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Research and Innovation, SACYL/IECSCYL, Valladolid, Spain, ¢ Universitat de Lleida, Departament de Medicina
Experimental, Lleida, Spain, * Hospital Universitario Arnau de Vilanova, Lleida, Spain

Literature suggests that oxidative stress (OS) may be involved in the pathogenesis
of multiple sclerosis (MS), in which the immune system is known to play a key
role. However, to date, the OS in peripheral lymphocytes and its contribution to the
disease remain unknown. The aim of the present study was to explore the influence
of OS in peripheral lymphocytes of MS patients. To that end, a cross-sectional,
observational pilot study was conducted [n = 58: 34 MS and 24 healthy subjects (control
group)]. We have measured superoxide production and protein mitochondrial complex
levels in peripheral blood mononuclear cells (PBMCs) isolated from MS patients and
control. Lactate levels and the antioxidant capacity were determined in plasma. We
adjusted the comparisons between study groups by age, sex and cell count according
to case. Results demonstrated that PBMCs, specifically T cells, from MS patients
exhibited significantly increased superoxide anion production compared to control group
(p = 0.027 and p = 0.041, respectively). Increased superoxide production in PBMCs
was maintained after the adjustment (p = 0.044). Regarding mitochondrial proteins, we
observe a significant decrease in the representative protein content of the mitochondrial
respiratory chain complexes |-V in PBMCs of MS patients (p = 0.002, p = 0.037,
p =0.03, p =0.044, and p = 0.051, respectively), which was maintained for complexes
[, ll, and V after the adjustment (p = 0.026; p = 0.033; p = 0.033, respectively). In MS
patients, a trend toward increased plasma lactate concentration was detected [8.04 mg
lactate/dL (5.25, 9.49) in the control group, 11.36 mg lactate/dL (5.41, 14.81) in MS
patients] that was statistically significant after the adjustment (p = 0.013). This might
be indicative of compromised mitochondrial function. Finally, antioxidant capacity was
also decreased in plasma from MS patients, both before (p = 0.027) and after adjusting
for sex and age (p = 0.006). Our findings demonstrate that PBMCs of MS patients
show impaired mitochondrial redox status and deficient antioxidant capacity. These
results demonstrate for the first time the existence of mitochondrial alterations in the
cells immune cells of MS patients already at the peripheral level.
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory, demyelinating, and
neurodegenerative disease of the central nervous system (CNS)
(Reich et al., 2018). Also, it is currently considered the most
disabling chronic neurological disease in young adults (Nylander
and Hafler, 2012). Genetic susceptibility has been postulated
as a possible factor (Sadovnick et al, 1993; Dyment et al,
2004) that, combined with environmental factors (Ascherio and
Munger, 2010; Hewer et al., 2013; Pender and Burrows, 2014),
can activate a cascade of inflammatory events responsible for
the autoimmune response. However, its etiology remains to be
understood (Chastain and Miller, 2012).

An increasing number of studies have shown that, oxidative
stress (OS) — defined as the homeostatic imbalance between
the production of free radicals and their neutralization by
antioxidant defenses (Salim, 2017) - plays an important role
in the pathogenesis of MS (Ridet et al., 1997; Gilgun-Sherki
et al., 2004; Sospedra and Martin, 2005; Miljkovi¢ and Spasojevi¢,
2013; Ohl et al, 2016). So far, OS has been shown to be
involved in different MS processes such as: (i) in the activation
of immune cells, especially T cells (Corthay, 2006); (ii) in the loss
of blood - brain barrier (BBB) selectivity (Wu and Tsirka, 2009),
(iii) facilitating T-cell migration and infiltration into the CNS
(Marui et al., 1993), (iv) increasing the expression of the cytokine
network (Kroenke et al., 2008; Jiger et al., 2009), (vi) in MS tissue
spread, especially mediated by lipooxidation processes (Gonzalo
etal,, 2012; Nogueras et al., 2019); and (vii) promoting changes in
the clinical evolution of the disease (Fiorini et al., 2013).

