjects. We excluded
subjects with SFNR < 150 and RMS translation >4 mm, which
left us with 314 subjects for analysis, including 163 HCs (mean
age 36.9, 46 women) and 151 SZs (mean age 37.8, 37 women).
Next, we performed slice-timing correction using the middle
slice as reference, followed by despiking using AFNI’s 3dDespike
algorithm to reduce the effect of outliers, normalization to the
standard MNI space, resampling to 3 mm × 3 mm × 3 mm
voxels, and smoothing to 6 mm FWHM kernel. Finally, we
performed variance normalization on each voxel TC. More
details about the data acquisition, preprocessing and quality
control can be found in prior work (Damaraju et al., 2014;
Keator et al., 2016).

Group ICA
We performed group-level spatial ICA (Calhoun et al., 2001;
Calhoun and Adali, 2012) to decompose the temporally
concatenated fMRI data of all subjects into 100 spatially
independent group-level components. This was achieved in two
steps. At first, we performed a subject-level PCA with the
number of PCs set at 120, followed by a group-level PCA on
the reduced and concatenated data with the number of PCs
set at 100. We chose a high number of PCs as it has been
shown to stabilize the subsequent back-reconstruction process
and produce refined ICs corresponding to known anatomical
and functional segmentation (Allen et al., 2011; Erhardt et al.,
2011b). Next, we performed ICA on the PCA-reduced data using
the Infomax algorithm (Bell and Sejnowski, 1995) to estimate the
group-level ICs. We repeated ICA 20 times and selected the most
representative solution to ensure the stability of the IC estimation
(Ma et al., 2011). We identified 100 most reliable components as
the final group-level ICs.

After discarding the artifact-related ICs, we characterized 47 of
the group-level ICs as RSN. An IC was identified as an RSN if its
peak activation cluster was in the gray matter, there was minimal
overlap with known vascular, susceptibility, ventricular and edge
regions, and the mean power spectra of the IC showed higher
low frequency spectral power (Allen et al., 2011). We grouped
these networks into SC, auditory (AUD), SM, VIS, ATTN, frontal
(FRN), DMN, and cerebellar (CB) functional domains based
on their anatomical and presumed functional properties (Allen
et al., 2014). Next, we estimated the subject-specific networks and
their associated TCs based on the group-level ICs using the STR
approach (Beckmann et al., 2009; Erhardt et al., 2011b). Finally,
we post-processed the subject-level TCs of these networks by
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removing linear, quadratic and cubic trends, regressing out the
head motion parameters and despiking using AFNI’s 3dDespike
algorithm (Cox, 1996). Correlation among brain networks are
known to be driven primarily by low frequency fluctuations in
the BOLD fMRI data (Cordes et al., 2001). Therefore, we filtered
the TCs using a 5th order Butterworth filter with a passband
frequency of 0.01−0.15 Hz.

dFNC Estimation
We proceeded to analyze dFNC for each subject using a sliding
window method (Sakoğlu et al., 2010; Allen et al., 2014; Damaraju
et al., 2014). We used a sliding window with size of 22 TR
(44 s) and convolved it with a Gaussian of σ = 3 TR to
obtain tapering along the edges. We used the sliding window
in steps of 1 TR to estimate the dFNC among the TCs from a
regularized inverse covariance matrix using a graphical LASSO
framework (Friedman et al., 2008; Varoquaux et al., 2010). We
transformed the dFNC values for each subject using the Fisher-
Z transformation and residualized them with respect to the
gender, age and site variables. The dFNC analysis was performed
using the temporal dFNC toolbox included in the GIFT software
(Calhoun, 2004). Prior work can be consulted to obtain more
details on the group ICA analysis of the fMRI data and the dFNC
estimation steps (Damaraju et al., 2014).

Dynamic Functional Domain Connectivity
Figure 1 shows a flowchart of the analysis undertaken
to investigate schizophrenia using the information theoretic
framework. At first, for each window, we used every connectivity
between the networks belonging to each pair of domains Z[t]
and Y[t] to determine the temporal DFDC matrix D(Z,Y )[t]
(Vergara et al., 2017). Note that the FNC between two TCs is a
scalar quantity, but the DFDC between two functional domains
is not scalar unless both contain one network each. Furthermore,
the FNC of a network with itself is 1 (one). In contrast, it is
possible to have a multi-dimensional DFDC for a functional
domain with itself if it contains more than two networks. In
the two-network case, the DFDC is a scalar quantity. In our
analysis, there were two such functional domains. The next
step in our framework is to run a clustering algorithm on the
DFDC. We chose not to apply clustering on the two DFDC with
scalar quantities and excluded them from further analysis. We
applied K-means clustering to the DFDC D(Z,Y )[t] across all
windows and all subjects with 10 replicates. We set the number
of clusters at K = 3 using the elbow criterion on the cluster
validity index (Allen et al., 2014). Thus we identified the cluster
centroids Ck

(Z,Y) =

[
D1

(Z,Y),D
2
(Z,Y), D

3
(Z,Y)

]
and a membership

function m(Z,Y) [t] ∈ Ck
(Z,Y) corresponding to each windowed

DFDC. The DFDC analysis was performed using custom scripts
written in MATLABTM.

