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Reward-based decision making is thought to be driven by at least two different types of

decision systems: a simple stimulus–response cache-based system which embodies the

common-sense notion of “habit,” for which model-free reinforcement learning serves as

a computational substrate, and a more deliberate, prospective, model-based planning

system. Previous work has shown that loss aversion, a well-studied measure of how

much more on average individuals weigh losses relative to gains during decision making,

is reduced when participants take all possible decisions and outcomes into account

including future ones, relative to when they myopically focus on the current decision.

Model-based control offers a putative mechanism for implementing such foresight. Using

a well-powered data set (N = 117) in which participants completed two different tasks

designed to measure each of the two quantities of interest, and four models of choice

data for these tasks, we found consistent evidence of a relationship between loss

aversion and model-based control but in the direction opposite to that expected based

on previous work: loss aversion had a positive relationship with model-based control. We

did not find evidence for a relationship between either decision system and risk aversion,

a related aspect of subjective utility.

Keywords: reinforcement learning, model-based, planning, neuroeconomics, subjective utility, loss aversion

1. INTRODUCTION

Previous work has shown that thinking about all possible decision contexts rather than just the
current one reduces loss aversion (Sokol-Hessner et al., 2009, 2012), a well-studied measure of how
much more on average individuals weigh losses relative to gains (Kahneman and Tversky, 1979). In
this work, participants performed a standard descriptive decision making task in which they chose
between a gamble and a sure outcome presented in numeric form. In one condition, participants
were told to myopically pay attention only to the current trial. In another condition, participants
were told to think about each trial in the context of all previous and future possible decisions and
outcomes. Relative to the myopic condition, loss aversion was reduced when participants were told
to treat each decision as one of many.

Two immediate questions stem from this work. The first is whether baseline differences in the
propensity to consider the entirety of the decision context, without explicit instruction, relate
to differences in loss aversion. The second is how this ability may be formally characterized.
Model-based control offers one possible mechanism through which potential future decisions may
be simulated (Daw et al., 2005, 2011).
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Imagine moving to a new town and having to learn the route
to the nearest grocery store. Exploring the town, one strategy you
can employ is to track how successful each turn was in getting
you to your goal. For example, upon arriving at the store, if
you made a left turn from the last street that you were on, you
would strengthen the value of making a left from that street.
Next time through, you might notice that you made a right turn
from the street before that, and strengthen its value based on
the immediate cost or reward (e.g., traffic traveling down the
street) and the reward for the rest of the way (getting to the
store). Although this description is somewhat simplified from
the algorithm the brain is thought to actually use, it captures in
principle one strategy to learning the route: updating the value
of each action in each state through trial-and-error. Learning
and decision making based on this scheme is uncomplicated,
however, it is also inflexible. For example, consider what would
happen if after learning the route, one of the streets was closed
due to construction. In order to learn which of the previous paths
were no longer valid, you would have to bump into the new
information from a number of them, and slowly propagate this
information backward from the affected state.

A different, but related strategy, would entail learning a model
of the environment. You can learn how to navigate between
streets independently of any goal, learning for example, that
turning right from street A leads to street B. Separately, you
can also learn the reward or cost associated with each action,
for example, that turning right from street A is more costly
than turning left because it leads to more traffic. When it comes
time to plan a route, you can integrate these two pieces of
information on-line to generate the optimal sequence of actions.
This type of operation is more computationally intensive than
simply recalling the best sequence of turns, but it allows for
tremendous flexibility, and can save time and minimize costs
both during initial learning and when the environment changes.
These advantages result from the ability to learn each component
of the model separately, and to propagate at decision time
information about changes in one state to all of the states in
the environment, without having to revisit them. Faced with a
road closure, the relevant part of the model can be modified, and
the transition and reward information re-combined to generate a
new route from any starting location.

Laboratory studies suggest the brain employs both classes
of strategies, each supported by separate, but not entirely
independent, neural hardware (Killcross and Coutureau, 2003;
Valentin et al., 2007; Daw et al., 2011). The study of the
decision systems that implement these strategies, and debate
about their scope, is hardly new (Tolman, 1932; Hull, 1943).
More recently, these two systems have been formalized within
the framework of reinforcement learning (Daw et al., 2005, 2011).
The less complex system is habit-like, learning stimulus–response
associations retrospectively from experience using “model-free”
reinforcement learning algorithms. It is fast and reflexive, but
relatively unsophisticated, and sometimes prone to error. The
more complex system is more flexible and accurate, learning
and combining separate information about the environment’s
transition and reward structure to generate novel prospective
plans using “model-based” reinforcement learning algorithms.