At the cellular level, reactive oxygen species (ROS) directly
alter the CNS myelin-producing cells: the oligodendrocytes and
especially their progenitors, the oligodendrocyte precursor cells
(OPCs) (Back et al., 2002; Funfschilling et al, 2012). These
phenomena considerably affect not only the demyelination
but also the remyelination process. On the one hand, ROS
play a destructive role in demyelinating disorders causing
death of mature oligodendrocytes by apoptosis (Cai and
Xiao, 2016). This phenomenon facilitates the loss of existing
myelin/oligodendrocytes and subsequent demyelination process.
On the other, ROS also disrupts OPCs maturation (French
et al., 2009; Cunniffe and Coles, 2019) limiting the remyelination
process. Both mechanisms result in the axonal damage, the main
cause of neurodegeneration in MS (Lee et al, 2014). These
aspects are mainly studied at CNS level, in order to establish
prognostic biomarkers of clinical evolution. However, most of the
studies are performed in experimental models, and very few are
validated in MS patients.

At systemic level, studies exploring the involvement of OS in
MS are limited and sometimes difficult to interpret. The plasma
of MS patients has been reported to have a lower antioxidant
capacity (Karlik et al., 2015) and higher levels of oxidative
damage to both lipids (Toshniwal and Zarling, 1992) and proteins
(Oliveira et al., 2012). This suggests that these phenomena are
typical for the CNS but, as the BBB is compromised, it can
spread systemically.

Mitochondria are present in all eukaryotic cells. Their main
function is to provide energy in ATP form by oxidation, with
ROS generation as an associated phenomenon. The first ROS

to be generated is the superoxide anion, produced mainly by
electron leakage in complexes I and III of the electron transport
chain (Turrens, 2003). The conversion of superoxide anion to
hydrogen peroxide is rapid due to the action of superoxide
dismutase. Nevertheless, superoxide anion is a very reactive
ROS, since its reaction with proteins, DNA and lipids occurs
within a few microseconds, causing harmful effects on cells, or
reacting with other elements to create and spread new ROS
(Halliwell and Gutteridge, 2007).

The role of mitochondria in the pathogenesis of MS was
suggested following the observation that patients with typical
mutations of Lebers hereditary optic neuropathy, a disease
caused by mutations in mitochondrial DNA (Wallace et al.,
1988), had a phenotype indistinguishable from that of MS
(Olsen et al., 1995). Since then, several types of mitochondrial
dysfunction have been described in MS patients. Specifically,
Mahad’s team reported mitochondrial dysfunction in the cortex
and white matter (Mahad et al, 2008), as well as defects
in the mitochondrial respiratory chain in neuronal axons,
oligodendrocytes and astrocytes (Mahad et al., 2009). Besides,
MS-specific mutations cause clonal expansion of mitochondrial
DNA deletions (Larsson, 2010), as well as a decrease in the
efficiency of oxidative phosphorylation (Haider, 2015) together
with an increase in ROS production (Yakes and Van Houten,
1997; Campbell et al., 2014). All these aspects have been
demonstrated in different cell lines at CNS level, but very few
studies have been conducted at systemic level, and none to
date has focused on the study of circulating immune cells.
Consequently, the objective of this work is to study the peripheral
blood mononuclear cells (PBMC) under the hypothesis that there
is an altered mitochondrial situation at peripheral level in the
immune cells of MS patients.

To further characterization of the lymphocyte redox status,
we evaluated the content of representative peptides from
mitochondrial respiratory complexes, their physiological effect
on ROS production as well as compared these variables with
plasma antioxidant capacity.

The results provide not only a new pathological mechanism of
the heterogeneous MS, which would help to elucidate the lack of
therapeutic response by some patients (patients with suboptimal
response to treatment), but also the basis for development
of novel MS biomarkers, useful for diagnosis, prognosis, and
therapeutic response.

MATERIALS AND METHODS
Study Design

This cross-sectional, observational pilot study included a total
of 58 participants: 34 patients diagnosed with the relapsing-
remitting form of MS according to the 2010 revised McDonald
criteria (Polman et al., 2011) and 24 sex and age matched
healthy individuals (control group). This study follows the
Code of Ethics of the World Medical Association (Declaration
of Helsinki). The local medical ethics committee of the Arnau
de Vilanova University Hospital (Lleida, Spain) approved
the study. All participants signed an informed consent
and IRB Lleida Biobank (B.0000682) and PLATAFORMA
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BIOBANCOS PT13/0010/0014 preserved the samples in
optimal conditions. Clinical variables analyzed were: age, sex,
disability status (EDSS, expanded disability status scale), disease
duration, and treatments.

