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Humans and animals can learn to order a list of items without relying on explicit spatial
or temporal cues. To do so, they appear to make use of transitivity, a property of all
ordered sets. Here, we summarize relevant research on the transitive inference (TI)
paradigm and its relationship to learning the underlying order of an arbitrary set of items.
We compare six computational models of TI performance, three of which are model-
free (Q-learning, Value Transfer, and REMERGE) and three of which are model-based
(RL-Elo, Sequential Monte Carlo, and Betasort). Our goal is to assess the ability of
these models to produce empirically observed features of TI behavior. Model-based
approaches perform better under a wider range of scenarios, but no single model
explains the full scope of behaviors reported in the TI literature.

Keywords: reinforcement learning, model-free learning, model-based learning, cognitive maps, transitive
inference

INTRODUCTION

Transitivity is a property of all ordered sets, including number systems, social hierarchies, rational
economic preferences, and spatial position. Exploiting transitivity can reduce task complexity when
learning serial order, since knowing that X > Y and Y > Z is sufficient to infer that X > Z.
Using this implied information is called transitive inference (TI) and is thought to underlie some
forms of serial learning. In this review, we describe and implement six reinforcement learning
algorithms for serial learning. Three are model-free, and depend on expected reward value to make
their judgments. The other three are model-based, and represent the rank associated with each
stimulus using a spatial continuum. These algorithms are compared side-by-side using simulation
under identical experimental conditions. The performance of the algorithms illustrates the utility
of one-dimensional cognitive maps for representing abstract relationships.

Serial learning is ubiquitous, but the mechanisms underlying TI remain poorly understood.
In humans, reasoning about serial order or rank has been studied for over 100 years, with a
central role in the history of intelligence testing (Burt, 1911) and child development (Piaget, 1921).
Following the demonstration that squirrel monkeys can perform TI (McGonigle and Chalmers,
1977), a wealth of results with animal subjects has revealed the breadth of serial learning. To date,
every vertebrate species tested has shown evidence for some form of TI (Vasconcelos, 2008; Jensen,
2017). Given this broad comparative literature showing serial learning under various experimental
procedures (Terrace, 2012), it seems reasonable that these abilities reflect cognitive mechanisms
that have deep evolutionary roots.

Despite the ubiquity of this phenomenon, no consensus has emerged about a mechanism
for inferring serial order. Some explain serial learning in animals using model-free learning

Frontiers in Neuroscience | www.frontiersin.org 1 August 2019 | Volume 13 | Article 878

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2019.00878
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2019.00878
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2019.00878&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/articles/10.3389/fnins.2019.00878/full
http://loop.frontiersin.org/people/199191/overview
http://loop.frontiersin.org/people/200770/overview
http://loop.frontiersin.org/people/14935/overview
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00878 August 16, 2019 Time: 18:3 # 2

Jensen et al. Reinforcement Learning of Serial Order

(e.g., Vasconcelos, 2008). In the context of TI, we use the term
“model-free learning” to refer to an algorithm that estimates a
probability or rate of some outcome, conditional only on past
observed events and on cues discernable in the environment.
For example, a subject might learn that p(food) is low because
food is rarely available in its past experience, but also learn that
p(food | buzzer) is high because food is often made available
while the buzzer is audible. Given sufficient training, even
naïve conditional probability estimation of this kind can solve
a wide variety of tasks without any deeper understanding of
causal relationships.

Another approach for explaining behavior consistent with
TI is “model-based learning,” in which observed events are
presumed to reflect some underlying set of rules or relations.
Subjects make additional assumptions about what the stimuli
mean and how they relate to one another, and these assumptions
support more complex inferences. Although cognitive models of
serial learning often follow the themes of model-based learning,
few are described in sufficient detail to simulate behavior, making
it difficult to compare cognitive models to their model-free
counterparts (Gazes et al., 2012). For serial learning, we believe
that the most promising approach is to assume that each item in
the list has some “spatial position” along an abstract continuum
(Jensen et al., 2013, 2015).

Solving TI using a spatial representation is akin to an abstract
cognitive map (Redish, 1999), an organizational scheme that
could be used for much more than spatial navigation (Behrens
et al., 2018). According to this proposal, positions of stimuli
are “mapped” along a single dimension, a capacity that has
been attributed to hippocampal computation (Eichenbaum et al.,
2016). Recent studies on the computational capabilities of circuits
in hippocampus (Oliva et al., 2016) and entorhinal cortex
(Bellmund et al., 2016) further suggest that spatial modeling is
a common substrate across many different cognitive domains
(Constantinescu et al., 2016).

Viewed as spatial computations, TI problems become an
important limiting case. In open fields (Chalmers et al., 2016)
or radial arm mazes (Ferguson et al., 2019), the success of
reinforcement learning often depends on physical and temporal
cues. These allow a model-free algorithm to “navigate a space”
without encoding a representation of that space, because the
cues provide many ways to discover rewards. For example, early
difficulties experienced by model-free learning of the 1983 Atari
game Ms. Pac-Man (e.g., Mnih et al., 2015) have largely been
overcome by making better use of the information on screen
(e.g., van Seijen et al., 2017). In effect, the environment bears the
burden of representing itself, freeing the agent from having to do
so using an encoding scheme.

Algorithms of this kind struggle when task information is
sparse. The 1984 Atari game Montezuma’s Revenge, for example,
remains largely unsolved by reinforcement learning because it
provides the user with very few informative cues (Justensen
et al., 2019). Similarly, TI tasks present the bare minimum of
information that only implies the list order, while other cues (such
as time, stimulus position, and trial order) are carefully controlled
to provide no information usable by the subject. As a result, TI
procedures eliminate the cues that make open field problems

with spatial landmarks solvable by model-free methods. TI tasks
thus have the potential to reveal clues about the machinery that
organisms use for spatial cognition in general, beyond the narrow
scope of ordered lists.

In this review, we will first characterize the problem posed by
TI tasks (see Section Problem: How to Infer Serial Ordering from
Pairwise Comparisons), then describe three model-free learning
algorithms (see Section Model-Free Solutions: Expected Value
Estimation) and three model-based learning algorithms (see
Section Model-Based Solutions: Inference About Ordering) that
have been suggested as models of this kind of inference. We then
recover the relevant algorithm parameters from empirical data
and use them to perform simulations to evaluate how well these
algorithms do under a variety of experimental conditions (see
Section Simulation of Serial Order Tasks). We conclude with a
brief model comparison analysis (see Section Model Comparison
and Ensemble Modeling), a note on computational complexity
(see Section A Note on Computational Complexity), and our
concluding thoughts (see Section Conclusion).

PROBLEM: HOW TO INFER SERIAL
ORDERING FROM PAIRWISE
COMPARISONS

When organisms solve the TI problem, they in effect perform a
statistical procedure: Inferring ranks of items in an ordered list,
based on partial information provided by a series of pairwise
comparisons. Such statistical inferences can be accomplished
with a variety of strategies (Bürkner and Vuorre, 2018). Because
many candidate algorithms exist, above-chance performance in
a TI task is not sufficient to determine how organisms solve the
task. Instead, common features of behavior that accompany this
inference provide vital clues about its underlying computations.

Experimental Evidence
In the standard TI task, subjects are presented with pairs of
stimuli drawn at random from an ordered list, and are rewarded
for selecting the “correct” item. A stimulus is correct if its rank is
lower than the distractor with which it is paired. So, for example,
given the 7-item ordered list ABCDEFG (e.g., Figure 1A), the
stimulus C is a correct answer in the context of the pair CD, but
is incorrect in the context of the pair BC (Figure 1B).

Although there are 21 possible pairs in a 7-item list, training all
the pairs in parallel is not sufficient to conclude that a “transitive
inference” has occurred. A model-free learning mechanism that
tracks the expected value of each stimulus can succeed in an all-
pairs design, because A is correct in more pairs than B, which in
turn is correct in more pairs than C, and so forth. To provide
a strong test that an organism’s inference of list order depends
on transitivity (rather than comparing each item’s association
with obtained rewards), the classic test of TI is to train only
the adjacent pairs (in this case, AB, BC, CD, DE, EF, and FG).
This contrast between training sets and testing sets is shown in
Figure 1C. Under adjacent-pair training, terminal items A and
G are associated with perfect information (100 and 0% rewards,
respectively), while all non-terminal items are correct in 50%
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FIGURE 1 | Schematic description of a transitive inference task. (A) Example of a 7-item ordered list of photographic stimuli. “Greater Than” symbols denote which
items dominate which other items (e.g., baked potato is correct relative to every other stimulus, but fighter plane is only correct when paired with zebra). (B) Example
of a single trial. Following a start stimulus, two stimuli appear on screen. If the correct item is selected, positive feedback is provided; an incorrect choice leads to
negative feedback. In every trial, there is always one correct and one incorrect answer. No more than two stimuli are ever presented at a time for the duration of the
experiment. (C) The training and testing sets of pairs of stimuli. During training, only adjacent pairs (AB, BC, etc.) are presented typically in a randomized order that
counterbalances how often each stimulus appears on each side of the screen. During testing, all 21 pairs are presented. The “symbolic distance” (denoted as “Dist”)
refers to how many steps in the list one has to make to get from one item to another. Adjacent pairs have a symbolic distance of 1, whereas pairing both terminal
items has a distance of 6. The “non-terminal pairs” are those that exclude both the first and last list item. If a non-terminal pair was also excluded from the training
set, then it considered is a “critical pair” at test. (D) The frequency with which each stimulus is correct, relative to the number of pairs it appears in during that phase.
During training, non-terminal items are correct 50% of the time, and consequently comparisons of the overall reward rate for non-terminal are equivocal, given only
the information available during training. Reproduced with permission (DOI: 10.6084/m9.figshare.7992005.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

of the training cases (Figure 1D). Upon completion of training,
B and D have identical expected values, providing no clue about
which response is correct. We henceforth refer to pairs that are
non-adjacent (i.e., outside the training set) and non-terminal (i.e.,
ambiguous with respect to expected value) to be the critical pairs.
If a subject exceeds chance on those pairs, some inference beyond
mere reward associations must have taken place. In a 7-item list,
the six critical pairs are BD, CE, DF, BE, CF, and BF.

Aside from above-chance performance on the critical pairs,
two other major clues are routinely evident in studies of TI. The
first of these is the terminal item effect (Wynne, 1997; Acuna
et al., 2002), which occurs when pairs that include terminal
items yield more correct responses. Since terminal items have
an unambiguous reward history (e.g., A is always correct), these
discriminations should be easier because of their differential
reward associations, even if a non-associative mechanism is also
at work. Terminal item effects are usually visible throughout
training and testing. A model purporting to explain how subjects
perform TI should display these effects.