The last several years have seen an explosion in work using this
framework both to study how these systems operate, and how a
variety of individual differences map on to the balance between
them in individuals (e.g., Daw et al., 2005, 2011; Glascher et al.,
2010; Keramati et al., 2011; Simon and Daw, 2011; Huys et al.,
2012; Solway and Botvinick, 2012, 2015; Otto et al., 2013, 2014;
Lee et al., 2014; Doll et al., 2015a,b; Voon et al., 2015).

In the present work, we asked whether the propensity for
model-based control and the balance between the two decision
systems was related to loss aversion. We hypothesized that
model-based control may be a computational substrate for
the forward simulations involved in thinking through possible
decisions and outcomes, and since this has been shown to reduce
loss aversion (Sokol-Hessner et al., 2009, 2012), increased model-
based control would be correlated with reduced loss aversion.

Participants (N = 117) completed two different tasks, each
previously designed and used to measure one of the dimensions
of interest. Analyzing the data using four different models, we
found consistent evidence of a relationship between loss aversion
and model-based control, but in the opposite direction to what
would be expected based on previous work. Individuals that
employed more model-based control were more loss averse. We
also controlled and tested for a relationship between model-
based and model-free control and risk aversion, but did not find
evidence of a relationship with either decision system under any
model formulation.

2. METHODS

2.1. Participants
One hundred and seventeen participants completed both
experiments as part of the Roanoke Brain Study, a large scale
study on individual differences. This study was carried out
in accordance with the recommendations of the Institutional
Review Board at Virginia Tech with written informed consent
from all subjects. All subjects gave written informed consent in
accordance with the Declaration of Helsinki. The protocol was
approved by the Institutional Review Board at Virginia Tech. All
participants were included in the analysis.

2.2. Two-Step Task
The task used to assess differences in model-free and model-
based control has previously been reported in a number of
studies (e.g., Daw et al., 2011; Otto et al., 2013, 2014; Voon et al.,
2015), including by our own group (Solway et al., 2017). Each
trial began with a fixation cross, followed by a choice between two
fractal images positioned in a horizontal orientation in random
order. One image predominantly led (with 70% probability) to
a second pair of images, but sometimes to a third pair (with
30% probability). The second first-stage image had the reverse
mapping, predominantly leading to the third pair of images
(also with 70% probability), but sometimes to the second pair
(with 30% probability; Figure 1A). Participants were informed
of the rules, but not which first-stage image led to which pair of
second-stage images. This mapping had to be learned through
trial-and-error. After participants made the first decision, the
chosen image moved to the top of the screen, and the second
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image disappeared, confirming their selection. Following a short
delay, the second set of images appeared according to the rules
above. Figure 1B provides a visual depiction of the events within
a single trial.

Each second-stage image was associated with a binary payoff
whose probability followed an independent Gaussian drift with
mean 0 and standard deviation 0.025, and reflecting boundaries
at 0.2 and 0.8. Different randomly drifting payoff probabilities
were used for each participant. Successful trials were awarded
a point, signaled by a green up arrow, and unsuccessful trials
ended with no change in points, signaled by a red “X.” The points
earned were converted to a monetary bonus ($0.10 per point).
Each decision stage had a two second deadline. If the deadline
was missed, the text “TOO LATE, NO MONEY EARNED”
appeared and the trial was aborted. Partial trials resulting from
missed deadlines were excluded in the analysis. Each participant
completed 201 trials.

2.3. Gambling Task
We used a standard gambling task (Tom et al., 2007; Sokol-
Hessner et al., 2012), shown in Figure 1C, to measure loss
aversion and risk preferences. On each trial, participants selected
between a “sure amount” and a gamble. Selecting the sure
amount guaranteed that amount of money, while the gamble
was associated with two outcomes, each with a 50% chance
of occurring.

There were two types of trials. On “mixed valence” trials, one
of the gamble outcomes was a gain, and the other was a loss.
The sure amount was always zero. On “gain only” trials, one
of the gamble outcomes was a gain, and the other was zero.
The sure amount was a smaller gain. Each participant played 60
mixed valence and 20 gain only trials in random order. For mixed
valence trials, gains were {$2, $4, $5, $6, $8, $9, $10, $12}, and
losses were multiples of -0.25 to -2, in increments of 0.125, of
the gain amounts (Sokol-Hessner et al., 2012). Offer values for
gain only trials ranged $2–$30 for gambles and $1–$13 for the
sure thing.

Each trial began with a fixation cross, followed by the
competing offers displayed on different sides of the screen
(Figure 1C). The side of the gamble and the sure amount was
chosen at random. Choices were confirmed with a red outline,
which was followed by the outcome. If participants selected
the sure amount, the screen said “no gamble.” Otherwise, the
computer played the gamble and reported “win” or “lose.”
Participants started with $30 and were told that a random trial
would be selected at the end of the experiment whose outcome
would be added to or subtracted from this amount.