Each cluster represents a dynamic state in DFDC. This method
is analogous to the whole-brain dynamic state identification
method (Allen et al., 2014), but estimates the dynamic states at
the functional domain level. Therefore, as shown in Figure 1,
DFDC is essentially a sub-matrix of the whole-brain dFNC
matrix. The membership function expresses the closest cluster

centroid based on an arbitrary distance measure. Here, we used
correlation as the distance metric as it is a normalized metric
showing more sensitivity to the DFDC patterns, although other
possible choices such as L1, L2 norms will likely be highly similar
(Damaraju et al., 2014).

DFDC State Probabilities and Entropy
Next, we conceptualized the data within an information
theoretic framework. In this framework, each of the DFDC
states in the set Ck

(Z,Y ) is an element from an alphabet.
The corresponding membership function m(z,y)[t] defines the
frequency of occurrence of each dynamic state Di(z,y) (alphabet
element). Thus, we can estimate the probability, pi(z,y), of a given
state Di(z,y) from the membership function (also known as the
occupancy rate). The DFDC entropy is then computed as:

H(Z,Y) = −

∑
i

pi(Z,Y) log2
(
pi(Z,Y)

)
(1)

Entropy provides a measure of uncertainty. Higher entropy
indicates that all possible states of a DFDC are nearly equally
likely to be observed. Conversely, zero entropy implies maximum
predictability of an outcome state.

dFNC Entropy
Just as for the DFDC states, we can also capture uncertainly at the
whole-brain level by measuring entropy of the dFNC states. It is
computed as:

H(X) = −

∑
i

pi(X) log2
(
pi(X)

)
(2)

Here, pi(x) is the probability of a given dFNC state for a subject,
where the states are estimated by running K-means clustering on
the dFNC matrices across all subjects with K = 3. This is useful
for interpreting the findings based on DFDC and dFNC.

Cross-Domain Mutual Information
The other information theoretic measure we were interested in is
the CDMI. CDMI is defined as:

I(AB,ZY) =

∑
p(i,j)(AB,ZY) log2

p(i,j)(AB,ZY)

pi(A,B)p
j
(Z,Y)

(3)

where A and B are two other different domains than Z and Y.
p(i,j)(AB,ZY) indicates the joint probability based on the temporal co-
occurrence of the membership states m(Z,Y)[t], m(A,B) [t] and is
given by:

pi(AB,ZY) = p
(
m(Z,Y) = Di

(Z,Y),m(A,B) = Di
(A,B)

)
(4)

Di
(Z,Y) ∈ C(k1)

(Z,Y), D
i
(A,B) ∈ C(k1)

(A,B) (5)

It can be shown from Eq. 2 thatI(AB,ZY) = H(Z,Y) −H(Z,Y|A,B),
where H(Z,Y |A,B) is the conditional entropy of the DFDC D(Z,Y )

given D(A,B). MI serves as a measure of dependence (or lack
thereof) between two random variables. MI is symmetric and
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FIGURE 1 | A flowchart of the information theoretic framework of DFDC.

non-negative, and zero if and only if the two random variables
are statistically independent. Note that if Z = A and Y = B,
then I(AB,ZY) simply indicates the entropy of D(Z,Y), or H(Z,Y).

Statistical Analysis
We performed statistical analysis on various information
theoretic measures, i.e., state probabilities, entropy and CDMI,
with the intent of testing for group differences. We observed that
the DFDC state probabilities had positively skewed distribution

(see Supplementary Figures 2, 4, 6). In case of DFDC entropy,
the distributions were negatively skewed (see Supplementary
Figure 8). Note that the number of maximum possible dynamic
states for each DFDC was set at 3, which translates to a maximum
achievable entropy value of 1.585 bits/sample in the event of an
equal occupancy rate (33.33%) for each state. We transformed the
DFDC state probabilities and entropy data across all subjects in
the following manner to obtain Gaussian distributions. At first
the data was scaled between [−(1−K), (1−K)]. Here, K is a small
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number, introduced so that we could subsequently apply the
Fisher-Z transformation on the scaled data without encountering
discontinuity. Next, we used a one-sample Kolmogorov–Smirnov
test to confirm that the transformed quantities came from a
standard normal distribution and hence satisfied the assumptions
of relevant statistical analyses. We fit a linear model separately to
each transformed DFDC state probability and entropy with the
subject diagnosis (HC-SZ) as the independent categorical variable
and examined the group difference. We also looked at group
difference in the whole-brain dFNC entropy using a similar test.

We observed that most of the CDMI were very low, indicating
high statistical independence between the corresponding DFDC
pairs. We used the following bootstrapping technique to select
the significantly high CDMIs for further investigation (Vergara
et al., 2017). We first computed the state probabilities and
joint probabilities across all data (subject × window) from
the clustering results on each DFDC. We used these values
to computer one CDMI for each DFDC pair. Note that the
CDMI of a DFDC with itself was ignored, as it is merely the
entropy for that DFDC. We bootstrapped these CDMI values
using 109 iterations. The significant CDMI threshold was chosen
at 5% level. The DFDC pairs with CDMI values higher than this
threshold were selected for further analysis. The CDMIs also had
right skewed distribution and were transformed similar to the
state probabilities and entropy, before being fit to a linear model
to examine group difference.