Isolation of Peripheral Blood
Mononuclear Cells

Peripheral blood mononuclear cells were isolated from
peripheral blood obtained by standard venipuncture using
Ficoll® (lymphocyte separation medium, BioWhittaker, Lonza,
Barcelona, Spain) according to a previously published method
(Murray and Rajeevan, 2013). Briefly, 2 x 10 mL of EDTA
anticoagulated blood were centrifuged at 300 g for 10 min and
the top 3 mL containing plasma was separated and stored at
—20°C for other assays. The remaining blood was diluted with
an equal volume of phosphate-buffered saline (PBS), pH 7.4.
The resulting blood-PBS mixture was added to Ficoll® (2:1, v:
v) and centrifuged at 460 ¢ for 30 min at room temperature
with the lowest acceleration and brake program. The PBMC
interface was carefully removed by pipetting and washed
with PBS. Afterward, a centrifugation at 300 g for 10 min
take place. Cell count and viability was determined using
a Neubauer chamber. We used trypan blue for non-viable
cells identification, and cell viability was calculated using the
total cell count and the non-viable cell count. We divided
cells into aliquots for flow cytometry or stored at —190°C for
further analyses.

Lymphocyte Population Analyses and

Superoxide Production

The lymphocyte population was selected by flow cytometry from
the PBMC pool following a previously published method (Ruiz-
Argiielles and Pérez-Romano, 2001). Cell debris, as represented
by distinct low forward and side scatter were gated out for
analysis. First, allophycocyanin (APC)-anti-human CD3 (#3Al,
Inmunostep, Salamanca, Spain) (1:5) and CF™ Blue-anti-
human CD45 (#20F2, Inmunostep, Salamanca, Spain) (1:20)
were added to cells and incubated in the dark for 15 min as
recommended by the manufacturer. The sample was washed
twice with PBS and centrifuged for 5 min at 4500 rpm. Next,
5 uM MitoSox™ (Red mitochondrial superoxide indicator,
Molecular Probes, Invitrogen, Barcelona, Spain) was added to
obtain a final concentration of 2.5 wM and incubated for 10 min
in the dark. The cells were then washed with PBS and centrifuged
again as indicated above. Finally, cells were resuspended in
120 w1 PBS containing 0.5% BSA and analyzed through the flow
cytometer (digital analyzer cytometer FACS-Canto II). T cells
were identified as the population positive for CD45 and CD3
markers (CD45%7 CD3%), with CD45% CD3~ cells considered
mainly B lymphocytes, to a lesser extent, monocytes. We also
identified other PBMCs as double negative markers (CD45~
CD37). The MitoSOX probe is widely used and validated for
detecting selective superoxide in the mitochondria of viable
cells (Robinson et al,, 2006), and its binding to superoxide
can be quantified by flow cytometry in relation to the median
fluorescence intensity (MFI).

ABTS and Plasma Uric Acid and Lactate

Measurement
The antioxidant capacity of plasma was measured as
previously indicated (Re et al, 1999). The 2,2'-azino-bis (3-
ethylbenzothiazoline-6-sulphonic acid) (ABTS, Sigma-Aldrich,
St. Louis, MO, United States) was dissolved with 2.45 mM
potassium persulfate to make a final concentration of 7 mM.
The ABTS radical cation was produced by reacting ABTS stock
solution with 2.45 mM potassium persulfate and leaving it to
stand in the dark at room temperature overnight. Trolox (6-
hydroxy-2,5,7,8-tetramethychroman-2-carboxylic acid; Aldrich
Chemical Co., Gillingham, Dorset, United Kingdom) was used
to construct a standard curve. After adding ABTS solution
(1:100), absorbance was measured at 405 nm, at 0-6 min. Results
were expressed as the Trolox equivalent antioxidant capacity
(TEAC) of each sample.