2.4. Two-Step Regression Analysis
The logistic regression and reinforcement learning analyses of
the two-step task followed previous work (Daw et al., 2011; Otto
et al., 2013, 2014; Solway et al., 2017), including our own. For
completeness, we repeat and make explicit here the details within
the current context.

stay ∼ Bernoulli

(

1

1+ exp (−x)

)

, (1)

x =βstay+

βreward · reward+

βcommon · common+

βreward×common · reward× common+

βloss · loss+

βrisk · risk+

βtemperature · temperature+

βreward×loss · reward× loss+

βreward×risk · reward× risk+

βreward×temperature · reward× temperature+

βcommon×loss · common× loss+

βcommon×risk · common× risk+

βcommon×temperature · common× temperature+

βreward×common×loss · reward× common× loss+

βreward×common×risk · reward× common× risk+

βreward×common×temperature · reward×common×temperature.

The variable stay took on value 1 or 0 depending on whether
or not the same first-stage action (fractal image) was chosen on
the previous trial. reward took on value 1 or −1 depending on
whether the previous trial was rewarded, and common took on
value 1 or −1 depending on whether the transition between the
first and second stage on the last trial was common or rare. loss
is the z-scored log loss aversion estimate, risk is the z-scored
risk preference estimate, and temperature is the z-scored inverse
softmax temperature from the gambling task, all described below.
As described in more detail in Results, the main effect of reward
is a proxy for model-free control, the interaction between reward
and transition type is a proxy for model-based control, and the
interaction of each with a gambling task variable determines the
extent to which that variable scales with the respective system.

The regressions were performed using a hierarchical Bayesian
formulation. βstay, βreward, βcommon, and βreward×common were
instantiated once per participant, each drawn from a group level
Gaussian with a relatively broad N(0, 22) prior on the mean
and a half-Cauchy(0, 2.5) prior on the standard deviation. The
remaining regression coefficients were instantiated once at the
group level with a N(0, 22) prior.

2.5. Two-Step Reinforcement Learning
Model
The model-free component learned a table of action values,
Q(s, a). The environment consisted of three primary states, one
for the first-stage decision, and one for each possible second-
stage decision, and two actions in each state, corresponding to
the fractal images. Q-values were initialized to 0.5 (mid-way
between the two known extreme values) and updated according
to SARSA(λ) (Rummery and Niranjan, 1994):

Qmf (st,i, at,i) = Qmf (st,i, at,i)+ α(rt,i + Qmf (st,i+1, at,i+1)

− Qmf (st,i, at,i)). (2)

t refers to the trial number and i to the decision stage. rt,i is the
immediate reward, always 0 following the first stage, and 1 or
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0 following the second stage. Qmf (st,3, at,3) was set to 0 because
there was no third stage. An eligibility trace updated first-stage
Q-values according to the second-stage outcome:

Qmf (st,1, at,1) = Qmf (st,1, at,1)+ αλ(rt,2 − Qmf (st,2, at,2)). (3)

Traces were reset at the beginning of each trial. We found λ to be
difficult to identify when allowing it to vary as a free parameter.
For simplicity, it was fixed to 1.

Non-chosen action values decayed to baseline:

Qmf (s, a) = Qmf (s, a)+ α(0.5− Qmf (s, a)). (4)

At the second stage, the model-based controller used the
same temporal-difference learning rule, and Qmb(st,2, at,2) =

Qmf (st,2, at,2). Following previous work, the transition function
used the veridical values (0.7 and 0.3), and the mapping of
the first-stage action to the predominant second-stage state was
assigned based on the difference between the number of times the
first action led to the first second-stage pair plus the second action
led to the second second-stage pair, and the number of times the
opposite transitions were observed. A single backup operation
using the Bellman equation was used to combine the reward and
transition functions and compute model-based action values at
the first stage:

Qmb(st,1, at,1) =
∑

s′={2,3}

p(s′|st,1, at,1) max
a={1,2}

Qmb(s
′, a). (5)

Action selection was conducted using a softmax choice rule.
At stage one:

p(a|s) =

exp (βmbQmb(s, a)+ βmfQmf (s, a)+ p · rep(a)+ βbias · bias(a))
∑

a′ exp (βmbQmb(s, a′)+ βmfQmf (s, a′)+ p · rep(a′)+ βbias · bias(a′))
.