We also assessed the relationship of the SZ’s DFDC entropy
and the significant CDMIs with both the patient PANSS
scores and CPZ dosage equivalents. We correlated the CPZ
dosage equivalents (in log-scale) with each DFDC entropy
and significant CDMI. The CPZ dosage equivalents were log-
transformed because their original distribution had very low
“peakedness” or kurtosis. We also correlated the patient PANSS
scores (positive, negative and general separately) with each
DFDC entropy and the significant CDMI.

RESULTS

We set out to examine group differences between HCs and SZs
using the information theoretic framework of brain connectivity.
The first step in this process was to estimate the brain networks
using group ICA. Figure 2 shows the 47 networks grouped into
eight functional domains, i.e., SC (5 networks), AUD (2), SM (6),
VIS (10), ATTN (9), FRN (7), DMN (6), and CB (2) domains.
Out of these, AUD and CB, having two ICs each, were excluded
from further analysis. More details such as the anatomical
labels and peak activation coordinate of these networks can
be found in prior work (Damaraju et al., 2014) and in the
Supplementary Table 1.

Group Difference in DFDC State
Probabilities
We determined the DFDC states via K-means clustering and
examined the group differences in the subject state probabilities.
The six domains under experiment generated

(6
2
)
= 21 domain

pairs. Supplementary Figure 1 shows the three cluster centroids

or states for each of the 21 DFDC. Figure 3A shows the mean
probabilities for the three states across all subjects. The DFDC are
sorted from top to bottom in the order of increasing entropy, and
the mean probabilities in each row are sorted from left to right
in decreasing order. We observed that the state probabilities had
a right-skewed distribution (see Supplementary Figures 2, 4, 6)
and transformed them to standard normal distributions (see
Supplementary Figures 3, 5, 7). Figure 3B shows the result
of linear regression on the transformed state probabilities with
diagnosis (HC-SZ) as the independent categorical variable. The
color intensity indicates sign (β) ×

∣∣log 10
(
p
)∣∣ where β is the

coefficient of regression and p is the p-value corresponding to
the t-statistic of the coefficient. Results indicate that SZs have
significantly higher (transformed) state 1 probabilities in the
SM-DMN DFDC and (transformed) state 2 probabilities in VIS-
DMN DFDC at p < 0.05 level (uncorrected).

Group Difference in DFDC and dFNC
Entropy
Next, we computed the DFDC entropies from the state
probabilities using Eq. 1 and examined the group differences in
the entropy of the 21 DFDCs. We observed that the entropy
had left-skewed distribution (see Supplementary Figure 8)
and transformed them to standard normal distributions (see
Supplementary Figure 9). Figures 4A,B show the mean entropy
across all HCs and SZs for different DFDC. Figure 4C shows
the result of linear regression on the transformed entropy with
diagnosis (HC-SZ) as the independent categorical variable. The
color intensity indicates sign (β) ×

∣∣log 10
(
p
)∣∣ where β is the

coefficient of regression and p is the p-value corresponding
to the t-statistic of the coefficient. Results indicate that SZs
have significantly higher entropy than HCs in the SC-SC, FRN-
VIS and DMN-VIS DFDC at p < 0.05 level (uncorrected).
Figure 4D shows the entropy for HCs and SZs computed from
the whole-brain dFNC. We observed that the dFNC entropy is
also significantly higher in SZs (p = 0.0025), commensurate with
the majority of the DFDC entropy.

Group Difference in Cross-Domain
Mutual Information
The last information theoretic measure we examined was
the CDMI between each pair of DFDC. We used the state
probabilities in Eq. 3 to determine the CDMI between two DFDC
and examined the group differences. Pairwise CDMI between 21
DFDC under experiment resulted in

(21
2
)
= 210 CDMI values.

Figure 5 show the mean CDMI across HCs and SZs. We observed
that when measured across all subjects, the CDMI values were
below or equal to 0.2871 (see Supplementary Figure 10).
Using bootstrapping, we chose the minimum significant CDMI
threshold of 0.099612 at 5% level and performed statistical
analysis on the 10 DFDC pairs whose CDMI were higher than
this threshold. More details about these 10 CDMI are provided
in Supplementary Table 2. We observed that the CDMI showed
a right-skewed distribution (see Supplementary Figure 11) and
hence transformed them to standard normal distributions (see
Supplementary Figure 12). Figure 6 shows a chord diagram of
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FIGURE 2 | Composite view of the 47 spatially independent group-level functional networks categorized into eight functional domains: subcortical (SC, 5 networks),
auditory (AUD, 2), sensorimotor (SM, 6), visual (VIS, 10), attention (ATTN, 9), frontoparietal (FRN, 7), default mode (DMN, 6) and cerebellar (CB, 2). Intensity of the
color represents z-scores. Functional network labels and peak activation coordinates can be found in prior work (Damaraju et al., 2014).

the results of linear regression on the transformed CDMI values
with subject diagnosis (HC-SZ) as the independent categorical
variable. The color intensity of the connecting links between
a pair of DFDC indicates sign (β) and the width of the links
indicates sign (β) ×

∣∣log 10
(
p
)∣∣ where β is the coefficient of

regression and p is the p-value corresponding to the t-statistic
of the coefficient. The p-values were controlled for FDR when
conducting multiple comparisons. Results indicate that in 7 out of
10 DFDC pairs under consideration, SZs have lower CDMI than
HCs. Three of those are statistically significant at p < 0.05 level
after FDR correction, which are SC-SM vs. SC-VIS, SM-ATTN
vs. VIS-ATTN and SM-ATTN vs. ATTN-ATTN DFDC pairs.
This enables us to draw the conclusion that SZs demonstrate
significantly lower CDMI, and higher independence, than HCs
between these DFDC states.