Plasma uric acid and lactate concentrations were measured
using a Spinreact Kit (Spinreact, La Valld’en Bas, Girona, Spain)
following the manufacturer’s recommendations.

Analysis of Mitochondrial Respiratory

Complexes

After thawing, PBMCs were homogenized in RIPA buffer
containing the following protease inhibitors: NaVO4 1 mM, NaF
1 mM, DTPAC 1 mM, and BHT 1 mM (80-6501-23, Amersham
Biosciences, Little Chalfont, United Kingdom) as described
previously. Protein content was determined using the Bradford
assay (Bio-Rad Protein Assay, Hercules, CA, United States).
Samples containing 20 pg of proteins were mixed with a
standard Laemlli reducing buffer and denatured by heating at
95°C for 3 min (Termobloc Selecta, Barcelona, Spain). Proteins
(20 pg) were separated on 12% SDS-polyacrylamide gels at
15 mA/gel. For immunodetection, proteins were transferred
using a Mini Trans-Blot Transfer Cell (Bio Rad) in a buffer
containing 25 mM Tris, 192 mM glycine, and 20% methanol
to polyvinylidene difluoride (PVDF) membranes (Immobilon-
P Millipore, Bedford, MA, United States), which were then
immersed in blocking solution (0.2% I-Block Tropix AI300,
0.1% Tween in PBS) for 1 h at room temperature. Thereafter,
membranes were probed overnight at 4°C with primary antibody
cocktail anti-human Total OxPhos Complex Kit (dilution 1:500
in Tris-buffered saline, # 458199, Thermo Fisher Scientific),
containing primary antibodies against complex I (18 kDa),
complex II (29 kDa), complex III (core 2; 48 kDa), complex IV
[cytochrome ¢ oxidase (COX) II subunit, 22 kDa] and FIFO
ATPase (Flo; 45 kDa) subunits. As a molecular weight pattern,
we use a commercial standard consisting in a mitochondrial
extract of a human heart tissue that indicates the location of the
complexes to study (2 pg/lane, ref. Ab110337, Abcam).

We use an antibody detecting porin (1:1000, ref. Ab15895,
Abcam) for protein normalization. The membrane was washed
three times in Tris-buffered saline containing 0.05% Tween 20
and incubated for 1 h at room temperature with the appropriate
secondary antibodies (ECL Anti-mouse IgG, horseradish
peroxidase-linked whole antibody NA93IV GE Healthcare
(1:5000 in Tris-buffered saline)]. After five washes with
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Tris-buffered saline containing 0.05% Tween 20, bands were
visualized by using an enhanced chemiluminescent horseradish
peroxidase substrate (Millipore). Signal quantification and
recording was performed using the ChemiDoc imaging
system (Bio-Rad).

Statistical Analyses

The study variables were described by means and standard
deviations (SD), except for those with non-normal distribution
(evaluated by the Shapiro-Wilk test), for which medians and
interquartile ranges (IR) were obtained. Non-adjusted differences
between groups were analyzed with the Student’s t-test, or
with the Mann-Whitney U test if they showed non-normal
distribution. The adjusted mean difference (MS group vs. control
group) and 95% confidence interval (CI) for each study outcome
were obtained using multivariable linear regression, adjusting
for sex and age. Differences in superoxide quantification and
antioxidant plasma capacity were additionally adjusted for cell
count and uric acid concentration, respectively. All tests were
two-sided, at a significance level of 5%. All analyses were
carried out with the statistical software R (R Core Team,
2018, version 3.5.2).

RESULTS

Clinical and Demographic

Characteristics of Participants

Table 1 shows the clinical and demographic characteristics of
the participants included in the study. Neither the percentage
of women, nor the mean age of volunteers showed significant
differences between groups.

PBMCs From MS Patients Produce More

Superoxide Than the Control Group
As a first approach to assess lymphocyte OS, the possible
functional differences in one of the major mitochondrial ROS,

TABLE 1 | Clinical and demographic characteristics of MS patients and controls.