(6)

The function rep(a) was 1 when a was the action taken
during the first stage of the previous trial, and 0 otherwise.
p captures the tendency to repeat (p > 0) or switch (p <

0) actions irrespective of value. The function bias(a) was 1
for the second action (arbitrarily chosen) and 0 for the first
action. This incorporates bias toward the first action when βbias

is negative.
At the second stage, action selection was dependent on a single

set of Q-values:

p(a|s) =
exp (β2Qmf (s, a))

∑

a′ exp (β2Qmf (s, a′))
. (7)

There were six parameters in all: α, βmb, βmf , β2, p,
and βbias. Each parameter was instantiated separately for each
participant. Subject level parameters were modeled as being
drawn from a group level Gaussian similar to the regression
model above. An exception to this are the bias parameters, which
captured individual nuance and had independent Gaussian
priors. Parameters governing the strength of model-based and

model-free control also incorporated the possible effects of the
gambling task parameters:

βmb ∼ N(β
µ

mb
+βmb,loss · z-score(log(loss))+

βmb,risk · z-score(risk)+ βmb,temperature

· z-score(temperature),βσ
mb) (8)

and similarly for βmf . The learning rate, α, was transformed
to the (0, 1) range using the logistic function before being
applied. The hyperprior on each group level mean was a broad
N(0, 102) Gaussian (with the exception of the group learning rate,
which had a N(0, 52) prior), with a half-Cauchy(0, 2.5) for the
standard deviation.

2.6. Gambling Task Model
Wemodeled the gambling task separately with two types of utility
functions. The first was based on prospect theory (Tversky and
Kahneman, 1992):

U1(v) =

{

vγ if v ≥ 0,

−κ(−v)γ otherwise.
(9)

For simplicity, because the task used a single set of probabilities,
we assumed they took on their veridical values without special
weighting (Sokol-Hessner et al., 2009). The parameter κ is loss
aversion (the ratio of the weight on losses relative to the weight
on gains), and 1-γ is a measure of risk aversion. Although
prospect theory allows γ to take on separate values for gains
and losses, previous work with this task has constrained models
to use a single parameter for both (Sokol-Hessner et al., 2009,
2012, 2015a,b) because there is a tradeoff with κ : a preference
against gambles on mixed valence trials can result either by
setting κ or a loss specific γ to be high. We follow this approach
for modeling mixed valence trials. However, if the true data
generating process has separate γ parameters for gains and
losses, estimates obtained in this way may be biased, representing
a mixture of the two underlying values. This would bias our
analysis of risk preferences. To get around this, we modeled gain
only trials with a separate γ parameter, and used this parameter
as the measure of risk preference on which we focus.

Action selection was again modeled using a softmax choice
rule. For a gamble with outcomes g1 and g2, and sure amount s,

p(gamble) =
exp (θ(0.5 · U1(g1)+ 0.5 · U1(g2)))

exp (θ(0.5 · U1(g1)+ 0.5 · U1(g2)))+ exp (θU1(s))
.

(10)

The model has four parameters in all: κ , γm (for mixed valence
trials), γg (for gain only trials, with 1 − γg the measure of
risk aversion in the main text), and θ , instantiated once for
each participant.

The second function we tested assumed that utilities are linear
in value, but that there is also a penalty linear in the standard
deviation of the gamble:

U2(v) =

{

v if v ≥ 0

κv otherwise,
(11)
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U3(g1, g2) = 0.5 · U2(g1)+ 0.5 · U2(g2)− wσ , (12)

where σ is the standard deviation of outcomesU2(g1) andU2(g2).
This model has three parameters: κ , w, and θ , instantiated once
for each participant.

The parameters γ , w, and θ were modeled as being drawn
from a group level half-Gaussian defined on [0,∞). κ was
drawn from a log-normal distribution (Sokol-Hessner et al.,
2012, 2015a,b). Hyperpriors were N(0, 22) for the mean of κ , γ ,
and w, N(0, 102) for the mean of θ , and half-Cauchy(0, 2.5) for
each standard deviation.

2.7. Model Fitting
Model fitting procedures were similar to previous work (Solway
et al., 2017). Inference for each combination of models was
performed via Markov chain Monte Carlo, using the No-U-
Turn sampler (Hoffman and Gelman, 2014) implemented in
Stan (Stan Development Team). Proper mixing was assessed by
ensuring the R̂ statistic was less than 1.1 for all variables (Gelman
and Rubin, 1992), and qualitatively by eye. Eight chains were
run in parallel for 4,000 samples (10,000 for the regression
models), using the first 1,000 for warmup. The posterior was
estimated with the resulting 24,000 samples (72,000 for the
regression models). We fit each of four combinations of models
simultaneously to data for all subjects and both experiments: each
version of the two-step model (the logistic regression and hybrid
reinforcement learning model) crossed with each utility function
for the gambling task.