The second consistent behavioral phenomenon is the symbolic
distance effect (D’Amato and Colombo, 1990), which is present
when the difference in the ranks of two items (or the pair’s

“symbolic distance”) is associated with response accuracy.
Non-human studies of TI almost always display lower accuracy
for pairs of adjacent items than for pairs that are spaced apart
more widely in the list (Jensen, 2017), even when adjacent pairs
are extensively trained. Unlike terminal item effects (which can
arise from reward associations), symbolic distance effects provide
compelling evidence of a cognitive strategy (Terrace, 2010; Jensen
et al., 2013), particularly when those distance effects can be seen
among critical pairs that did not appear in the training set (e.g.,
Jensen et al., 2017; Kao et al., 2018).

One of the surprising predictions of a positive symbolic
distance effect is that response accuracy should be lower for
adjacent pairs than for any other distance, despite extensive
training on those pairs. In non-human animals, even when
training consists of tens of thousands of presentations of a small
set of adjacent pairs (e.g., Merritt et al., 2007; Lazareva and
Wasserman, 2012), those pairs nevertheless have the highest
error rates. In some cases, response accuracies appear barely
above chance throughout training, only to leap to higher
accuracies as soon as pairs with larger symbolic distances are
tested (e.g., Jensen et al., 2015). These results, particularly
the high starting accuracy for non-adjacent pairs, suggests a
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FIGURE 2 | Estimated performance for a single subject (Hubble), as reported by Jensen et al. (2015). Circles represent empirical averages of observed performance,
while box-and-whisker plots represent the estimated performance according to pairwise logistic regression. Boxes represent the 80% credible interval, whereas
whiskers represent the 95% credible interval. (A) Mean response accuracy for non-terminal pairs of distances 1–4, smoothed over a 21-response moving window
(B) Estimated performance at the start of testing (“trial zero”). Pairs shaded with gray are the “critical pairs” that are expected to remain at chance if subjects are
engaged only in a reward association learning strategy; if their performance is above chance, it suggests that an actual inference is being performed. (C) Estimated
performance after 210 trials of testing. Reproduced with permission (DOI: 10.6084/m9.figshare.7992008.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

representation that approximates the overall order successfully
but retains uncertainty about the positions of individual items.

Figure 2 gives an example of typical TI performance (from
Jensen et al., 2015). This monkey (“Hubble”) was given 150 to
300 trials of training on adjacent pairs (red points) in 7-item lists.
Response accuracies were fit for each pair independently using
logistic regression in the Stan programing language (Carpenter
et al., 2017), as described in the Supplementary Material. Using
the models for each of the pairs, Figure 2 projects the accuracy
on the first trial of testing (“trial 0”), when each non-adjacent
pair had not been seen before, as well as the last trial of testing
(“trial 210”), at which point all pairs were familiar. The critical
pairs (highlighted in gray) are above chance in five out of six cases
at trial 0, and pairs with a larger symbolic distance (e.g., BF) tend
to display higher performance than those with smaller symbolic
distances (e.g., CE).

MODEL-FREE SOLUTIONS: EXPECTED
VALUE ESTIMATION

Model-free approaches seek to explain TI (and by extension,
serial learning) purely in terms of observable associative factors,
making no reference to internal states or to representations
of ordering (Wynne, 1995; Vasconcelos, 2008). These theories
assume that model-free learning can account for above-chance
performance on critical pairs. In studies of this kind, the
phrase “transitive inference” is used to identify the behavioral

phenomenon of above-chance performance on critical pairs, not
to imply a logical inference per se.

Most models of this kind choose stimuli on the basis of the
“associative strength” each has with rewards. That is, model-
free learning relies exclusively on using feedback from the
environment to evaluate the relative frequency of reward as
a function of past experience. Experienced value is taken to
predict future expected value, and choices should thus be made
to maximize future rewards.

Acting to maximize rewards can be deceptively powerful,
even in the absence of a representational (i.e., model-based)
framework for understanding the task at hand. As such, we
must be cautious about interpreting results that are consistent
with a cognitive account. In some cases, TI results can also be
explained by model-free accounts. We consider three model-free
algorithms below.

Q-Learning: Expected Value Weighted by
Recency
One of the simplest incarnations of model-free learning that
is relevant to TI problems is Q-learning (Watkins and Dayan,
1992). As it is typically implemented, Q-learning uses both
a retrospective and a prospective learning mechanism. The
retrospective element maintains a running average of the
outcomes for each of its responses, weighted to favor recent
events according to an exponential function (Glimcher, 2011).
This retrospective element is identical to the “associative
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strength” estimated by the Rescorla–Wagner model (Widrow
and Hoff, 1960; Rescorla and Wagner, 1972), with roots in
the ‘mathematical model of simple learning’ proposed by Bush
and Mosteller (1951). Its prospective element uses a discounted
projection of the future state to which the current choice leads.
Although Q-learning cannot explain TI in a well-controlled
experiment, it provides a useful baseline against which to
compare other algorithms.

Under Q-learning, each behavioral alternative has a numerical
“quality,” which corresponds to the value or utility expected
from performing that behavior, contingent on the “state” the
actor is in. Typically, the algorithm’s state is determined by
environmental context, such as position in space or the presence
of an informative cue. At a time t, the value associated with an
action at , given some contingent contextual state st , is denoted by
Q (at|st) (to be read as “the value of action at , given the state st”).
When a choice is made, its consequence ct is used to update the
value of Q according to the following function:

Q(at|st)← Q(at|st)

+δ[ct + γ(max(Q(all at+1|st+1)))− Q(at|st)] (1)

α ∈ (0, 1), γ ∈ (0, 1)

The term ct is sometimes called the “immediate reward,” but
ct may also take on a negative value in the event that the
consequence is aversive.

Q-learning’s value updating function has two parameters. The
‘learning rate’ δ controls retrospective learning, and governs
how quickly the actor forgets the old information encoded in
Q (at|st) in favor of new information. When δ is 0.0, the actor
cannot learn from feedback; when it is 1.0, it discards all past
information every time it observes a new outcome. Giving δ a
low value (e.g., below 0.2) results in the gradual progress typical
of trial-and-error learning.

The ‘discount factor’ γ controls Q-learning’s prospective
learning, and governs the influence that future states have on
estimates of the value of the current response. The quantity
max

(
Q
(
all at+1|st+1

))
refers to the value of the best projected

response option, contingent on the actor’s state in the next
time step, st+1. This also contributes to the value of Q because
a current choice might bring the actor closer to a desirable
contextual state, even if that choice doesn’t yield an immediate
reward (e.g., moving the agent closer to the exit of a maze
in order to hasten the receipt of a reward upon exiting).
If γ = 0.0, Q-learning is identical to Rescorla–Wagner-style
associative learning:

Q (at|st) ← Q (at|st)+ δ [ct − Q (at|st)] , α ∈ (0, 1) (2)

Despite its extreme simplicity, Q-learning can solve many
difficult problems if given sufficient training and a sufficiently
complex matrix of states and actions. This is because, when an
actor’s choices (e.g., “move forward”) influence its contextual
state (“distance and direction of food”), the algorithm can
discover not only which actions yield rewards, but can extrapolate
backwards from those rewards to discover which sequences of
behavior lead to rewards. However, Q-learning is at a particular

disadvantage in the case of TI tasks because most experimental
designs predetermine and randomize the presentation order of
stimuli, such that the actor’s choice at has no effect whatsoever
on the subsequent state st+1. If, for example, a subject sees
the stimulus pair AB on the first trial, its choice has no
influence on which pair is presented on the second trial, or on
which side of the screen each stimulus appears. Put another
way, because each future state st+1 does not depend in any
way on at , the value of max

(
Q
(
all at+1|st+1

))
in Equation

1 is entirely determined by the task structure, and not by
the actor’s choices. TI is thus akin to a maze in which, after
each choice, the experimenter teleports the subject to another
part of the maze.

Using Q-learning to try to solve TI tasks also requires a
decision by its designer about what constitutes a “state.” If, for
example, we treat each unique stimulus pairing (e.g., “BC” or
“CD”) as a unique state, then the actor will treat Q (C|BC) as
being entirely unrelated to Q (C|CD). When presented with a
stimulus pairing it has never previously observed (e.g., BD),
such an actor would always begin at chance, with no possibility
of generalizing. We are interested in an algorithm that can
generalize (since this is the only way this algorithm has any
hope of solving novel scenarios), we have coded our Q-learning
implementation to ignore context. The result is that Q is a vector,
with one value for each response alternative.

Finally, the designer must decide whether to update response
alternatives that are not chosen. For example, if the actor
is presented with BC and chooses B (yielding a reward), it
should update Q (B) using ct = 1.0, but should it also update
Q (C) using ct = 0.0? A Q-learning algorithm that only updates
the chosen response is hereafter identified as “asymmetric.”
Asymmetric learning is commonly assumed in the behavior
analysis literature, because the tradition of behaviorism insists
that behavior should only be explained by observables, not
by counterfactuals. We call algorithms that update the values
of both choices “symmetric,” since they exploit the either/or
symmetry of the TI task, effectively extracting two trials
worth of information from each trial. We feel this choice
can be justified on the grounds that subjects familiar with
the task have ample reason to believe that feedback is not
probabilistic, and thus that every trial has one correct and
one incorrect answer. Unless otherwise indicated, we assume
symmetrical updating.

Still missing from this algorithm is the action policy, the rule by
which values Q are translated into actions. Our implementation
of Q-learning makes use of the softmax decision rule (Sutton
and Barto, 1998), originally due to Luce (1959). This gives the
probability of taking an action at , from the set of all actions
available at that time At , as follows:

p (at|st) = softmax (Q, θ) =
exp (θ · Q (at|st))∑

i∈At
exp (Q (i|st))

, θ ≥ 0.0 (3)

This action policy is governed by one parameter θ, which
determines how strongly the response alternatives contrast with
one another. When θ is large, the policy responds almost
exclusively to the choice with the highest expected value. As θ gets
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smaller, the odds of non-maximizing behaviors increase, until
θ = 0.0 yields equiprobable chance responding.

The Value Transfer Model: Value by
Association
Following the demonstration of TI on monkeys by McGonigle
and Chalmers (1977), there was heated debate over the correct
definition and implications of “animal intelligence” (Macphail,
1987). TI in non-human animals was particularly provocative
because it could not be easily explained by the reward associations
that had dominated behavior analysis (and thus animal
psychology generally) in the preceding decades. The “Value
Transfer Model” (VTM) was proposed as a counterargument
against a cognitive account (von Fersen et al., 1991), ostensibly
providing an associative account of how TI might arise.