Characteristics CTL (n =24) MS (n = 34) p-value
Female, n (%) 15 (62.5) 22 (64.7) >0.999
Age (years), mean (SD) 40.0 (11.2) 44.4 (10.8) 0.145
Age range 22-64 24-65

EDSS, median (IR) n/a 1(0,3)

EDSS range n/a 0-7

Disease duration, median (IR) n/a 106, 17)

Line of therapy, n (%)

No therapy 8 (23.5)

First line therapy n/a 16 (47.1)

Second line therapy 10 (29.4)

First line therapy includes glatiramer acetate, interferons, and dimethyl fumarate.
Second line therapy includes natalizumab, fingolimod. CTL, control group; EDSS,
expanded disability status scale; MS, multiple sclerosis group; SD, standard
deviation; IR, interquartile range; n/a, not applicable. Missing values [variable (n)]:
EDSS (2); disease duration (2).

the superoxide anion, was analyzed by flow cytometry. Figure 1A
shows the total superoxide production by PBMC isolated from
the peripheral blood. As can be observed, the MS group showed
a statistically significant increase in superoxide production
(p = 0.027). When mean differences were adjusted for sex, age
and cell count, this increase remained statistically significant
(Supplementary Table S1).

Analysis of the superoxide production by each cell
subpopulation (Figures 1B-D) showed that, in MS patients, T
cells presented a higher median concentration of this anion [272
(169, 616.2) in the MS group vs. 192 (114, 287.5) in the control
group, p = 0.041]. However, these results were not statistically
significant when data were adjusted for sex, age and cell count
(Supplementary Table S1).

Mitochondrial Complex Proteins Are
Diminished in MS Patients

Given the key role of mitochondria in superoxide production
(Boveris and Chance, 1973; Forman and Boveris, 1982), we
decided to focus our attention on this organelle. Thus, we
analyzed the levels of representative proteins of mitochondrial
respiratory chain complexes I-V by western blot (Figure 2A).
Quantification revealed statistically significantly lower mean
levels of all complexes I-V in MS patients compared to the
control group (Figures 2B-F). However, when mean differences
were adjusted for age and sex, these differences were only
maintained for complex I [—1.48 (—2.72, —0.25), p = 0.026],
complex III [—1.99 (—3.73, —0.24), p = 0.033], and complex V
[—1.94 (—3.65, —0.24), p = 0.033] (Supplementary Table S1).

MS Patients Show a Trend to Increase

Plasma Lactate Concentration

Figure 3 illustrate the circulating plasma lactate detected in
MS patients and controls. Median lactate concentration was
8.04 mg/dL (5.25, 9.49) for the control group. Although not
significant, a 41% increase in this value was detected for
MS patients [11.36 mg/dL (5.41, 14.81)]. While the means of
both groups were within the range of standard concentrations
established for the healthy population (between 4.5 and
19.8 mg/dL plasma), note that four (11.8%) of the patients
included in the MS group exceeded the maximum levels, reaching
values of 20.40, 22.53, 22.61, and 34.43 mg/dL. In the control
group, however, only one patient exceeded that limit (4.2%).
When results were adjusted for sex and age, the reported increase
was statistically significant (p = 0.013) (Supplementary Table S1).

MS Patients Exhibit Reduced Plasma
Antioxidant Capacity

As can be observed in Figure 4, MS patients exhibited reduced
antioxidant capacity (p = 0.008) compared to controls. Moreover,
this difference was maintained when results were adjusted for sex,
age, and uric acid (p = 0.006) (Supplementary Table S1). Since
variations in several metabolites could explain these changes (Re
et al., 1999), we evaluated the major component of antioxidant
capacity in plasma and uric acid. Results revealed no significant
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differences in this parameter between control group and plasma
samples from MS patients (data not shown).

DISCUSSION

To our knowledge, this is the first functional study to explore
the redox status of peripheral lymphocytes from MS patients.
We found signs of OS in these cells together with an
impaired antioxidant capacity that could be contributing to
this phenomenon.