3. RESULTS

To test whether individuals scale model-based control with loss
aversion, participants completed two well-studied tasks, each
designed to separately measure one of the two dimensions of
interest. The first task (Daw et al., 2011; Otto et al., 2013,
2014; Solway et al., 2017), designed to measure decision system
control, required two decisions to be made on each trial

(Figures 1A,B). The first-stage decision was always between
the same two actions, represented by fractal images displayed
on a computer screen. One action predominantly led to a
second pair of images, but a portion of the time transitioned
to a third pair. The second first-stage action had the reverse
mapping, predominantly leading to the third pair of images,
but sometimes to the second pair (see Figure 1A). Participants
had to then make a second decision between the new pair of
images that appeared, which resulted in a probabilistic payoff.
Payoff probabilities drifted randomly and independently for
each of the four second-stage images, requiring participants
to balance exploration and exploitation. To measure loss
aversion, participants completed a standard gambling task (Tom
et al., 2007; Sokol-Hessner et al., 2012) where on each trial
they chose between a sure amount of money and a 50/50
gamble (Figure 1C). The two experiments were performed in
separate sessions of the Roanoke Brain Study, a large scale
study of individual differences (time between sessions ranged
1–674 days).

There are two established ways of estimating model-free and
model-based control in the first task, and two popular utility
functions that are used when modeling the second task. We
examined the relationships of interest separately under all 2 ×

2 models.
The first measure of decision system control in the two-

step task results from comparing the first-stage choice on
consecutive trials and considering whether participants made
the same decision as a function of: (1) whether the last
trial was rewarded, and (2) whether the state transition
from the first stage to the second stage was common or
rare (Daw et al., 2011; Otto et al., 2013, 2014; Solway et al.,
2017). Because a model-free controller does not take the
transition structure into account, and learns retrospectively
from reward, it predicts higher stay probabilities for rewarded
compared to unrewarded trials regardless of transition type.
A model-based controller, which has access to the transition
structure, predicts higher stay probabilities for rewarded

FIGURE 1 | (A,B) Transition structure and sequence of events during each experimental trial of the two-step task. Participants had to make a decision between two

fractal images, each leading probabilistically to another pair of images and a second decision. The four second-stage images were associated with independently

varying binary payoff probabilities, with reward signaled by a green up arrow (point) or red “X” (no point). The task can be solved using either a model-free (“habitual”)

or model-based (“goal-directed”) strategy. Images of fractals were used in the actual experiment, here replaced by colored boxes for publication. Modified

from Solway et al. (2017). (C) Sequence of events within each trial of the gambling task. Participants were asked to make a series binary decisions between a 50/50

gamble and a “sure amount” of money.
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trials following common transitions, and unrewarded trials
following rare transitions (correctly attributing the lack of
reward to the less common transition), and lower stay
probabilities for the two opposite situations. Rather than
consider only two trials at a time, a second measure of
decision system control can be obtained by fitting a hybrid
reinforcement learning model to each participant’s full decision
history (Daw et al., 2011; Otto et al., 2013; Solway et al., 2017).

For decisionsmade in the gambling task, it is standard practice
to assume that veridical outcome values are transformed using
a subjective utility function, but the form of this function is
debated (d’Acremont and Bossaerts, 2008). We consider two
widely used variants. The first, a version of prospect theory,
assumes that there is a differential weight on losses, and that
values are transformed using a power function (Tversky and
Kahneman, 1992; Sokol-Hessner et al., 2012). The latter feature
results in risk averse, or risk seeking behavior, a point we return to
below. A second common form of the subjective utility function
(the “mean–variance” approach) assumes that individual values
are linear, but that there is a penalty for gambles proportional to
their variance or standard deviation.

For each of the four models considered, we used a
hierarchical modeling approach to simultaneously fit the
data for all subjects from both experiments, and estimate
the relationship between variables across tasks. For details,
see section Methods. Rather than focusing on idiosyncratic
results from a single model, we looked for a pattern of
consistent results across all four models. Our initial analysis
focused on looking at pairs of trials in the two-step task,
and using the prospect theory utility function for outcomes
in the gambling task. We performed a logistic regression
predicting first-stage stay probabilities from reward, transition
type (common or rare), the interaction of reward and transition
type, and the interaction of each with loss aversion. As
described above, the main effect of reward is a proxy for the
strength of model-free control, and the interaction between
reward and transition type is a proxy for the strength of

model-based control. Both terms were significant, implying
participants used both strategies in the task (see Table 1 for
the main parameters of interest and Table S1 for auxiliary
parameter estimates). The interaction of each term with
loss aversion determines whether the respective system scales
with loss aversion. The three-way interaction between reward,
transition type, and loss aversion was significant and positive,
whereas the interaction between reward and loss aversion was
not significant.

The same pattern of effects was observed using control
estimates based on a hybrid reinforcement learning model fit
to the participants’ full decision history (Table 2 and Table S2).
The model used closely follows previous work (Daw et al., 2011;
Otto et al., 2013; Solway et al., 2017) (for details see section
Methods). The top row of Figure 2 plots the relationship between
the strength of each decision system estimated in this way and
loss aversion estimated using the prospect theory utility function.
Critically, not only was the effect on model-based control
significant and the effect on model-free control not significant,
but their difference was significant (Figure S1). Repeating the
same logistic regression and reinforcement learning based
analyses using a mean–variance utility function to model the
gambling data revealed the same pattern of effects (see Tables 3,
4, Tables S3, S4, and the bottom row of Figure 2).