Under VTM, stimuli become associated with rewards
according to a Rescorla–Wagner mechanism, and the strength
of this association governs the relative rate at which stimuli are
selected. However, they also accrue value from the associative
strength of the stimuli they are paired with. In other words,
value “transfers” between stimuli that appear together. Like most
behavior-analysis studies of its time, this was demonstrated by
first collecting data and then fitting a function to the resulting
summary statistics. Under this analysis, VTM appears able to
describe behavior in the classical experimental demonstrations
of TI in animals (Wynne, 1995). However, VTM was not
originally conceptualized as a process model that could be
used in simulation.

We implemented VTM as a process model using the design
described by Kumaran et al. (2016). This builds directly on the
retrospective formalism described in Equation 2, and introduces
an additional term τ to the value updating function:

Q (at|st) ← Q (at|st)+ δ
[

ct + τ
(∑

Q (¬at|st)
)
− Q (at|st)

]
α ∈ (0, 1) , τ ∈ (0, 1) (4)

Here, the parameter τ corresponds to rate of “transfer” between
stimuli and

∑
Q (¬at|st) refers to the sum of all values of

Q for the actions that were available to the actor but were
not chosen. If τ = 0.0, the function is identical to Equation
2. As τ grows, the value of any given Q grows merely by
association with the other presented stimuli, independent of
the consequences of choosing at . This implementation uses the
softmax rule (Equation 3) as its action policy. VTM may be
implemented symmetrically (updating every response option)
or asymmetrically (updating only the chosen item). Unless
otherwise noted, we used symmetrical updating.

Although some variant of VTM is typically presented as
the go-to “behaviorist alternative” to cognitive theories of TI
(e.g., André et al., 2012), VTM makes incorrect predictions
under a wide range of experimental preparations (e.g., Weaver
et al., 1997; Daniels et al., 2014; Vasconcelos and Monteiro,
2014). A particularly important failure was reported by Lazareva
and Wasserman (2006, 2012), who introduced a block of
trials between training and testing that consisted exclusively of
massed presentation of a single pair of stimuli. This design

did not undermine performance by subjects, despite VTM’s
predictions that there should be a dramatic increase in error
rates. We demonstrate this failure, among others, in the
simulations below.

REMERGE: Value by Configural Similarity
Although VTM is the most commonly cited associative model
of TI, another approach was proposed at about the same time.
Couvillon and Bitterman (1992) proposed that, rather than TI
arising from cross-talk between reward associations, it could
instead be explained by the similarity of the contexts in which
behavior was occurring (i.e., the stimulus pairings). Under this
“configural” theory of TI, subjects simultaneously learn about
response alternatives and about stimulus pairs. The configural
similarity of stimuli provides clues that could be used to exceed
chance performance for novel pairs.

This theme of context configuration has been a long-standing
proposal in computational neuroscience for how spatial or
temporal processing might be implemented in the hippocampus
(Wu and Levy, 1998; Rodriguez and Levy, 2004). In the context of
the TI task, its most fully realized form is the REMERGE model,
due to Kumaran and McClelland (2012).

REMERGE is a neural net model with three layers, as
depicted in Figure 3. The “Feature layer” receives inputs from
the environment, with each item in the list receiving its own
node. The “Conjunctive layer” consists of one node for each
stimulus pair. Each Feature node excites every Conjunctive
node associated with a pair that its stimulus belongs to, and
each Conjunctive node stimulates both Feature nodes associated
with its pair of items. Meanwhile, activity in the Conjunctive
layer stimulates nodes in the “Response layer,” with one node
associated with each response alternative. Each Conjunctive
node sends excitatory signals to the Response node associated
with a correct response while also sending an inhibitory signal
to the Response node associated with an incorrect response.
The mutually excitatory feedback between the Feature and
Conjunctive layers is renormalized until a steady state is reached,
and at that point the relative activity of nodes in the Response
layer provide the basis for the action policy to select one of
the stimuli. The details for this implementation are given in the
Supplementary Material.

As described by Kumaran and McClelland (2012), REMERGE
has two free parameters governing the activity of the network;
λ and ω govern the behavior of the feedback between network
nodes. λ denotes the “temperature” of the network, which
governs how much activity in the network is permitted to vary
as it converges toward a steady state. ω corresponds to a constant
“saturation” variable that determines how much hedging should
occur in the activity of the conjunctive layer, effectively putting
an upper limit on the resulting renormalized values. Kumaran
and McClelland (2012) also give one free parameter that governs
choice behavior, the θ parameter of a softmax action policy. This
policy is identical to that given by Equation 3, except that instead
of using Q, REMERGE applies softmax to the activity associated
with all nodes in the Response layers that are available to the actor
during the current trial. Our symbols λ, ω, and θ correspond to
the parameters given by Kumaran and McClelland as 1

τ
, C, and
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FIGURE 3 | Schematic depiction of RL-REMERGE. Nodes in the Feature layer are initially stimulated by inputs (i.e., if a stimulus is present, its Feature node is
excited). All solid-line connections are excitatory, whereas dotted-line connections are inhibitory. When stimuli in the Feature layer are excited, this flows through
excitatory connections to the Conjunctive layer, with one node for each pairing the algorithm has previously observed. Excitation then flows back to the Feature layer,
and so forth. Excitation entering the Conjunctive layer (red arrows) is “hedged” during renormalization, leading to dissipating excitation for nodes that are many steps
removed from environmental input. Once the feedback between the Feature and Conjunctive layers has stabilized, excitatory and inhibitory inputs to the Response
layer are summed, and a choice is made using the softmax rule. Because REMERGE is initially ignorant about the values between the Conjunctive and Response
layers, those arrows (in blue) begin with values of 0.0 and their excitatory or inhibitory strength is subsequently discovered using Q-learning. In this scenario
REMERGE learned a 5-item list. (Left) Following training, the Conjunctive layer only has four nodes, corresponding to the four adjacent pairs. This is sufficient to infer
that B > D because information flow between the Feature and Conjunctive layers when B and D are externally stimulated yield a higher overall level of excitation for B
than it does for D. (Right). Partial network depicting only those nodes that are directly connected to options B and D. Since all ten pairs have now been observed,
every stimulus in the Feature layer has links to four Conjunctive layer nodes. In practice, information flow still passes through all Feature and Conjunctive nodes, but
exposure to all stimulus pairs makes that diagram too complex to depict in a figure. Reproduced with permission (DOI: 10.6084/m9.figshare.7992011.v1). Copyright
2019, Jensen, Terrace, and Ferrera.

β respectively, but we have elected not to use their notation to
minimize confusion with other symbols used in this manuscript.

Despite being a model of TI, REMERGE was not a model of
learning in its original presentation, because the arrangement of
the network presumed that training was complete and sought
only to predict the actor’s behavior on the next trial. In order
to make REMERGE a learning model, we made two changes.
The first change was that each node in the Conjunctive layer
was excluded from calculation until the first trial in which
that stimulus pair was presented. Thus, given training only on
adjacent pairs, REMERGE would only be able to make inferences
using those pairs. This explains the difference between the two
versions of the network depicted in Figure 3. Following training,
the Conjunctive layer has only four nodes because it has only
been exposed to four combinations of stimuli. Contrastingly,
after testing, the Conjunctive layer includes a node for each of
the ten possible pairs. This is because by that time the network
has been exposed to all of those explicit cases.

Our second change was that rather than hard-coding the links
between the Conjunctive and Response layers with the correct

and incorrect responses, we require that REMERGE learn the
values of those links by Q-learning (where incorrect responses
were given a value of −1, rather than 0, to ensure incorrect links
would become inhibitory), with a corresponding learning rate δ.
Thus, our “reinforcement learning” version of REMERGE had
four free parameters in total.

REMERGE straddles the line between model-free and model-
based learning. Although it does not implement a model of the list
order, it does implement a kind of logical syllogism. As Figure 3
depicts, the presentation of the pair BD allows these two stimuli
to be indirectly associated by information flowing back and forth
through the Feature and Conjunctive layers (following the path B
↔ BC↔ C↔ CD↔D). Importantly, however, this syllogism is
subject to error propagating through the network. In particular,
due to the hedging term ω, activity flowing along longer
sequences of nodes (i.e., inferences involving response pairs with
a larger symbolic distance) tends to wash out. The obvious
prediction that follows from this is that REMERGE should
display a negative symbolic distance effect at transfer, the opposite
of the pattern observed in the empirical data (e.g., in Figure 2).
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MODEL-BASED SOLUTIONS:
INFERENCE ABOUT ORDERING

At the core of the debate over whether TI is better explained
by model-free or by model-based learning is a disagreement
about parsimony. Advocates of model-free TI (such as VTM)
see the invocation of “mental representations” as a needless
complication, whereas advocates of cognitive models argue
that even though they are generally more computationally
complex, they are nevertheless more plausible in light of their
generality, as well as support from a host of experimental studies
(Terrace, 2012).

Despite this, most cognitive models of serial learning have
been conceptual in nature, consisting of qualitative descriptions
of processes that give rise to group averages. Much of the
empirical support cited for these theories relies on the failure
of associative models to account for the available experimental
results (Gazes et al., 2012). Assessing the complexity of these
cognitive theories is difficult because most cognitive models of
serial learning have not been characterized in computational
terms. This paucity of model-based learning algorithms that are
based on cognitive theories may be in part due to the difficulty
of designing a plausible model-based algorithm for learning TI
that does not presuppose the list order. As such, in order for
a model-based algorithm to provide a satisfactory description
of serial learning, it must be able to begin with novel stimuli,
deduce the correct order given some pattern of stimulus pairings,
and display the characteristic pattern of errors seen in real
subjects while doing so.

First, it is important to characterize the range of possibilities
for a model-based algorithm. Since TI is presumed to be an
inference about the order of the items in a list, an algorithm
that bases its response on any model of ordering, rather than
on expected value, may be considered a cognitive model. The
simplest such model is simply an ordered list that is able to adjust
its ordering on the basis of feedback.

RL-Elo: Semiparametric Rank Estimation
The Elo rating system was first developed for use in chess
(Elo, 1978) and has since been used in a variety of other
competitive settings. Each competitor has a rating (e.g., Garry
Kasparov retired from chess with a rating of 2812), which can
be compared to the rating of others in order to predict who is
more likely to win in a match-up. When a sanctioned match
between players occurs, the amount by which each player’s
score changes is a function of how surprising the result is,
relative to the rating’s prediction. Although designed for human
competition, the dynamic character of the Elo rating system
(able to change over time as new information comes in) has made
it a popular model for other scientific problems of ordinal rank,
such as the analysis of dominance hierarchies in animal groups
(Neumann et al., 2011).