Correlation With Medication and
Symptoms
We found that the CPZ dosage equivalent of the patients was
not significantly correlated with any of the DFDC entropy or
the significant CDMIs of the patients. The linear correlation
coefficient between the two and the FDR-corrected p-values

for testing the hypothesis of no correlation are presented in
Supplementary Figures 14, 15. We found that the PANSS
positive scores of the patients were significantly correlated with
the VIS-FRN vs. VIS-DMN CDMI (R = 0.27, p = 0.0084,
FDR corrected). The linear correlation coefficients and FDR
corrected p-values are added in Supplementary Figures 16, 17.
We did not find any significant correlation between the PANSS
positive scores and any DFDC entropy, or PANSS general
and negative scores of the patients and any of the DFDC
entropy or the significant CDMIs after FDR correction for
multiple comparisons.

DISCUSSION

We set out to utilize the information theoretic framework of
DFDC (Vergara et al., 2017) to examine how the information
processing between the brain functional domains are impacted in
schizophrenia. We specifically looked at the transformed entropy
in the subject-wise time-varying DFDC patterns, and the CDMI
between each pair of those DFDC patterns. We found that SZs
show significantly higher entropy than HCs within multiple
DFDC. It suggests that there is higher uncertainty or randomness
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FIGURE 3 | (A) The DFDC state probabilities averaged across all subjects for each of the K = 3 states and DFDC domain pairs obtained using K-means clustering.
The domain pairs are sorted from top to bottom in the order of increasing entropy. (B) Results obtained by regressing the diagnosis labels (HC-SZ) of the subjects on
each of the DFDC state probabilities. The color intensity indicates sign (β) × |log 10 (p)| where β is the coefficient of regression and p is the p-value corresponding
to the t-statistic of the coefficient. Upward arrows indicate that in two cases SZ have significantly higher state probabilities than HCs (p < 0.05, uncorrected).

of the DFDC patterns in the diseased brain. Furthermore,
SZs demonstrate significantly lower CDMI than HCs between
several DFDC pairs. It presents a compelling evidence of higher
statistical independence between the activity of different DFDC
in the diseased brain.

There are numerous studies hypothesizing aberrant brain
function in schizophrenia (Aleman and Kahn, 2005; Brunet-
Gouet and Decety, 2006; Juckel et al., 2006; Bassett et al., 2008;
Murray et al., 2008; Sommer et al., 2008; Wolf et al., 2009;
Esslinger et al., 2013; Fusar-Poli et al., 2013; van den Heuvel
et al., 2013; Kahn et al., 2015). Our work is one of the first to
explore information sharing at the functional domain level in
schizophrenia, and our findings corroborate the notion of the
aberrant nature of functional connectivity. We also examined
entropy in whole-brain dFNC which has not been reported in the
literature. We found that SZs have significantly higher entropy
than HCs at both whole-brain and functional domain level.

Evidence of weaker CDMI in SZs implies that connectivity
among different pairs of functional domains, or DFDC, have
less influence on each other’s domain activation patterns in
SZs. Note that we selected a significant CDMI threshold via
bootstrapping and ran linear regression on the selected CDMI,
because the CDMI for most of the DFDC pairs are very low
(indicating higher independence). It can be argued that the
results passed the test for multiple comparisons only because
of the lower number of comparisons. Hence, we also examined
the group difference in every CDMI and corrected for multiple
comparisons, instead of selecting a few based on a bootstrapped
threshold. We still found that SZs have significantly lower

CDMI than HCs in the SM-ATTN vs. ATTN-ATTN CDMI,
while showing a general trend toward lower CDMI in SZs
compared to HCs (Supplementary Figure 13). Miller et al.
(2016a) has previously explored information processing among
functional domains in schizophrenia and found that auditory-
visual-sensorimotor network in the healthy population showed
increased sensitivity to connectivity in the other functional
domains. The authors derived two novel metrics (distributional
dissimilarity and specificity) based on the transition probabilities
of the inter-domain and intra-domain correlation patterns which
can capture information flow among the domains. Their major
finding – that these metrics are reduced in SZs – is in accordance
with our findings. However, we have come to this conclusion by
employing information theoretic concepts which are well-defined
and broadly used in other fields. Moreover, previous authors used
metrics based on transition probability of the connectivity states,
whereas we have employed the entropy of the whole sequence of
the connectivity states.