Although not within the primary purview of the present work,
the gambling data allowed us to also examine the relationship
between each decision system and risk preferences. For the
prospect theory formulation, we measured risk preference in
terms of the concavity of the utility function (Pratt, 1964; Tversky
and Kahneman, 1992). In the mean–variance approach, risk
aversion is built-in and results from a penalty on a gamble’s
variance. We tested the relationship between model-based and
model-free control and risk preference using all four model
formulations, none of which yielded evidence of a significant
effect (Tables 1–4 and Figure 3).

The effects of loss and risk aversion on each decision system
were tested simultaneously in each of the four formulations.

TABLE 1 | Group level estimates of model-based and model-free control in the two-step task, and the effects of the gambling task variables.

Parameter Description Median &

95% credible interval

1-p(x>0)

Reward Model-free control 0.350 (0.267, 0.433) 0.000

Reward × loss Effect of loss aversion on model-free control 0.040 (−0.049, 0.131) 0.190

Reward × risk Effect of risk aversion on model-free control −0.051 (−0.145, 0.043) 0.857

Reward × θ Effect of gamble inverse temperature on model-free control 0.073 (−0.063, 0.216) 0.149

Reward × common transition Model-based control 0.139 (0.083, 0.195) 0.000

Reward × common× loss Effect of loss aversion on model-based control 0.067 (0.006, 0.128) 0.017

Reward × common× risk Effect of risk aversion on model-based control −0.011 (−0.075, 0.053) 0.631

Reward × common× θ Effect of gamble inverse temperature on model-based control 0.105 (0.010, 0.195) 0.015

Reward × common× loss− reward × loss Differential effect of loss aversion on model-based control 0.026 (−0.087, 0.140) 0.325

Reward × common× risk− reward × risk Differential effect of risk aversion on model-based control 0.041 (−0.076, 0.158) 0.248

Reward × common× θ− reward × θ Differential effect of gamble inverse temperature on

model-based control

0.031 (−0.133, 0.187) 0.351

Based on the logistic regression/prospect theory analysis.
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TABLE 2 | Group level estimates of model-based and model-free control in the two-step task, and the effects of the gambling task variables.

Parameter Description Median &

95% credible interval

1-p(x>0)

βmf Model-free control 4.189 (3.384, 5.108) 0.000

βmf ,loss Effect of loss aversion on model-free control 0.360 (−0.657, 1.316) 0.237

βmf ,risk Effect of risk aversion on model-free control −0.610 (−1.591, 0.324) 0.904

βmf ,θ Effect of gamble inverse temperature on model-free control 0.057 (−1.116, 1.272) 0.463

βmb Model-based control 5.464 (3.375, 7.727) 0.000

βmb,loss Effect of loss aversion on model-based control 3.608 (1.083, 6.242) 0.002

βmb,risk Effect of risk aversion on model-based control −1.584 (−4.067, 0.929) 0.894

βmb,θ Effect of gamble inverse temperature on model-based control 1.400 (-1.933, 4.720) 0.206

βmb,loss − βmf ,loss Differential effect of loss aversion on model-based control 3.260 (0.468, 6.163) 0.011

βmb,risk − βmf ,risk Differential effect of risk aversion on model-based control −0.964 (−3.705, 1.780) 0.756

βmb,θ − βmf ,θ Differential effect of gamble inverse temperature on model-based control 1.339 (−2.176, 4.799) 0.228

Based on the hybrid reinforcement learning model/prospect theory analysis.

FIGURE 2 | The degree to which individuals deploy each decision system versus the logarithm of their loss aversion weight, after removing the effects of risk aversion

and the gambling task inverse softmax temperature. Control estimates are based on a hybrid reinforcement learning model fit to the two-step data, while loss aversion

was estimated using two different utility functions applied to the gambling task data. Each dot represents the medians of one subject’s parameter estimates, the black

line is the median regression line, and the gray area outlines the 95% credible interval. Below each panel is a summary of the posterior distribution of the respective

correlation coefficient. The posterior is a more appropriately conservative summary of the relationship between the two quantities than the correlation between the

median values, because it takes into account the uncertainty in each subject’s parameter estimates. A relationship between loss aversion and model-based control

can be seen using both utility functions, while a relationship with model-free control is not seen with either one. (A) Model-based control vs. log loss aversion

measured using the prospect theory model. (B) Model-free control vs. log loss aversion measured using the prospect theory model. (C) Model-based control vs. log

loss aversion measured using the mean-variance model. (D) Model-free control vs. log loss aversion measured using the mean-variance model.
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TABLE 3 | Group level estimates of model-based and model-free control in the two-step task, and the effects of the gambling task variables.