To adapt this approach to the problem of TI, Kumaran et al.
(2016) implemented a reinforcement learning version of this
system, which they called “RL-Elo.” Under this system, each
stimulus was assigned a score of 0.0 in a vector V at the start of

training, and choices were made according to the softmax rule
(Equation 3) applied to the elements of V that were associated
with the stimuli visible during each trial (with a corresponding
free parameter θ). When ratings are evaluated on a pairwise basis
(e.g., at and ¬at), this reduces to the logistic function, defined in
terms of the difference between the two values of V :

p (at) =
1

1+ exp (−θ (V (at)− V (¬at)))
(5)

This action policy is effectively the softmax rule (Equation 3),
albeit limited to two alternatives. However, rather than updating
the stimuli as a function of their expected value, RL-Elo updates
them with respect to their expected probability of a correct
response. Thus, if at is the correct response, then given the
probability that a correct response p (at),

V (at) ← V (at)+ δ
(
1− p (at)

)
(6)

V (¬at) ← V (¬at)+ δ
(
p (at)− 1

)
δ ∈ (0, 1)

Here, the learning rate δ makes another appearance, but this time
it is being used to update the score associated with a stimulus,
without consideration for its expected value. Consequently, the
engine that powers RL-Elo is not expected value, but rather
expected difference in rating. Under this implementation, RL-Elo
updates stimuli symmetrically. Since this difference is effectively
tracked as a difference on the logit scale, the vector V can be seen
as a semiparametric model for estimating the ranks of the stimuli.
From this perspective, V (at) makes no distinction between a
representation of the rank of a stimulus and the preference for
selecting that stimulus during trial t. The result is a gradient-
following algorithm (Williams, 1992) that adjusts the scores in V
until such time as difference in the scores between any two items
yields close to perfect discrimination of their rank. The logic of
this updating scheme is depicted in Figure 4 (left).

Sequential Monte Carlo: Iterative
Crowdsourcing
Most statistical analyses of ordinal rank adopt a semiparametric
strategy, as RL-Elo does. However, estimating some scalar
quantity as a proxy for the ordinal rank has limitations. One
is that, like most model-free strategies, adjusting the values
associated with stimuli only after they were presented can be
unreliable when some item pairs are presented more often
than others (i.e., unequal base rates of presentation). That
limitation is overcome by “Sequential Monte Carlo” (SMC)
algorithms (Kumaran et al., 2016). Sometimes called “particle
filter” algorithms, these provide an approximation to Bayesian
reasoning about ordinal rank similar to the approach used
by a Kalman filter (Doucet et al., 2000). The details of its
implementation are given in the Supplementary Material.

Rather than consider a single vector of scalar values, as RL-
Elo does, SMC simultaneously considers a very large number
of them. Our implementation uses 10,000 such “hypothetical
orderings,” generated randomly from a normal distribution (with
variance σ2

∅
) at the outset of training. Rather than adjust those

Frontiers in Neuroscience | www.frontiersin.org 8 August 2019 | Volume 13 | Article 878

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00878 August 16, 2019 Time: 18:3 # 9

Jensen et al. Reinforcement Learning of Serial Order

FIGURE 4 | Schematic depiction of the updating rules used for the RL-Elo and Sequential Monte Carlo (SMC) algorithms. (Left) RL-Elo represents each list item at

as a stimulus as having a value V (at ) along some unitless continuum. The probability of choosing the item is obtained by computing the difference d between that
item and its alternative (d can be negative if the item has the lower of the two values) and passing d through the logistic function. The parameter θ adjusts the
contrast. If the choice made was correct, its value is adjusted as a function of how far that value was from its expectation, adjusted by a learning rate δ. (Right) The
updating process during a single trial for SMC is demonstrated using a sample of five hypothetical orderings (out of the 10,000 that our implementation used). As
with RL-Elo, each difference score yields a probability of selection using the logistic function. Additionally, each hypothetical ordering has an associated weight based
on how well it has predicted previous trials. The choice is made on the basis of a weighted average of the probabilities, and the feedback is used to update the
weights (strengthening or weakening each ordering’s influence as a function of how well it predicted the outcome of the trial). The orderings themselves are then
modified using Gaussian noise. Not shown is the algorithm periodically throwing out the existing 10,000 orderings in favor of a new set of alternatives. Reproduced
with permission (DOI: 10.6084/m9.figshare.7992014.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

orderings adaptively based on feedback, the values of all items
in all hypothetical orderings are adjusted at random by adding
normally distributed random noise (with variance σ2) to each
value. In general, σ∅ is large relative to σ, in order to ensure that
the various hypothetical orderings differ considerably from one
another. SMC does not use the feedback to update the orderings
directly, but instead uses it to update the weight associated
with each hypothetical ordering. All orderings begin with equal
weights, but over time, those whose predictions are consistent
with feedback are given more weight, while those that are not
consistent are given less weight. Orderings that happen by chance
to be mostly correct come to dominate the overall representation
of order, while those that make consistently poor predictions are
reduced to having almost no influence. The choice that the actor
then makes is based on the weighted average of the estimated
stimulus positions, based on a softmax decision rule (Equation
3) with θ as a free parameter. This implementation thus has three
free parameters: σ∅, σ, and θ .

SMC can be seen as 10,000 RL-Elo estimates, except that all
stimuli are being updated at random all the time. Those orderings

that are consistently right are given greater weight than those that
are consistently wrong, and it is the weight that is updated on
the basis of feedback, using the delta rule given in Equation 6.
Rather than trying to update a single ordering optimally (as RL-
Elo does), SMC updates a crowd of possible orderings randomly,
and then updates the “fitness” or “reputation” of those random
orderings on the basis of feedback to separate out the good vs. the
bad models. Figure 4 (right) gives a schematic example of this
updating process (albeit using only five hypothetical orderings,
rather than 10,000).

Even with 10,000 simultaneous models, however, there is a risk
that none of the hypothetical orderings are ordered correctly. We
know that monkeys can learn 9-item lists (Jensen et al., 2013)
and 15-item lists (Treichler et al., 2003), but for lists of those
lengths there are 9! and 15! (i.e., 362,880 and 1.3 trillion) possible
orderings, respectively. As such, SMC includes a criterion to
resample its list orderings periodically, generating a new set
of 10,000 hypotheses using its existing 10,000 hypotheses and
their respective weights as a seed. Put another way, the new
set of 10,000 hypotheses are drawn, with replacement, from
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the previous set of 10,000, using the learned weights. Thus,
orderings that have close to zero weight have little chance of being
resampled, whereas those with high weight are likely to appear
multiple times in the new generation of hypotheses (after which
they diverge due to the added noise).

SMC algorithms give reasonable approximations to behavior
in a variety of contexts (Yi et al., 2009). Insofar as they constitute
a Monte Carlo estimation process, filters with a sufficiently
large number of particles should converge on optimal estimates
given sufficient evidence. SMC’s periodic resampling allows the
algorithm to weed out bad hypotheses and gradually converge
on a high-precision estimate of the list ordering, giving it an
advantage over a conventional Kalman filter. However, this
advantage relies on the assumption that the target ordering is
static. In the event that the ordering changes, this resampling
can result in the algorithm painting itself into a corner, from
which it can only gradually escape. Consequently, a reasonable
prediction is that SMC should be robust to many experimental
manipulations, but should respond poorly to experimental
designs that change the ordering of the list.

Betasort: Modeling Position, Uncertainty,
and Transitivity
Although score-differential models of rank like RL-Elo and SMC
have the potential to be effective in sorting well-ordered lists,
they have a number of limitations. The most substantial of
these is that they assume that the uncertainty of each score is
uniform. If, for example, a subject is trained extensively on a five-
item list ACDEF, and is only later introduced to the stimulus
B, those models have no way of representing that the position
of B is much more uncertain than the positions of the other
stimuli. To fix this, the position of each stimulus would need
to be represented by a minimum of two parameters. Attempts
to extend the Elo rating system directly, such as Glickman’s
“Glicko” and “Glicko-2” algorithms (described by Samothrakis
et al., 2016) provide a framework for introducing additional
parameters, but their additional model complexity can create
scenarios in which ratings become trapped in local minima, as
well as relying on hyperparameters that must be set ad hoc to
govern how dispersion evolves over time. It would be preferable
to keep action selection and value updating be as simple and as
computationally efficient as possible.

Jensen et al. (2015) proposed the “Betasort” algorithm as a
computational model of serial learning. Under this framework,
the position of each item in the list is represented by a beta
distribution whose shape is determined by two values, U and L
(corresponding to the “upper” and “lower” ends of a unit scale).
An item’s probability density D (x) between 0.0 and 1.0 is given
by the following formula:

D (x) = BetaPDF (x|U, L)

=
xU−0.5

· (1− x)L−0.5 0 (U + L+ 1)

0 (U + 0.5) · 0 (L+ 0.5)
(7)

Note that BetaPDF (x|U, L) assumes the inclusion of a
Jeffrey’s prior, which introduces a slightly conservative
factor to the estimate that facilitates numerical estimation.

This is accomplished by adding a value of 1/2 to each
term, on the principle that the beta distribution is its own
conjugate prior, such that BetaPDF (x|U + 0.5, L+ 0.5) ∝
BetaPDF (x|U, L) BetaPDF (x|0.5, 0.5). Although it would
be most appropriate to say that the entire distribution D (x)
represents the estimate of an item’s position, a summary is given
by the mean, U+0.5

U+L+1 .
The action policy under Betasort is to draw a random value

from each distribution that corresponds to an available action,
and to take the action with the largest value. The net effect of a
random draw procedure is a baseline probability of choosing an
action at given by the following formula (Raineri et al., 2014):

pbeta (at) =

1∫
0

BetaPDF
(
x, Uat , Lat

)

·

 x∫
0

BetaPDF
(
y, U¬at , L¬at

)
dy

 dx (8)

Although determining the value of this double integral is
computationally prohibitive, doing so is not necessary to simulate
behavior using this procedure. This is because making random
draws from two beta distributions is much less computationally
intensive than solving the integral above.

Unlike RL-Elo and SMC, Betasort applies its value updating
function to all stimuli (including those that are not presently
visible) and treats positive feedback differently from negative
feedback. Figure 5 gives a visual sense of these updating steps.
Following every trial, the existing values of U and L are relaxed
by a “recall” parameter ϕ, whose value is less than 1.0. This
effectively makes U and L leaky accumulators (Grice, 1972),
although in Betasort’s case, the strength of the forgetting imposed
by ϕ is further adjusted as a function of how frequently the
algorithm makes correct responses. See Jensen et al. (2015) or the
Supplementary Materials for details.