Thus, our results demonstrate, for the first time, that
the peripheral lymphocytes of MS patients produce higher

concentrations of superoxide compared to healthy subjects. This
supports the mitochondrial involvement in MS pathogenesis
previously reported by other studies. As examples, a proper
axonal mitochondrial content has been shown to be directly
related to the remyelination process (Zambonin et al., 2011) and
mitochondrial dysfunction in CNS cells has been linked to axonal
degeneration (Dutta et al., 2006; Su et al., 2009; Campbell et al.,
2014). However, mitochondrial studies in peripheral lymphocyte
populations have been very limited to date. Our data demonstrate
that peripheral T lymphocytes present higher levels of the
superoxide anion, pointing to involvement of these cells in the
pathophysiology of the disease. Although further research is
required, these cells might represent a potential therapeutic target
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for the early stages of MS. Notably, results are consistent when
they are adjusted for cell count, sex and age. This is important
since these variables may influence the antioxidant capacity and
consequently modify the results, which is not the case.

The decreased levels of mitochondrial respiratory complex
proteins reported in our study support the abovementioned
hypothesis, suggesting mitochondrial involvement in MS
ethiopathology. More importantly, these results may be
indicative of possible impaired function of mitochondrial
complexes, which could explain the abnormal superoxide
production reported here, especially taking into account that
both complexes I and III are major intracellular sources of this
anion (Boveris and Chance, 1973; Forman and Boveris, 1982)
(the complexes whose differences are also maintained after the
adjustment). Besides, genetic studies have demonstrated an
imbalance in the expression of mitochondrial complex encoding
genes in postmortem brain samples of MS patients (Pandit et al.,
2009). Specifically, the decreased expression of those gens in the
CNS cells of MS models is reported (Dutta et al., 2006; Pandit
et al., 2009), suggesting that certain variations in the content of
these complexes might be caused by the disease. Our data may
also support these results. The decreased levels of complexes I
and IIT in peripheral blood lymphocytes of MS patients might
also be an indicator of the subsequent events occurring in the
CNS, since when activated, these cells have the ability to cross the
BBB (Abbas et al., 2012), and might transfer their mitochondrial
mismatch to the parenchyma, increasing ROS production.
Considering that T lymphocytes are in part responsible for
the inflammatory process typical of MS, treatments aimed at
limiting the infiltration of these cells could reduce not only the
inflammation, but also the concomitant CNS OS, one of the
potential causes of neurodegeneration (Lee et al., 2014). Further
studies are required to explore the use of this parameter as a
biomarker of disease progression, with possible clinical benefit
even for patients who experience clinical or radiologic isolated
syndrome. For these patients, this marker might be used as a
risk indicator for MS development, representing a benefit for
early treatment.

Mitochondrial complexes work together but, as in all enzyme
systems, do not work continuously at full capacity. Consequently,
it is tempting to hypothesize that, since lymphocytes have a
lower content of complex I and III, these complexes should
operate at a higher capacity. This would lead to lower efficiency
and higher electron leakage, which might explain the increased
superoxide production. Our results would support the notion
of this increased superoxide production in part due to a
mismatch in mitochondrial complexes I and III. Additionally,
this would lead to an increase in total ROS levels which, in
turn, could result in early depletion of the antioxidant defenses
in the plasma and, consequently, to a diminished antioxidant
capacity as reported here. On the other hand, the existence
of a higher order of mitochondrial structures: supercomplexes
(Lenaz et al., 2016), would add a layer of complexity to the
relationship between superoxide production and mitochondrial
changes. This would relate decreased levels of complexes I and
III to decreased ATP synthesis (Lenaz et al., 2016) and, as a
consequence, ATP synthase (complex V) expression would be

reduced, as we have described here. These results could suggest
a new pathological mechanism for this heterogeneous disease,
which might help to explain the lack of therapeutic response
experienced by some patients (patients with suboptimal response
to treatment). Furthermore, our results may help to identify
potential therapeutic targets, as well as biomarkers of clinical
activity that could be useful as diagnostic and prognostic tools
for targeted and specific treatments.