Parameter Description Median &

95% credible interval

1-p(x>0)

Reward Model-free control 0.347 (0.263, 0.432) 0.000

Reward × loss Effect of loss aversion on model-free control 0.048 (−0.045, 0.140) 0.152

Reward × risk Effect of risk aversion on model-free control −0.040 (−0.143, 0.063) 0.777

Reward × θ Effect of gamble inverse temperature on model-free control 0.048 (−0.054, 0.148) 0.177

Reward × common transition Model-based control 0.135 (0.079, 0.192) 0.000

Reward × common× loss Effect of loss aversion on model-based control 0.074 (0.012, 0.136) 0.010

Reward × common× risk Effect of risk aversion on model-based control 0.030 (−0.037, 0.098) 0.186

Reward × common× θ Effect of gamble inverse temperature on model-based control 0.089 (0.015, 0.164) 0.010

Reward × common× loss− reward × loss Differential effect of loss aversion on model-based control 0.026 (−0.089, 0.143) 0.327

Reward × common× risk− reward × risk Differential effect of risk aversion on model-based control 0.070 (−0.057, 0.197) 0.138

Reward × common× θ− reward × θ Differential effect of gamble inverse temperature on

model-based control

0.041 (−0.087, 0.171) 0.267

Based on the logistic regression/mean–variance analysis.

In addition, each analysis also included the inverse softmax
temperature parameter from the gambling task as a confound
regressor (Tables 1–4 and Figure S2). This parameter can trade
off with both loss and risk aversion, and can be interpreted
either as a measurement of the degree to which participants
engage with the gambling task, or as the independent weight
on gain outcomes (loss aversion is the ratio of the weight on
loss outcomes to the weight on gain outcomes). We observed
a positive relationship between it and model-based control
in the logistic regression analyses, but not in the hybrid
reinforcement learning model analyses. Notably, the effect of loss
aversion on model-based control was observed under all four
formulations even when controlling for risk aversion and the
inverse softmax temperature.

We also performed two additional confirmatory analyses.
To test whether individual performance had an impact on the
results, we excluded participants whose 95% credible intervals
for performance at both steps (both model-based and model-free
control at step 1, and general decision making at step 2) included
0, and re-ran both reinforcement learning model analyses.
The results were unchanged: the relationship between model-
based control and loss aversion was significant, the relationship
between model-free control and loss aversion was not, and the
difference was significant. As before, there was no relationship
between either decision system and risk aversion or the gambling
task inverse temperature. To test the sensitivity of the results
to the priors, we multiplied the standard deviations for the
priors on all mean effects by 10 and reran both reinforcement
learning model analyses. The results under both models were
again unchanged.

4. DISCUSSION

Previous work has shown that loss aversion, the average
weight individuals assign to potential loss relative to
gain outcomes during decision making, is reduced when
participants take all possible decisions and outcomes into
account including future decisions and outcomes, relative

to myopically focusing on the present (Sokol-Hessner et al.,
2009, 2012). Model-based control offers a putative mechanism
for implementing such foresight. Consistent with this idea,
focusing on all possible outcomes compared to focusing
only on the current decision results in increased activity
in the dorsolateral prefrontal cortex (Sokol-Hessner et al.,
2012), an area which has been causally linked to model-based
control (Smittenaar et al., 2013). We thus hypothesized that
increased model-based control would be associated with
decreased loss aversion.

We tested this hypothesis using data from two tasks, each
designed to measure one of the two quantities of interest, in
conjunction with two common ways of modeling each task
(four models in all). Contrary to our hypothesis, we found that
increased model-based control was associated with increased loss
aversion. We also tested for but did not observe a relationship
between model-based or model-free control and risk aversion.

An explanation for this finding, at present, is lacking. While
possible, it is not our contention that the general premise of
Sokol-Hessner et al. (2009) and Sokol-Hessner et al. (2012) is
incorrect. Instead, counter to intuition, model-based control may
not serve as a computational substrate for the prospective activity
required to decrease loss aversion. Moreover, a missing mediator
or latent factor is likely necessary to explain our particular results,
although it is not currently clear what it would be. An appealing
possibility is that individual differences in worry may link these
two quantities. Worriers are apt at running future oriented
simulations: when asked to simulate sequences of hypothetical
catastrophic outcomes, worriers generate many more steps,
reminiscent of simulating forward the transition function in
model-based reinforcement learning (Vasey and Borkovec, 1992).
Worriers also have an attentional bias toward threat (Bar-Haim
et al., 2007; Cisler and Koster, 2010), and overweigh the costs
associated with negative outcomes (Butler and Mathews, 1983;
Berenbaum et al., 2007a,b). However, recent work has shown
that loss aversion specifically is not affected in patients with
generalized anxiety disorder (Charpentier et al., 2017), in which
worry plays a central role, making this explanation less likely.