If a choice yielded positive feedback, every value of U is
increased by U

U+L and every value of L is increased by L
U+L .

This has the effect of increasing the model’s confidence of all
position estimates, because it reduces the variability of all position
distributions without shifting any of the distribution means. If,
on the other hand, the feedback was negative, several updates
happen in succession. First, the chosen item has its L increased
by 1 while the item that was not chosen has its U increased
by 1. Next, all of the stimuli that were not chosen have their
values updated as well. Items above the visible stimulus pair have
their values of U increased by 1, items below the pair have their
values of L increased by 1, and those falling in between have their
positions consolidated as though the feedback had been positive.
This “implicit updating” stage ensures that, in general, the full
list will preserve its ordering. As demonstrated below, implicit
updating is needed to explain why experimental designs like the
massed trials studies by Lazareva and Wasserman (2006, 2012) do
not yield preference reversals.

One of the commonly reported features of TI studies,
particularly those involving non-human animals, is a background
error rate that persists even after extensive training. Whether
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FIGURE 5 | Schematic depiction of the Betasort algorithm’s representation of position. Quantitative details about each step are described by Jensen et al. (2015).
(A) Each stimulus has an associated beta distribution, whose parameters encode both the stimulus position and its uncertainty. In order to choose between available
options, the algorithm draws a value for each possibility, then chooses the item whose random draw yielded the highest value. Additionally, there is a probability ρ of
the subject ignoring these values and making a response at random. (B) Following a choice, the representation is updated. The first stage of updating is “relaxation,”
which increases the uncertainty of the estimated position without changing the means of any of the distributions. This applies to all items, regardless of whether the
stimuli were present during that trial or not. (C) If the subject makes a correct choice, then the distributions for all items are consolidated (again, whether or not any
given stimulus was presented). What subject make consistently correct responses, the relaxation and consolidation steps effectively balance one another out. (D) If,
however, the subject makes an incorrect choice, then updating proceeds in two stages. During direct updating, the means of the stimuli presented during that trial
are moved apart to reduce the odds of another erroneous response. (E) The preceding step is them immediately followed by incorrect updating of all stimuli that
were not visible during the trial. Stimuli that were between the two items are consolidated, items whose current mean lies below that of the pair are shifted further
downward, and pairs whose mean lies above the pair are shifted upward. Reproduced with permission (DOI: 10.6084/m9.figshare.7992017.v1). Copyright 2019,
Jensen, Terrace, and Ferrera.

mistakes are made due to memory errors or to shifting attention,
they are not captured by models that converge on perfect
discrimination. Consequently, Betasort introduces a “random
response” parameter ρ, which is the probability that the subject,
on a given trial, ignores its current knowledge and instead makes
a response at random. This could also be considered a “lapse
rate,” governing the frequency with which the subject lapses into
making an uninformed response. When taking this additional
factor into consideration, the probability of choosing at given by
Equation 7 is updated in the following way:

pbeta (at, ρ) =
ρ

2
+ (1− ρ) · pbeta (at) (9)

The ρ parameter effectively puts a ceiling on performance and
scales the remaining probabilities toward chance.

SIMULATION OF SERIAL ORDER TASKS

The algorithms described in the previous section are process
models, and their behavior evolves over the course of training.
One of the consistent themes of using process models to describe
natural processes is that their results are often contrary to
our intuitions. As such, the evaluation of these algorithms
is best performed by simulating the consequences of various
experimental designs and observing how they perform, rather
than merely thinking about them intuitively. We subjected
the algorithms to various experimental manipulations
to demonstrate their relative efficacy and performance
idiosyncrasies. In all cases, the figures below represent mean
accuracies over 1000 simulations, each of which had its own
randomized trial order of stimulus presentations.

Parameter Selection
The algorithms each had 2–4 free parameters, which afforded
varying degrees of flexibility in describing performance.
Our objective was not to discover each algorithm’s optimal
performance, but instead to use parameters that best described
a real-data target. Put another way, rather than describe each
algorithm’s normative performance, we tested how well each
approximates an empirical estimate of TI performance in an
actual organism. In particular, we were interested in those
parameters that recapitulate “performance at transfer” in a classic
TI design. With this in mind, we selected one monkey (named
“Hubble”) whose TI data was published by Jensen et al. (2015).
Likelihoods were calculated for the six algorithms with respect
to the sequence of trials and the subject’s choices during the first
21 trials of all-pairs testing, immediately after the end of training.
This ensured that, however, performance appeared early in
training or late in testing, it resembled the critical transfer test as
closely as possible.

In order to perform statistical inference using process models,
the response likelihoods must also be calculated on a trial-by-
trial basis, unfolding as each models’ representation is updated.
Due to random processes that vary from one simulation to
the next (particularly for SMC), calculations of the likelihoods
were noisy. Additionally, the 3- and 4-parameter algorithms
were not well suited to grid approximation. Consequently,
maximum-likelihood parameters were obtained by quadratic
approximation. As a shorthand, we will subsequently describe
these as each algorithm’s “Hubble parameters.”

According to this procedure, Q-learning’s Hubble parameters
were δ = 0.138, θ = 2.280, and γ = 0.373. As a shorthand, error
prediction learning rates like δ can be thought of in terms of their
inverse. That is, if δ = 0.138, then the actor will base its estimates
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on about the previous 1
δ
= 7.2 updates of that value. This is a

relatively rapid learning rate, focused only on recent events. The
decision rule θ = 2.280 corresponds to an exaggerated preference
for whichever alternative has a large value of Q (i.e., “winner-
takes-all”). For example, if QA = 1 and QB = 0.5, then chance
of choosing A over B would only be 0.622 if θ = 1, whereas
the probability for A would be 0.758 if θ = 2.280. A prospective
discounting rate of γ = 0.373 would normally suggest an actor
that values future states at about 1/3 of the value of current
choices. However, since current choices in the TI task exert no
control over future states, this term effectively introduces a small
amount of noise into performance, shifting all behavior slightly
closer to chance.

The Hubble parameters for VTM were δ = 0.137, θ = 2.260,
and τ = 0.406. the learning rate and decision rule terms were
similar to those obtained for Q-learning, namely relatively fast
learning and an exaggerated preference for the stimulus with the
maximum Q estimate. The transfer rate τ was relatively large.
For each unit of feedback that was learned about the value of a
stimulus, 0.406 units were also learned from the alternative with
which it was paired.

The Hubble parameters for RL-REMERGE were λ = 2.690,
ω = 15, θ = 4.971, and δ = 0.500. Because λ constituted the
“inverse temperature,” higher values correspond to less volatility
while the network approached equilibrium. The very large value
of ω ensured that information flowing through the network
washed out after only a few steps through the conjunctive
layer. This is certainly bad for the actor’s performance, and
was likely the most efficient way for REMERGE to approximate
the persistent error rates observed in subjects after extensive
training. The decision rule θ was quite large, indicating a strong
preference for the Response node with maximal activity. The
learning rate δ was very high relative to the other model-free
algorithms. Although this would ordinarily make behavior highly
volatile, the fact that the Conjunctive layer had a node for
every observed stimulus pair meant that the algorithm was at
an advantage because it could memorize pairs on a case by
case basis. A high value of δ enabled the network to pick out
and keep those contextually correct responses, even given only
a few exposures.

The Hubble parameters for RL-Elo were δ = 0.079 and θ =

1.529. Although these values may seem smaller than those found
for Q-learning and VTM, it is important to remember that the
model-free algorithms are comparing rewards (1 in most cases)
to non-rewards (0), whereas Elo is comparing wins (1) with
losses (−1). Since the units for RL-Elo effectively cover twice
the numerical range of the model-free algorithms, its units need
only be half as big to have a comparable effect. Viewed from this
perspective, RL-Elo’s parameters are quite similar to those of the
model-free algorithms.

The Hubble parameters for SMC were σ∅ = 0.5, σ = 0.032,
and θ = 1.410. The σ∅ parameter was used to initialize the 10,000
candidate orderings, and its relatively small value ensured that
all of the candidates were relatively confusable with one another.
Meanwhile, the even lower value of σ ensured that the amount
by which these representations changed from one trial to the
next was small. The net effect was that SMC’s prodigious ability

to solve ordinal sorting problems was dampened, allowing it to
better approximate Hubble’s gradual learning and tendency to
make errors. The decision rule θ was very similar to that of RL-
Elo, which is sensible because the two made similar use of a
logistic discrimination function.

The Hubble parameters for Betasort were ρ = 0.188 and ϕ =

0.495. The randomness parameter ρ means that, for about every
two trials out of eleven, Hubble was expected to give a random
response regardless of the stimuli, effectively putting a ceiling on
his performance. Meanwhile, the recall parameter ϕ had a very
low value, suggesting that the representation lost roughly half of
its evidence for each trial. This had the effect of keeping all of
the stimulus positions uncertain, which increased the error rate
but also increased how rapidly positions could be adjusted on the
basis of new information.

Classical Transitive Inference
The classic procedure for demonstrating TI is to set up an ordered
list (e.g., ABCDEFG) and train subjects by presenting only the
adjacent pairs of items (e.g., AB, BC, CD, DE, EF, and FG),
giving positive or negative feedback for single responses. After
training, the actor is tested with all possible pairs of items (21 in
this case). Both training and testing consist of “blocks,” during
which each stimulus appears a fixed number of times. Since it is
standard to counterbalance the spatial arrangements on a screen
(AB vs. BA), we presented the actor with each pair twice during
a block. Thus, training blocks consisted of 12 trials (each pair
appearing twice), with the order of trials in any given block
randomly permuted. This guaranteed that the actor’s choice at
had no influence on their state st+1. Training consisted of 11
blocks, and thus of 132 trials.

During testing, actors were exposed to all 21 possible item
pairs (AB, AC, AD, etc.). As in training, each pair appeared
twice per block, so testing blocks consisted of 42 trials, randomly
permuted. Testing consisted of five blocks, and thus of 210
trials. The testing set includes six “critical” pairs (BD, BE, BF,
CE, CF, and DF) which (1) were not presented during training
and (2) do not include the terminal items A or G. In this and
all subsequent simulations, rewards were delivered for correct
responses during the testing phase, consistent with the data
collected from Hubble.