We ran some additional tests to investigate the site effect
on CDMI and entropy. Specifically, we extended our statistical
models to include both diagnosis (2 levels) and site (7 levels)
factors, then performed an N-way analysis of covariance using
Matlab “anovan” function, followed by a multiple comparison
of the stats using the “multcompare” function. We have added
the results in Supplementary Figure 18 which shows the 2 cases
where we found significant differences between the marginal
CDMI means with the site variable considered. In our original
manuscript, we identified both these CDMIs to be significantly
different between HC and SZ with the site effect not considered.
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FIGURE 4 | (A) Subject-wise mean entropy for HCs, (B) subject-wise mean entropy for SZs, (C) group difference results from regressing diagnosis on subject-wise
entropy. The color intensity indicates sign (β) × |log 10 (p)| where β is the coefficient of regression and p is the p-value corresponding to the t-statistic of the
coefficient. Upward arrows on the positive quantities indicate SZs have significantly higher entropy than HCs (p < 0.05, uncorrected). (D) Boxplots showing
whole-brain dFNC entropy in HC vs. SZ. SZs have significantly higher dFNC entropy than HCs.

FIGURE 5 | (A) Mean CDMI between different DFDC for HCs, (B) for SZs.
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FIGURE 6 | Significant group differences between HCs and SZs. Showing 10 CDMI between 13 different pairs of DFDC which had significantly high CDMI value
(determined via bootstrapping). The color of the links indicates sign (β) and the width indicates sign (β) × |log 10 (p)|, where β is the regression slope and p is the
p-value corresponding to the diagnosis variable corrected using FDR correction for multiple comparisons. Negative β values indicate decreased CDMI in SZs, with
the three darkest/widest links showing the pairs of DFDC which show significant group difference in CDMI at p < 0.05 level.

From similar analysis on entropy, site difference was observed in
the SC-VIS entropy. Given these results, we do not see significant
influence of site on the results in the current setting.

It bears discussion what our findings imply for SZ and
brain disorders. From previous literature we know of hyper
connectivity abnormalities in the SC region (Damaraju et al.,
2014; Vergara et al., 2019) and thus it is not a surprise that we
see entropy effects in the SC domain. Our results indicate that
SC hyper connectivity in SZ translates into higher uncertainty
(higher entropy). Given that the SC domain encompass thalamus
and putamen, this could point to an increase of information relay
in the cortico-thalamic loops. A possible explanation is that the
cortical regions in charge of sensory processing are sending an

extra amount of signaling to the cortico-thalamic loops in SZ.
This might overwork the information relay functions of the
striatal and thalamic regions which responds to this demand by
enhancing functioning and increasing the amount of information
(larger entropy) processed. This overworking of the brain
seems to be determined between the SC and VIS regions and
two domains (FRN and DMN). Similar impaired VIS-SC-FRN
processing has been previously reported in SZ (Sehatpour et al.,
2010; John et al., 2018). In our study, we also discover impaired
VIS-DMN processing. The patient PANSS positive score shows
significant correlation with the VIS-FRN vs. VIS-DMN CDMI.
The literature supports this evidence of link between positive
symptoms such as visual hallucination and abnormal DMN
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activity in SZ (Jardri et al., 2013) as well as Parkinson’s disease
(Yao et al., 2014; Shine et al., 2015). It is possible that overworking
the SC domain enhances important information among VIS,
DMN and FRN domains, but reduces information sharing among
other domains in order to compensate the workload. Example
of this reduction was observed in the SM-SC vs. SC-VIS CDMI
which might have diminished workload to be able to dedicate
more resources for other areas more active during resting state.
By leveraging information theoretic principles, our work provides
some novel insights about the uncertainty of the dFNC and
DFDC states in SZ.

Next, we discuss some of the weaknesses and limitations in
this study. Firstly, we have imposed the number of clusters,
K = 3 when clustering the DFDC patterns using the K-means
algorithm. The number K was chosen by observing the elbow
criterion. We also experimented by varying K between {3,4,5},
as well as by including the AUD and CB functional domains in
the analysis. The results agree for various settings, i.e., SZs tend
to have higher entropy and lower CDMI than HCs. For different
settings we found different sets of DFDC to be significant, but
some of the DFDCs, such as SC-SC show higher entropy in SZs,
and SM-ATTN vs. ATTN-ATTN CDMI tends to be lower in
SZs irrespective of different settings. Secondly, the assignment
of different networks to the functional domains tends to be
subjective and consensus-based among researchers depending
on the anatomy and prevalent knowledge about the function of
such networks. An important future direction will be to motivate
optimal choice of the number of clusters, clustering method,
and a replicable method of assignment of functional domains
in the information theoretic framework and beyond. Finally,
we observed that the effect sizes of the entropy/CDMI group
differences are not very large (see Supplementary Figures 9, 12).
The effect sizes range between 0.09 and 0.30 for the DFDCs
showing significant group differences in entropy, and the
linear regression results do not pass correction for multiple
comparisons. However, for the CDMI group comparisons, the
effect sizes are higher (0.29−0.46) and the linear regression
results indeed pass FDR correction for multiple comparisons to
corroborate our conclusions.

Since its introduction 70 years ago, information theory has
been adopted and appropriated in many different scientific
domains, including neuroscience where the study of neural
information flow sees major application of the information
theoretic principles. In recent years the interest in dynamic nature
of the human brain and its implication in brain disorders has
peaked. Brain disorders such as schizophrenia as well as aging and
dementia are strongly indicative of the deterioration of storage
and transmission mechanism of information in the human
brain. In this work, we have generated novel insights about the
uncertainty of the dFNC and DFDC states in schizophrenia by
leveraging information theoretic principles. Further work in this
area may help us decipher what language distant brain regions
use to “talk” to each other, as well as how this interaction is
impaired in brain diseases (Vergara and Calhoun, 2017). The
study of the complex yet orderly, dynamic function of the
healthy human brain and the lack thereof in mental illness

can hopefully benefit from the application of the simple, yet
elegant information theoretic framework such as one introduced
in our work.