Frontiers in Neuroscience | www.frontiersin.org 8 September 2019 | Volume 13 | Article 915

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Solway et al. Loss Aversion Correlates With Model-Based Control

TABLE 4 | Group level estimates of model-based and model-free control in the two-step task, and the effects of the gambling task variables.

Parameter Description Median &

95% credible interval

1-p(x>0)

βmf Model-free control 4.175 (3.385, 5.082) 0.000

βmf ,loss Effect of loss aversion on model-free control 0.394 (−0.614, 1.328) 0.212

βmf ,risk Effect of risk aversion on model-free control −0.431 (−1.428, 0.549) 0.805

βmf ,θ Effect of gamble inverse temperature on model-free control 0.263 (−0.688, 1.234) 0.291

βmb Model-based control 5.521 (3.403, 7.739) 0.000

βmb,loss Effect of loss aversion on model-based control 3.793 (1.282, 6.417) 0.002

βmb,risk Effect of risk aversion on model-based control 0.366 (−2.204, 2.986) 0.389

βmb,θ Effect of gamble inverse temperature on model-based control 1.992 (−0.681, 4.551) 0.071

βmb,loss − βmf ,loss Differential effect of loss aversion on model-based control 3.407 (0.670, 6.268) 0.008

βmb,risk − βmf ,risk Differential effect of risk aversion on model-based control 0.801 (−1.976, 3.682) 0.288

βmb,θ − βmf ,θ Differential effect of gamble inverse temperature on

model-based control

1.721 (−1.151, 4.532) 0.121

Based on the hybrid reinforcement learning model/mean–variance analysis.

FIGURE 3 | The degree to which individuals deploy each decision system plotted against their degree of risk aversion, after removing the effects of loss aversion and

the gambling task inverse softmax temperature. No significant relationship was observed between risk preference and either decision system. (A) Model-based

control vs. risk aversion measured using the prospect theory model. (B) Model-free control vs. risk aversion measured using the prospect theory model. (C)

Model-based control vs. risk aversion measured using the mean-variance model. (D) Model-free control vs. risk aversion measured using the mean-variance model.

Taking the result at face value, there are several additional
points of note. First, the two tasks were administered on
separate days, for some subjects, many days apart. Although
unlikely, we tested whether the time between tasks had an

influence on model-based or model-free control, rerunning both
reinforcement learning models with regressors for time and its
interactions with loss and risk aversion and the inverse softmax
temperature from the gambling task. There was no evidence of
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any kind of relationship between time between tasks and either
decision system. The fact that there is strong evidence of a
relationship between loss aversion and model-based control even
though participants performed the tasks on different days seems
somewhat remarkable. However, some caution is warranted. The
test-retest reliability of model-based and model-free control has
not yet been established, and for loss and risk aversion the only
study we are aware of measured test-retest reliability just a week
apart (Glöckner and Pachur, 2012). Our findings are consistent
with the idea that loss aversion and model-based control are trait
variables that persist across time. However, further work is still
necessary to explicitly test the stability of each measure, not only
to frame the current results, but also the many other individual
difference studies being conducted with each measure.

The observed result is correlational in nature. Directly
manipulating each quantity would help determine whether there
is a causal relationship, and if so, what the timescale and nature
of the interaction is. Understanding the factors that causally
influence loss aversion is a relatively unexplored area of research.
One perspective comes from Stewart and colleagues in their work
on decision by sampling (Stewart et al., 2006), which attempts
to provide a mechanistic explanation of valuation from which
loss aversion and other common properties of value functions
emerge. In their model, values are constructed from a series of
binary comparisons between the item in question and a sampling
of similar items in memory. Loss aversion emerges, on average,
because the environment is thought to contain many more
small losses than smalls gains (an idea they motivate through
the analysis of bank records). The theory has been used to
manipulate loss aversion in laboratory experiments on short
timescales (Walasek and Stewart, 2015). A hybrid experiment can
be constructed, based on the same principles, that simultaneously
measures model-based control. Testing the other direction,
model-based control can be disrupted with transcranial magnetic
stimulation (Smittenaar et al., 2013).

Finally, it should be noted that we used the most common
version of the two-step task where rewards are entirely in the gain
domain (Daw et al., 2011; Otto et al., 2013, 2014). A relationship
between model-based control and loss aversion in a gain only
version of the task suggests that the link between the two is
insensitive to the signs of the outcomes in the model-based
task. A second possibility, not mutually exclusive from the first,
is that participants represent “no reward” as a loss. Replacing
0 and 1 outcomes by −1 and 1, setting the reference point

to 0 instead of 0.5, and multiplying the three inverse softmax
temperature parameters by 0.5 in the hybrid reinforcement
learning model of the task results in the same data likelihood (see
section Methods). It is not possible to tell with the current data
which representation is being used, which remains a question for
future work.
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