Figure 6 (left column) depicts the mean predicted response
accuracy by model-free algorithms for all pairs composed of non-
terminal items (e.g., BC and BD, but not AB or EG), grouped
by symbolic distance. Trial “zero” in this case consists of the
state of knowledge after the last trial of training but before
the first trial of testing, and thus represents estimated accuracy
at transfer. Dashed lines correspond to asymmetric updating
(in the tradition of behavior analysis), which generally display
slower learning rates because asymmetric updating results in less
evidence extracted from each trial. Figure 6 (middle column)
displays the response accuracy for each of the 21 pairs at trial
zero, with the critical pairs shaded in gray. Hubble’s estimated
response accuracy for the 21 pairs is also plotted allowing
comparison between the algorithms and the subject they are
trying to approximate. Dark points correspond to symmetric
updating, and light points correspond to asymmetric updating.
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FIGURE 6 | Performance of model-free algorithms on a 7-item TI transfer task (adjacent pair training, all pair testing). (A) Mean performance of Q-learning on
non-terminal pairs throughout training and testing, sorted by symbolic distance. Solid lines denote learning with symmetric updating of both alternatives, whereas
dashed lines denote asymmetric updating of values associated with the chosen stimulus. (B) Mean performance of Q-learning for each of the 21 pairs at transfer,
sorted by symbolic distance. Open points are empirical estimates of performance by Hubble, a monkey reported by Jensen et al. (2015). Dark points correspond to
symmetric updating, while light points denote asymmetric updating. Critical pairs are shaded in gray. (C) Mean performance of Q-learning for each of the 21 pairs at
the end of training. Open points are empirical estimates of performance by Hubble. Dark points correspond to symmetric updating, while light points denote
asymmetric updating. (D–F) As above, but reporting simulated performance of the Value Transfer Model (VTM). (G–I) As above, but reporting the simulated
performance of RL-REMERGE. Reproduced with permission (DOI: 10.6084/m9.figshare.7992020.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

Overall, this simulation confirms previous reports (Jensen et al.,
2015, 2018) that Q-learning shows no TI at the start of testing
and no learning on non-terminal pairs throughout training. VTM
performance yielded a small transfer effect (with the critical non-
adjacent pairs above chance), a positive symbolic distance effect,
and a substantial terminal item effect when run using its Hubble
parameters. Although the distance effect is real, it is much smaller
than that displayed by Hubble. On this basis, it is fair to say that
VTM can “solve” this TI task (insofar as accuracy on critical pairs
exceeds chance), particularly when using symmetric updating,
but still underperforms on pairs with large symbolic distances.

Superficially, RL-REMERGE also “solved” the TI task, insofar
as some of its critical pairs were above chance at test. However,
it displayed a negative symbolic distance effect and no clear
terminal item effect. For pairs with a symbolic distance greater
than 2, performance was close to chance. This is due to the
high value of ω used in the simulations. Herein lies the essential
tension in using REMERGE as an explanatory model: If ω

is small, performance of proximate pairs (which are more
numerous) will be much too high, whereas if ω is large, distant
pairs of items will be close to chance. Since REMERGE is expected

to display a negative distance effect at test in all cases, it cannot
come to resemble empirical results in their particulars.

Figure 6 (right column) displays response accuracy at the
end of training (on trial 210). Here, Q-learning and VTM
appear nearly indistinguishable, both showing positive distance
effects. RL-REMERGE provides an interesting contrast. Despite
receiving symmetric feedback for item pairs, the network displays
an effect of rank.

Figure 7 plots the simulation results for the three model-
based algorithms, all of which show evidence of TI at the
start of testing. Of these, RL-Elo appears to provide the closest
approximation to the qualitative features of the data (showing
both a positive distance effect and a terminal item effect), as
well as a close approximation to the performance at trial 210.
However, its performance at transfer is too low for many of the
pairs. Meanwhile, SMC also displays both distance and terminal
item effects, but its performance is too high in all cases. Finally,
Betasort provides a good approximation to the overall response
accuracy at test (including distance effects), but does not give a
clear terminal item effect. Furthermore, its terminal item effect is
negative at trial 210, a result not seen in empirical TI results.
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FIGURE 7 | Performance of model-based algorithms on a 7-item TI transfer task (adjacent pair training, all pair testing). (A) Mean performance of RL-Elo on
non-terminal pairs throughout training and testing, sorted by symbolic distance. (B) Mean performance of RL-Elo for each of the 21 pairs at transfer, sorted by
symbolic distance. Open points are empirical estimates of performance by Hubble, a monkey reported by Jensen et al. (2015). Critical pairs are shaded in gray.
(C) Mean performance of RL-Elo for each of the 21 pairs at the end of training. Open points are empirical estimates of performance by Hubble. (D–F) As above, but
reporting simulated performance of the Sequential Monte Carlo (SMC) algorithm. (G–I) As above, but reporting the simulated performance of Betasort. Reproduced
with permission (DOI: 10.6084/m9.figshare.7992023.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

Distorting the Expected Reward Gradient
Model-free learning relies on comparisons of expected value
as a proxy for preference. If different stimuli are associated
with the delivery of different amounts of reward (i.e., to
have different “reward magnitudes”), model-free judgments of
preference should be badly disrupted if the reward information
is not concordant with the optimal preference ordering. The
worst-case scenario is a “reversed reward gradient,” in which
an item’s rank also corresponds to its quantity of reward. So,
stimulus A is always correct because its rank is 1, but is only
worth 1 unit of reward. By contrast, F has a rank of 6, and as
such is worth 6 units of reward in the pair FG, but is incorrect
(and thus worth nothing) in the pairs AF, BF, CF, DF, and EF.
Jensen et al. (2018) report that monkeys are able to solve TI
tasks in spite of a reversed reward gradient, while Q-learning
was unable to solve the problem in all cases regardless of the
parameters that were used.

Figure 8 depicts performance of the model-free algorithms
in an experimental procedure that is identical to that described
in the preceding sections (7-item list, 11 blocks of adjacent-pair
training, 5 blocks of all-pair testing, each pair presented twice per
block). Because it would not be reasonable for actors to know the
amount of reward associated with each stimulus in advance, these
simulations were performed using asymmetric updating of only
the chosen item.

For both Q-learning and VTM, response accuracy on the
critical pairs is badly disrupted, but the resulting disruption takes
on a surprising form: A sawtooth of alternating high-value and
low-value estimates for pairs at each symbolic distance. This
pattern is a consequence of the asymmetric updating during
training. The value of F is driven very high by its hefty 6-unit
rewards, and this causes it to be strongly preferred over E. As a
consequence, D in the pair DE is also preferred. If all rewards
were equal, then feedback during EF trials would cancel this effect
out, but F’s larger rewards tend to overshadow the smaller values
earned for selecting E (which happens less and less often as F
grows in value). The overall effect is near-exclusive selection of
F and an alternating pattern of preference propagating down
the list, gradually becoming washed out by the time AB is
being considered. Once testing begins and all pairs start being
presented, this effect rapidly washes out and subjects instead
come to favor later list items in general. Because G never accrues
any worth, pairs that include it remain above chance, but the
remaining stimuli are consistently distorted by their reward
values, causing many pairs to be selected at below-chance rates
throughout testing.

RL-REMERGE displays a strikingly different pattern that is
much more robust against this manipulation. Although some
pairs are pushed slightly below chance during training, the
algorithm is broadly resistant to the intervention, maintaining
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FIGURE 8 | Performance of model-free algorithms on a 7-item TI transfer task (adjacent pair training, all pair testing) in which the amount of reward delivered
corresponded to the rank of the correct response (i.e., 1 unit for A, 2 units for B, and so forth). (A) Mean performance of Q-learning on non-terminal pairs throughout
training and testing, sorted by symbolic distance. (B) Mean performance of Q-learning for each of the 21 pairs at transfer, sorted by symbolic distance. Critical pairs
are shaded in gray. (C) Mean performance of Q-learning for each of the 21 pairs at the end of training. (D–F) As above, but reporting simulated performance of the
Value Transfer Model (VTM). (G–I) As above, but reporting the simulated performance of RL-REMERGE. Reproduced with permission (DOI: 10.6084/m9.figshare.
7992026.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

response accuracies above chance for all pairs by the end of
testing. This is likely because the configural character of the
REMERGE network prioritizes contextual information (“When
BC, choose B”), and only reflects global information through its
network propagation (which rapidly washes out when ω is large).

Model-based algorithms were not run in this condition
because they do not adjust their behavior on the basis of
reward magnitude, only outcome (correct or incorrect). As a
consequence, their predicted behavior would be exactly the same
as that described in Figure 7.

Model-free learning algorithms fail this task dramatically.
Not only does overall learning remain flat during training,
performance on 11 of the 21 pairs remains below chance even
after 210 trials of testing. Because reward does not provide a proxy
for stimulus rank in this procedure, an organism that is able to
solve this problem cannot be operating on the basis of model-free
learning alone (Jensen et al., 2018).

Massed Presentation of a Single
Stimulus Pair
Studies of TI almost universally present the various stimulus
pairings with equal frequencies, and this procedural assumption

underlies many results claiming support for particular models
(e.g., Wynne, 1995). However, such models can diverge from
the behavior of organisms when a particular pair is presented en
masse (Lazareva and Wasserman, 2006, 2012; Jensen et al., 2017).
These “massed presentation” designs constitute a vital stress-test
for models, because feedback in natural environments is almost
never counterbalanced.

Actors in this simulation were first trained on 132 trials of
adjacent pairs, as described previously. Then, they were trained
for an additional 132 trials on only a single pair: FG. After
both phases of training, actors completed 210 trials (5 blocks) of
all-pairs testing.

Figure 9 depicts the consequences of massed presentation of
FG for model-free algorithms. Both Q-learning and VTM have
their performance disrupted by this manipulation, manifesting
in reduced accuracy on other pairs that include F, but otherwise
leaving their representations intact. VTM’s disruption was
smaller than that of Q-learning, because F’s association with the
valueless stimulus G dampens its expected value, even though F
was correct for 132 consecutive trials. RL-REMERGE, however,
was completely unaffected by massed trials, since the extended
training on FG had no impact on the excitatory/inhibitory
connections of other pairs in the Conjunctive layer.
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FIGURE 9 | Performance of model-free algorithms on a 7-item TI transfer task (adjacent pair training, all pair testing) with an intervening period during which only the
pair FG was presented. (A) Mean performance of Q-learning on non-terminal pairs throughout training and testing, sorted by symbolic distance. (B) Mean
performance of Q-learning for each of the 21 pairs at transfer, sorted by symbolic distance. Critical pairs are shaded in gray. (C) Mean performance of Q-learning for
each of the 21 pairs at the end of training. (D–F) As above, but reporting simulated performance of the Value Transfer Model (VTM). (G–I) As above, but reporting the
simulated performance of RL-REMERGE. Reproduced with permission (DOI: 10.6084/m9.figshare.7992029.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

Figure 10 depicts model-based performance for this
manipulation. Both RL-Elo and SMC have their performance
disrupted in a manner almost identical to the disruption
experienced by Q-learning and VTM, and for the same reason:
all four algorithms only apply informative feedback to the items
present in the current trial. SMC’s resistance to this disruption is
mainly due to its high level of accuracy overall.