DATA AVAILABILITY

The datasets for this manuscript are not publicly available. We
plan to make all of the connectivity matrices, results, and code
available to the public. While we would also like to make the raw
data available, it is not our study and unfortunately there are still
IRB restrictions which prevent such sharing for now. Requests to
access the datasets should be directed to https://www.nitrc.org/
projects/fbirn.

ETHICS STATEMENT

The data used in this study were collected under the Functional
Biomedical Informatics Research Network (FBIRN) phase-III
study at the following sites: University of California, Irvine (UCI),
University of California, Los Angeles (UCLA), The University
of New Mexico (NM), The University of Iowa (IA), University
of Minnesota (MN), Duke University/University of North
Carolina, University of California, San Diego (UCSD; healthy
subjects only), and the University of California, San Francisco
(UCSF). Informed consent was obtained from the participants
according to the guidelines set by the Internal Review Boards
at each site.

AUTHOR CONTRIBUTIONS

MS, VV, and VC designed the project. MS wrote the manuscript.
ED performed the preprocessing, group ICA, and dFNC analyses.
MS, VV, and VC performed the DFDC and statistical analyses,
interpreted the results, and edited the manuscript.

FUNDING

This work was supported by the National Institutes of Health
grants (R01EB020407, P20GM103472, and P30GM122734) and
the National Science Foundation grant 1539067 (to VC).

ACKNOWLEDGMENTS

We would like to thank Zening Fu, Ph.D. for help with the
preparation of figures.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2019.00873/full#supplementary-material

Frontiers in Neuroscience | www.frontiersin.org 11 August 2019 | Volume 13 | Article 873

https://www.nitrc.org/projects/fbirn
https://www.nitrc.org/projects/fbirn
https://www.frontiersin.org/articles/10.3389/fnins.2019.00873/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00873/full#supplementary-material
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00873 August 22, 2019 Time: 14:29 # 12

Salman et al. Decreased Cross-Domain Mutual Information in Schizophrenia

REFERENCES
Abrol, A., Chaze, C., Damaraju, E., and Calhoun, V. D. (2016). “The chronnectome:

evaluating replicability of dynamic connectivity patterns in 7500 resting fmri
datasets,” in Proceedings of the 2016 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL.

Abrol, A., Rashid, B., Rachakonda, S., Damaraju, E., and Calhoun, V. D. (2017).
Schizophrenia shows disrupted links between brain volume and dynamic
functional connectivity. Front. Neurosci. 11:624. doi: 10.3389/fnins.2017.00624

Aleman, A., and Kahn, R. S. (2005). Strange feelings: do amygdala abnormalities
dysregulate the emotional brain in schizophrenia? Prog. Neurobiol. 77, 283–298.
doi: 10.1016/j.pneurobio.2005.11.005

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, V. D.
(2014). Tracking whole-brain connectivity dynamics in the resting state. Cereb.
Cortex 24, 663–676. doi: 10.1093/cercor/bhs352

Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al.
(2011). A baseline for the multivariate comparison of resting-state networks.
Front. Syst. Neurosci. 5:2. doi: 10.3389/fnsys.2011.00002

Andreasen, N. C., Pressler, M., Nopoulos, P., Miller, D., and Ho, B.-C. (2010).
Antipsychotic dose equivalents and dose-years: a standardized method for
comparing exposure to different drugs. Biol. Psychiatry 67, 255–262. doi: 10.
1016/j.biopsych.2009.08.040

Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., and Dehaene, S. (2015).
Signature of consciousness in the dynamics of resting-state brain activity. PNAS
112, 887–892. doi: 10.1073/pnas.1418031112

Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R.,
and Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical
networks in health and schizophrenia. J. Neurosci. 28, 9239–9248. doi: 10.1523/
JNEUROSCI.1929-08.2008

Beckmann, C. F., Mackay, C. E., Filippini, N., and Smith, S. M. (2009). Group
comparison of resting-state FMRI data using multi-subject ICA and dual
regression. NeuroImage 47:S148.

Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach
to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159.
doi: 10.1162/neco.1995.7.6.1129

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of resting human brain using echo-planar mri.
Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Borst, A., and Theunissen, F. E. (1999). Information theory and neural coding. Nat.
Neurosci. 2, 947–957. doi: 10.1038/14731

Brunet-Gouet, E., and Decety, J. (2006). Social brain dysfunctions in schizophrenia:
a review of neuroimaging studies. Psychiatry Res. 148, 75–92. doi: 10.1016/j.
pscychresns.2006.05.001

Calhoun, V. D. (2004). GIFT Software. Available at: http://mialab.mrn.org/
software/gift/index.html (accessed September 13, 2017).

Calhoun, V. D., and Adali, T. (2012). Multisubject independent component
analysis of fmri: a decade of intrinsic networks, default mode, and
neurodiagnostic discovery. IEEE Rev. Biomed. Eng. 5, 60–73. doi: 10.1109/
RBME.2012.2211076

Calhoun, V. D., Adali, T., Pearlson, G. D., and Pekar, J. J. (2001). A method
for making group inferences from functional MRI data using independent
component analysis. Hum. Brain Mapp. 14, 140–151. doi: 10.1002/hbm.
1048

Calhoun, V. D., Liu, J., and Adalı, T. (2009). A review of group ICA for fMRI data
and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage 45,
S163–S172. doi: 10.1016/j.neuroimage.2008.10.057

Chen, X., Zhang, H., Zhang, L., Shen, C., Lee, S.-W., and Shen, D. (2017). Extraction
of dynamic functional connectivity from brain grey matter and white matter
for MCI classification: dynamic connectivity for MCI classification. Hum. Brain
Mapp. 38, 5019–5034. doi: 10.1002/hbm.23711

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz,
C. H., et al. (2001). Frequencies contributing to functional connectivity in the
cerebral cortex in “resting-state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333.

Cover, T. M., and Thomas, J. A. (2006). Elements of Information Theory, 2nd Edn.
Hoboken, NJ: Wiley-Interscience.

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional
magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173. doi:
10.1006/cbmr.1996.0014

Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H.,
et al. (2014). Dynamic functional connectivity analysis reveals transient states
of dysconnectivity in schizophrenia.NeuroImage 5, 298–308. doi: 10.1016/j.nicl.
2014.07.003

Dimitrov, A. G., Lazar, A. A., and Victor, J. D. (2011). Information theory in
neuroscience. J. Comput. Neurosci. 30, 1–5.

Du, Y., Pearlson, G. D., Liu, J., Sui, J., Yu, Q., He, H., et al. (2015). A group ICA
based framework for evaluating resting fMRI markers when disease categories
are unclear: application to schizophrenia, bipolar, and schizoaffective disorders.
NeuroImage 122, 272–280. doi: 10.1016/j.neuroimage.2015.07.054

Du, Y., Pearlson, G. D., Yu, Q., He, H., Lin, D., Sui, J., et al. (2016). Interaction
among subsystems within default mode network diminished in schizophrenia
patients: a dynamic connectivity approach. Schizophrenia Res. 170, 55–65. doi:
10.1016/j.schres.2015.11.021

Erhardt, E. B., Allen, E. A., Damaraju, E., and Calhoun, V. D. (2011a). On network
derivation, classification, and visualization: a response to habeck and moeller.
Brain Connect. 1, 105–110. doi: 10.1089/brain.2011.0022

Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., and
Calhoun, V. D. (2011b). Comparison of multi-subject ICA methods for
analysis of fMRI data. Hum. Brain Mapp. 32, 2075–2095. doi: 10.1002/hbm.
21170

Esslinger, C., Braun, U., Schirmbeck, F., Santos, A., Meyer-Lindenberg, A., Zink,
M., et al. (2013). Activation of midbrain and ventral striatal regions implicates
salience processing during a modified beads task. PLoS One 8:e58536. doi:
10.1371/journal.pone.0058536

First, M., Spitzer, R., Gibbon, M., and Williams, J. (2002). Structured Clinical
Interview for DSM-IV-TR Axis I Disorders, Research Version, Non-patient
Edition. (SCID-I/NP). New York, NY: NewYork State Psychiatric Institute.

Freire, L., Roche, A., and Mangin, J. F. (2002). What is the best similarity measure
for motion correction in fMRI time series? IEEE Trans. Med. Imag. 21, 470–484.
doi: 10.1109/TMI.2002.1009383

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics 9, 432–441. doi: 10.1093/
biostatistics/kxm045

Friedman, L., Glover, G. H., and Fbirn Consortium (2006). Reducing interscanner
variability of activation in a multicenter fMRI study: controlling for signal-
to-fluctuation-noise-ratio (SFNR) differences. NeuroImage 33, 471–481. doi:
10.1016/j.neuroimage.2006.07.012

Friston, K. J. (2007). Statistical Parametric Mapping: the Analysis of Funtional Brain
Images, 1st Edn. Amsterdam: Elsevier/Academic Press.

Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler,
A., Schultze-Lutter, F., et al. (2013). The psychosis high-risk state: a
comprehensive state-of-the-art review. JAMA Psychiatry 70, 107–120. doi: 10.
1001/jamapsychiatry.2013.269

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional
connectivity in the resting brain: a network analysis of the default mode
hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258. doi: 10.1073/pnas.
0135058100

Jardri, R., Thomas, P., Delmaire, C., Delion, P., and Pins, D. (2013). The
neurodynamic organization of modality-dependent hallucinations. Cereb.
Cortex 23, 1108–1117. doi: 10.1093/cercor/bhs082

John, Y. J., Zikopoulos, B., Bullock, D., and Barbas, H. (2018). Visual attention
deficits in schizophrenia can arise from inhibitory dysfunction in thalamus or
cortex. Comput. Psychiatry 2, 223–257. doi: 10.1162/y_a_00023

Juckel, G., Schlagenhauf, F., Koslowski, M., Wüstenberg, T., Villringer, A.,
Knutson, B., et al. (2006). Dysfunction of ventral striatal reward prediction
in schizophrenia. Neuroimage 29, 409–416. doi: 10.1016/j.neuroimage.2005.
07.051