Betasort’s displayed a clear distance effect by the end of
the first phase of training, but all pairs (other than those that
include G) drop to chance levels during FG training. However,
within 20 trials of all-pairs testing, the original order sprang
back into place. This effect is due to the combination of three
factors: The relatively low value of ϕ (which causes U and L
to shrink rapidly, without ever equaling zero), the algorithm’s
implicit updating (which preserves items in a particular order
by updating all positions, even when U and L are small), and
the Jeffrey’s prior that adds 0.5 to the values of U and L in
Equation 6. In effect, Betasort has preserved the relative order
through FG training, but has allowed the absolute distance
between items to become small as erroneous responses to G
gradually push the values of U

U+L for all other stimuli up to
nearly 1.0. As items are bunched up against the same axis,
the influence of the prior grows stronger, tending performance
toward chance levels. However, as soon as pairs other than FG

are introduced, the stimuli push themselves back apart (all while
preserving their relative order) and the prior’s influence returns
to background levels.

Reversal of Stimulus Order at Test
We ran simulations in which algorithms were first trained on all
21 stimulus pairs for 210 trials (5 blocks, counterbalanced
for position). Then, the stimulus order was reversed,
becoming GFEDCBA. This new ordering was presented for
another 210 trials.

Figure 11 depicts performance by the model-free algorithms.
Because all pairs were being presented, all three successfully
determined the ordering. Because the actors have been given no
indication of the reversal at trial zero, their performance is a
mirror image of their training performance, consistently below
chance. By the end of testing, all three have recovered the overall
pattern of accuracy seen during training, but they differ in terms
of the number of trials needed to do so. Q-learning was the
slowest of the three, with the order flipped following trial 27,
on average. RL-REMERGE was only slightly faster, reversing its
representation of the order after 26 trials. By this test, VTM was
the nimblest, successfully reversing its order after 17 trials.

Figure 12 plots the effects of order reversal for the
three model-based algorithms. Here, a much more dramatic
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FIGURE 10 | Performance of model-based algorithms on a 7-item TI transfer task (adjacent pair training, all pair testing) with an intervening period during which only
the pair FG was presented. (A) Mean performance of RL-Elo on non-terminal pairs throughout training and testing, sorted by symbolic distance. (B) Mean
performance of RL-Elo for each of the 21 pairs at transfer, sorted by symbolic distance. Critical pairs are shaded in gray. (C) Mean performance of RL-Elo for each of
the 21 pairs at the end of training. (D–F) As above, but reporting simulated performance of the Sequential Monte Carlo (SMC) algorithm. (G–I) As above, but
reporting the simulated performance of Betasort. Reproduced with permission (DOI: 10.6084/m9.figshare.7992032.v1). Copyright 2019, Jensen, Terrace, and
Ferrera.

disruption is seen. Although RL-Elo recovers its original level of
performance, it takes an average of 74 trials to return the critical
pairs to their correct order. SMC is even more disrupted – its
near-ceiling performance translated to near-floor performance
at the start of testing, and 210 trials was not sufficient training
to recover its baseline performance, only managing to order the
critical pairs correctly after 114 trials. In both cases, the culprit is
a parameter (δ in the case of RL-Elo and σ in the case of SMC)
that can only make small adjustments to their representations.

Contrastingly, the Betasort algorithm reorders the pairs
correctly after just 9 trials, and recovers its original ceiling levels
of accuracy by the end of the first block of testing. This owes to the
low value of ϕ, which rapidly discards representation information
that produces consistently incorrect responses.

Linking Lists by Training a Single
Stimulus Pair
One of the most dramatic series of results in the serial learning
literature are the “list linking” studies reported by Treichler
and colleagues. Monkeys learned the order of multiple separate
lists using only adjacent pairs (e.g., ABCDE and FGHIJ). When
monkeys were subsequently trained that E > F (in effect “linking”
the end of one list to the start of the next), their performance
at test was consistent with an inference that the two sublists
should be combined into a single 10-item list, ABCDEFGHIJ

(Treichler and Van Tilburg, 1996). List linking effects of this kind
have since proved to be surprisingly robust over lists of fairly
dramatic lengths, reaching well into the double digits (Treichler
et al., 2007). However, if monkeys were not given training on the
linking pair EF, their performance suggested that they assumed
that item ranks were transferable to new pairings (Treichler and
Raghanti, 2010). For example, after learning the lists ABCDE
and FGHIJ, a monkey would be expected to favor G over D
(because the former had a rank of 2 and the latter had a rank
of 4) unless they were also trained that E > F, in which case the
preference would reverse (because all items in the first list are
implied by the EF pairing to have lower rank than any items in
the second list).

The principle that rank should be transferable across lists is
consistent with model-based accounts of serial learning, and is
supported by a variety of experimental results (Chen et al., 1997;
Merritt and Terrace, 2011; Kao et al., 2018). Insofar as each
model makes inferences about position, then it stands to reason
that those positions be comparable. However, no computational
model of serial learning has yet been able to explain Treichler’s
list linking results.

To simulate such an experiment, we trained the adjacent pairs
of two five item lists (ABCDE and FGHIJ) for 17 blocks (4 pairs
each, counterbalanced for position, yielding 16 trials per block,
and 272 trials total). In the Linking condition, this training was
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FIGURE 11 | Performance of model-free algorithms on a 7-item pairwise serial learning task, presenting all 21 pairs during training and then reversing the order of
the stimuli during testing. (A) Mean performance of Q-learning on non-terminal pairs throughout training and testing, sorted by symbolic distance. (B) Mean
performance of Q-learning for each of the 21 pairs at transfer, sorted by symbolic distance. Critical pairs are shaded in gray. (C) Mean performance of Q-learning for
each of the 21 pairs at the end of training. (D–F) As above, but reporting simulated performance of the Value Transfer Model (VTM). (G–I) As above, but reporting the
simulated performance of RL-REMERGE. Reproduced with permission (DOI: 10.6084/m9.figshare.7992038.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

followed by 34 trials of training only the pair EF. In the No
Linking condition, these extra 34 trials of training were skipped.
Finally, the actors were trained on all 45 pairs from the resulting
10-item linked list, ABCDEFGHIJ for 5 blocks (i.e., 450 trials,
given stimulus counterbalancing).

Figure 13 plots the effects of this simulated experiment.
Q-learning’s overall response accuracy for critical pairs is strictly
at chance levels, but performance for individual pairs was a
mixture of trials that were either very low or very high in
accuracy. EF training had the effect of flipping preference for
some of these pairs, but these effects canceled out, leaving the
Linking and No Linking conditions no different on average.
Although this effect was also visible for VTM, the net effect was
that performance on some critical pairs was above chance at the
end of training, while other critical pairs were below chance.
RL-REMERGE, by contrast, displayed almost no difference
between the two conditions at any stage of training. The only
substantive difference was that the pairs EF, DF, and EG were
all above chance in the Linking condition. Although this is
not a dramatic effect, it is the only result we found that
yields consistently-above-chance predictions for a list linking
manipulation.

Figure 14 plots the effects of list linking on the performance
of the model-based algorithms. RL-Elo displays a pattern of

behavior similar to that of VTM, performing better than
chance on some pairs at test, but worse than chance on
others. It experienced no benefit from the extra training on
EF. Contrastingly, although SMC initially showed a similar
pattern, it showed visible benefits from EF training, improving
its performance for nearly all critical pairs. Although this was not
enough to bring every critical pair above chance, it nevertheless
constituted a substantial gain. We interpret this as being a
consequence of its crowdsourcing: Since the relative positions of
the two lists were allowed to drift with respect to one another,
some of the 10,000 candidate orderings were closer to a full
separation of the two lists, and these “partial solutions” received
a big boost during EF training because they were the ones that
tended to view E as having a lower position than F. Finally,
Betasort’s performance during training was more in keeping
with the patterns displayed by VTM and RL-Elo. Despite this,
EF training had a visible effect, converging the critical pairs
toward chance levels. However, this effect was not due to the
algorithm converging on a better solution. It was instead the
effect of the recall parameter ϕ relaxing the model for an
additional 34 trials.

Although no algorithms solved the list linking problem, the
two that came closest were RL-REMERGE (which learned some
information from EF training and never displayed dramatic
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FIGURE 12 | Performance of model-based algorithms on a 7-item pairwise serial learning task, presenting all 21 pairs during training and then reversing the order of
the stimuli during testing. (A) Mean performance of RL-Elo on non-terminal pairs throughout training and testing, sorted by symbolic distance. (B) Mean performance
of RL-Elo for each of the 21 pairs at transfer, sorted by symbolic distance. Critical pairs are shaded in gray. (C) Mean performance of RL-Elo for each of the 21 pairs
at the end of training. (D–F) As above, but reporting simulated performance of the Sequential Monte Carlo (SMC) algorithm. (G–I) As above, but reporting the
simulated performance of Betasort. Reproduced with permission (DOI: 10.6084/m9.figshare.7992041.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

below-chance performance) and SMC (which appeared to
stumble upon a successful subset of models among its current
10,000 candidate orderings).

MODEL COMPARISON AND ENSEMBLE
MODELING

Our emphasis thus far has been to qualitatively describe the
performance of the algorithms, in order to call attention to
the characteristics of behavior that arise consequent to each
algorithm’s value updating function and action policy. Judging
whether an algorithm provides the “best fit” is not merely a
matter specifying a particular experimental condition, but also of
identifying the particular learning epoch that is of experimental
interest. Even if no single model gives a comprehensive account
of observed behavior, identifying particular epochs that resemble
the performance of one algorithm or another can potentially
revealing underlying mechanisms.

Using the full Hubble dataset as the empirical ground truth,
a score was computed each algorithm using the Bayesian
information criterion (BIC) (Schwarz, 1978). Since the absolute
scale of BIC scores is arbitrary, we also computed 1BIC, in
which each score has the minimum observed score subtracted

from its value. Since lower scores correspond with better fit, the
best-fitting model overall receives a 1BIC of 0.0. These scores are
presented in Figure 15A. In this comprehensive scoring, the RL-
Elo model provided the best fit by a substantial margin, followed
by symmetric-updating Q-learning, and then by Betasort. Based
on Figures 6, 7, it appears as though Q-learning beat out Betasort
because, although Betasort displayed a symbolic distance effect at
transfer, it did not display a terminal item effect. RL-Elo proved
the best-fitting model because its behavior displayed both of
these phenomena.

Figure 15B plots the values of 1BIC for each algorithm based
only on a three-trial moving window of data (153 trials drawn
from Hubble’s 51 sessions). 1BIC can in turn be used as a simple
approximation of the weights used by an ensemble model, under
the framework of Bayesian model averaging (Raftery, 1996), with
each weight given by exp (−0.5 ·1BIC) and the proportional
support for each model obtained by dividing each weight by
the sum of all weights. These measures of proportional support
are plotted in Figure 15C as a cumulative plot, such that the
relative contribution of each model is given by its vertical cross-
section at trial t.

Figures 15B,C show that RL-Elo (in green) usually gave
the best description of behavior at any given point during
learning with an average contribution of 69.4% across all trials.
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FIGURE 13 | Performance of model-free algorithms on a 10-item list-linking procedure. During training, two 5-item lists were trained (adjacent pairs only). In the
Linking condition, actors received training on the linking pair EF. In the No Linking condition, no extra training on EF was provided. Actors were then tested on the 45
possible pairings in the resulting 10-item list. (A) Mean performance of Q-learning on non-terminal pairs throughout training and testing, sorted by symbolic distance.
After training, dashed lines represent the Linking condition, while solid lines represent the No Linking condition. (B) Mean performance of Q-learning for each of the
45 pairs at transfer, sorted by symbolic distance. Light-colored points represent the Linking condition, while dark-colored points represent the No Linking condition.
Critical pairs are shaded in gray. (C) Mean performance of Q-learning for each of the 45 pairs at the end of training. (D–F) As above, but reporting simulated
performance of the Value Transfer Model (VTM). (G–I) As above, but reporting the simulated performance of RL-REMERGE. Reproduced with permission (DOI:
10.6084/m9.figshare.7992044.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

Betasort provided a supporting role, averaging a contribution of
22.2% across all trials, while Q-learning displayed brief bursts
of relevance (averaging a contribution of 3.8% for symmetric
updating and 2.7% for asymmetric updating). However, despite
RL-Elo generally being dominant in the ensemble, it was not
the dominant model in all epochs of learning. During the early
stages of learning, Betasort often gave a better description of
behavior. Later in training, model-free algorithms based on
associative strength (i.e., Q-learning and VTM) became more
compelling candidates. Betasort was the preferred model during
the first block of testing (i.e., trials 0–20, which included the
first time each of the non-adjacent pairs was presented). For the
remainder of testing however, RL-Elo dominated the ensemble
model, with only occasional periods of advantage for Betasort.
Throughout both training and testing, RL-REMERGE and SMC
poorly described behavior, resulting in negligible contributions to
the ensemble model.

Despite the ensemble model being overwhelmingly
determined by the model-based algorithms, the period of
relevance of model-free learning during the later stages of
training could be seen as evidence of a shift from one style
of learning to another. It is now widely held that organisms
likely use multiple simultaneous systems for solving complex

problem, but disagreement remains over whether these
strategies work in parallel or cue one another in a flexible
sequential fashion (Daw, 2012). The shift in the relevance
of models over the course of training is suggestive of such a
“two-step” approach.

It is worth emphasizing that although SMC fails utterly
as a model of Hubble’s behavior, it does not fail to perform
TIs. Figure 7 demonstrates unambiguously that SMC infers
the ordering of the stimulus pairs, performs above chance on
all stimulus pairs, and displays both the symbolic distance
effect and the terminal item effect. Its abysmal 1BIC scores
(which mostly disappear off the top of the scale in Figure 15B)
reflect performance that is much too good to be a plausible model
of TI learning in monkeys. This is an example of a wider pattern
in the machine learning literature, in which many algorithms that
perform their assigned tasks too well are poor models for neural
processes. Simulation and comparison to empirical data provides
a way of falsifying such models (Palminteri et al., 2017).

By contrast, RL-Elo is a consistently compelling model
because, in addition to its behavior possessing the same
qualitative features as SMC, it also approximates the overall
error rate observed in Hubble’s data. That said, it is also
important to note that RL-Elo’s performance is disrupted by
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FIGURE 14 | Performance of model-based algorithms on a 10-item list-linking procedure. During training, two 5-item lists were trained (adjacent pairs only). In the
Linking condition, actors received training on the linking pair EF. In the No Linking condition, no extra training on EF was provided. Actors were then tested on the 45
possible pairings in the resulting 10-item list. (A) Mean performance of RL-Elo on non-terminal pairs throughout training and testing, sorted by symbolic distance.
After training, dashed lines represent the Linking condition, while solid lines represent the No Linking condition. (B) Mean performance of RL-Elo for each of the 45
pairs at transfer, sorted by symbolic distance. Light-colored points represent the Linking condition, while dark-colored points represent the No Linking condition.
Critical pairs are shaded in gray. (C) Mean performance of RL-Elo for each of the 45 pairs at the end of training. (D–F) As above, but reporting simulated
performance of the Sequential Monte Carlo (SMC) algorithm. (G–I) As above, but reporting the simulated performance of Betasort. Reproduced with permission
(DOI: 10.6084/m9.figshare.7992047.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

“massed trial” manipulations (as shown in Figure 10), which
the empirical literature has found do not undermine serial order
representations in animals.

A NOTE ON COMPUTATIONAL
COMPLEXITY

Several factors are considered when comparing the complexity of
algorithms. The most straightforward are its memory demands:
How many values must the algorithm keep track of at each
stage of its operation? Another obvious measure is its operational
speed: How long does the algorithm take to complete a series
of decisions given reasonable inputs? Finally, it is common to
discuss how an algorithm’s runtime scales as a function of its
inputs: As the number of input items increases, how is runtime
expected to grow?

By these criteria, four of the algorithms in this manuscript
are clear winners: Q-learning, VTM, RL-Elo, and Betasort. The
memory demands of each scales linearly with list length n:
Q-learning, VTM, and RL-Elo each keep track of n values in
memory, while Betasort keeps track of 4n values. They are also
computationally rapid. We used a 2016 Macbook Pro to simulate
42,000 trials of a TI task using all pairs from a 7-item list, and this
took 0.96 s for Q-learning, 1.26 s for VTM, 1.25 s for RL-Elo, and

1.68 s for Betasort. Finally, all four algorithms are expected have
order n complexity, scaling their runtime chiefly as a function of
the list length.

RL-REMERGE and SMC perform comparatively poorly. In
the case of RL-REMERGE, the Conjunctive layer ensures that
its memory and runtime demand grow on the order of n2.
Even at reasonable list lengths, its iterative internal use of
renormalization to discover a steady state is computationally
intensive (42,000 simulated trials took 2879.46 s). While SMC
scales more reasonably, with growth of order n, its 10,000
hypotheses constitute a substantial opportunity cost, both in
terms of memory and processing. These are reflected in its costly
runtime: 42,000 simulated trials took SMC 653.72 s.

However, these measures are somewhat unfair to both
because these algorithms represent distributed solutions to the
TI problem. Renormalization of neural networks, for example,
is merely a mathematical trick to emulate the behavior of a
distributed physical system, so RL-REMERGE’s n2 growth is
mainly a problem of memory. Provided one is willing to allocate
the neurons needed, processing time would be distributed
accordingly. In the same vein, SMC can be understood as
10,000 parallel implementations of RL-Elo. Provided one is
willing to distribute the problem in this way (and make
use of many processor cores to do so), SMC’s performance
should be very similar to RL-Elo (although the computational
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FIGURE 15 | Model comparison of nine learning algorithms performing transitive inference. (A) Comparison for model-free algorithms (symmetric and asymmetric
updating) and model-based algorithm using the full Hubble dataset, as well as figure legend for remaining panels. 1BIC refers to the Bayesian information criterion
computed for each model, minus the value computed for the best model. (B) Value of 1BIC for each model, computed trialwise using a 3-trial moving window. Trial
zero corresponds with the start of all-pairs testing, denoted by a red-and-white dashed line. (C) Cumulative plot of the weights for an ensemble model with
contributions from all nine algorithms. Weights for Bayesian averaging were approximated using exp (−0.5 ·1BICi) for each algorithm i. Reproduced with permission
(DOI: 10.6084/m9.figshare.8851700.v1). Copyright 2019, Jensen, Terrace, and Ferrera.

burden of periodic resampling of the list orders is less
easily resolved).

Our view is that although complexity should be taken
seriously when comparing computational models, it should
also be recognized that these algorithms are primarily high-
level descriptions of behavior. The Betasort algorithm should
not, for example, be viewed as a proposal that organisms are
actually computing and drawing random samples from beta
distributions. Rather, the beta distribution is the maximum
entropy distribution for the parameter uncertainty of Bernoulli
processes, and as such there are many physical systems for which
it will provide a good approximation. Any of the algorithms in
this manuscript could be seen as a higher-level description of
some distributed process, and RL-REMERGE and SMC appear
less efficient because they explicitly distribute their processing.

With these considerations in mind, we consider RL-
REMERGE to be the least plausible of the algorithms, since it
requires implementing nodes for every “context.” In standard
TI experiments, this takes the form of stimulus pairs, but it is
easy to imagine a task in which subjects have to choose from
among three or four stimuli, causing the Conjunctive layers to
grow even faster since it would need a node for every stimulus
combination. Contrastingly, the other five algorithms are all able

to scale linearly as a function of list length, regardless of the
number of stimuli presented in any given trial.

CONCLUSION

The algorithms in this manuscript represent a cross-section of
different computational methods for explaining TI performance.
These methods succeed to varying degrees in discovering the
structure of ordered sets, even when stimuli are presented
pairwise without explicit spatial or temporal cues. Our goal was
to gain insight about how each handles challenges that arise
in natural settings, such as unequal rewards and base rates of
presentation, as well as established experimental manipulation,
such as list linking. In every case other than Q-learning (which
was included to provide a model-free baseline), an argument can
be made that each of these algorithms can, to some extent, “solve”
TI problems. The patterns of error vary dramatically from one
algorithm to the next, however, as do the effects of variations
in the procedure.

While we can still learn a great deal from traditional
TI procedures, the ability to implement theories of TI as
computational models demands a shift in the experimental
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approach used to study serial learning. In the past,
experimentalists have largely avoided making dramatic changes
to experimental procedures because their theories were not
sufficiently clear about what behavior would be expected under
these new designs. By making computational simulation a part of
both theorizing and of experimental design, future experiments
can much more rapidly identify areas of discrepancy between
theory and behavior, which in turn lead to both stronger theories
and to more informative experiments.
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