Kahn, R. S., Sommer, I. E., Murray, R. M., Meyer-Lindenberg, A., Weinberger,
D. R., Cannon, T. D., et al. (2015). Schizophrenia. Nat. Rev. Dis. Primers
1:15067. doi: 10.1038/nrdp.2015.67

Keator, D. B., van Erp, T. G. M., Turner, J. A., Glover, G. H., Mueller, B. A.,
Liu, T. T., et al. (2016). The function biomedical informatics research network
data repository. Neuroimage 124, 1074–1079. doi: 10.1016/j.neuroimage.2015.
09.003

Leonardi, N., and Van De Ville, D. (2015). On spurious and real fluctuations of
dynamic functional connectivity during rest. NeuroImage 104, 430–436. doi:
10.1016/j.neuroimage.2014.09.007

Frontiers in Neuroscience | www.frontiersin.org 12 August 2019 | Volume 13 | Article 873

https://doi.org/10.3389/fnins.2017.00624
https://doi.org/10.1016/j.pneurobio.2005.11.005
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.3389/fnsys.2011.00002
https://doi.org/10.1016/j.biopsych.2009.08.040
https://doi.org/10.1016/j.biopsych.2009.08.040
https://doi.org/10.1073/pnas.1418031112
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1523/JNEUROSCI.1929-08.2008
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1038/14731
https://doi.org/10.1016/j.pscychresns.2006.05.001
https://doi.org/10.1016/j.pscychresns.2006.05.001
http://mialab.mrn.org/software/gift/index.html
http://mialab.mrn.org/software/gift/index.html
https://doi.org/10.1109/RBME.2012.2211076
https://doi.org/10.1109/RBME.2012.2211076
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1002/hbm.1048
https://doi.org/10.1016/j.neuroimage.2008.10.057
https://doi.org/10.1002/hbm.23711
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.neuroimage.2015.07.054
https://doi.org/10.1016/j.schres.2015.11.021
https://doi.org/10.1016/j.schres.2015.11.021
https://doi.org/10.1089/brain.2011.0022
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1002/hbm.21170
https://doi.org/10.1371/journal.pone.0058536
https://doi.org/10.1371/journal.pone.0058536
https://doi.org/10.1109/TMI.2002.1009383
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1016/j.neuroimage.2006.07.012
https://doi.org/10.1016/j.neuroimage.2006.07.012
https://doi.org/10.1001/jamapsychiatry.2013.269
https://doi.org/10.1001/jamapsychiatry.2013.269
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1073/pnas.0135058100
https://doi.org/10.1093/cercor/bhs082
https://doi.org/10.1162/y_a_00023
https://doi.org/10.1016/j.neuroimage.2005.07.051
https://doi.org/10.1016/j.neuroimage.2005.07.051
https://doi.org/10.1038/nrdp.2015.67
https://doi.org/10.1016/j.neuroimage.2015.09.003
https://doi.org/10.1016/j.neuroimage.2015.09.003
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00873 August 22, 2019 Time: 14:29 # 13

Salman et al. Decreased Cross-Domain Mutual Information in Schizophrenia

Lottman, K. K. M., Kraguljac, N. V. M., White, D. M. M., Morgan, C. J. P., Calhoun,
V. D. P., Butt, A. M., et al. (2017). Risperidone effects on brain dynamic
connectivity– a prospective resting state fMRI study in schizophrenia. Front.
Psychiatry 8:14. doi: 10.3389/fpsyt.2017.00014

Ma, S., Correa, N. M., Li, X.-L., Eichele, T., Calhoun, V. D., and Adalı, T. (2011).
Automatic identification of functional clusters in fMRI data using spatial
information. IEEE Trans. Biomed. Eng. 58, 3406–3417. doi: 10.1109/TBME.
2011.2167149

Miller, R. L., Vergara, V. M., Keator, D. B., and Calhoun, V. D. (2016a). A method
for intertemporal functional-domain connectivity analysis: application to
schizophrenia reveals distorted directional information flow. IEEE Trans.
Biomed. Eng. 63, 2525–2539. doi: 10.1109/TBME.2016.2600637

Miller, R. L., Yaesoubi, M., Turner, J. A., Mathalon, D., Preda, A., Pearlson, G.,
et al. (2016b). Higher dimensional meta-state analysis reveals reduced resting
fmri connectivity dynamism in schizophrenia patients. PLoS One 11:e0149849.
doi: 10.1371/journal.pone.0149849

Murray, G., Corlett, P., Clark, L., Pessiglione, M., Blackwell, A., Honey, G., et al.
(2008). Substantia nigra/ventral tegmental reward prediction error disruption
in psychosis. Mol. Psychiatry 13, 239–276. doi: 10.1038/sj.mp.4002058

Rabany, L., Brocke, S., Calhoun, V. D., Pittman, B., Corbera, S., Wexler, B. E.,
et al. (2018). S224. dynamic functional network connectivity in schizophrenia
and autism spectrum disorder. Biol. Psychiatry 83:S435. doi: 10.1016/j.biopsych.
2018.02.1116

Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson,
G. D., et al. (2016). Classification of schizophrenia and bipolar patients using
static and dynamic resting-state fMRI brain connectivity. NeuroImage 134,
645–657. doi: 10.1016/j.neuroimage.2016.04.051
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