Analysis of the lactate concentration, a potential proxy for
mitochondrial respiration loss leading to anaerobic glycolysis,
revealed significantly increased levels in the plasma of MS
patients when we adjust results for potential confounders such
as age and sex. Our results contrast with those described
by Mihler et al. (2012) in which no significant differences
were observed in the plasma lactate concentration between
healthy individuals and MS patients. However, another study
conducted in a much larger cohort (n = 1238) showed that
serum lactate concentration could be a powerful biomarker in
MS (Amorini et al., 2014). A metabolic switch at systemic level
could explain our results, but the exact causes are still unknown.
A possible explanation is that part of this increase could be
due to mitochondrial changes in the amounts of complex I
and III, in line with the finding that specific lymphocytes have
the ability to activate the fermentation of pyruvate to lactate
(Jones and Thompson, 2007). However, it is worth noting
that there is a substantial contribution of skeletal muscle to
circulating lactate, which may explain why MS patients with
an increased fatigue burden due to lack of mobility exhibit
high plasma lactate levels. In contrast, a significant correlation
between lactate production and EDSS was not found (data
not shown), although other authors have reported this finding
in plasma (Amorini et al., 2014) [but not in CSF (Regenold
et al., 2008)]. In any case, we cannot rule out that part of
the increase in plasma lactate may be due to the limitation of
mitochondrial respiration.

Increased superoxide production could be directly related
to a buildup of cellular oxidative damage (Cadenas, 1989),
potentially in line with increased plasma oxidative modifications,
as suggested by an increase in markers of oxidative damage
both in plasma (unpublished data) and CSF (Gonzalo et al.,
2012). Although the increase in plasma OS markers in MS is
well documented (Koch et al., 2007; Karlik et al., 2015; Pasquali
et al., 2015), the origin of this damage remains unclear. It has
been suggested that these phenomena could originate in the
CNS and, since in MS the BBB is compromised, these could
spread systemically.

The changes in the redox status of peripheral lymphocytes
from MS patients described here might partially explain the OS
phenomenon in the CNS reported in this disease. According to
our hypothesis, T cells would act as a Trojan horse, transporting
peripherally originated OS to the CNS.

However, this study has some limitations. First, the cross-
sectional design of the study is a major limitation, since it does
not allow causal relationships to be established. Secondly, we
would like to point out that the sample size of the present study
might be low to perform multivariable analysis. Nonetheless, we
have used multivariable linear regression to estimate the effect
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associated with MS while controlling potential biases due to
confounding factors.

Despite these limitations, we believe that this study provides
unique and interesting fresh data that shed new light on the
role of OS and mitochondrial (dys) function in MS. Of note,
one of the first antibodies used in MS was Natalizumab, binding
to lymphocytes very late antigen 4 and preventing lymphocytes
from crossing the blood-brain barrier, thereby improving clinical
course (Polman et al, 2006). The same basic mechanism,
i.e., inhibiting the entry of T cells in CNS, is shared by
Fingolimod and ozanimod acting on sphingosine-1-phosphate
cellular responses (Cohen et al., 2010, 2016). Besides avoiding the
above-referred trojan-horse effect of high-superoxide producing
T cells infiltrating CNS, it is known that o4 integrin, target of
natalizumab, mediates free radical-derived damage peripherally
(Poon et al., 2001). Though this is speculative, perhaps the
effects of natalizumab on T cells also involve diminished free
radical production. Supporting this, it is known that natalizumab
diminishes OS biomarkers in MS patients (Tasset et al., 2013).
In line with this, recent data show that polymorphisms in
genes encoding oxidative detoxification components, such as
NQOI and GSTP1, are relevant in the therapeutic response to
this drug (Alexoudi et al., 2016). Recent data also show that
sphingosine-1-phosphate inhibition prevents oxidative-damage
in glial cells (O’Sullivan et al., 2017). Noteworthy, one of major
targets of Sphingosine-1-phosphate is mitochondrial function of
naive T cells (Mendoza et al., 2017). Our finding of deregulated
mitochondrial function in T cells could be related to these
novel effects of sphingosine-1-phosphate in T cells. Last, but
not least, dimethyl fumarate treatments are clearly targeted to
several factors evaluated here, such as mitochondrial function
and oxidative damage, among others (Kees, 2013; Peruzzotti-
Jametti and Pluchino, 2018). In this sense, recent data show
that dimethyl fumarate, acting in neurodegenerative models is
able to modulate NRF2 signaling (Ranea-Robles et al., 2018).
Of note, NRF2 is a key factor modulating responses to OS,
even involving changes in mitochondrial function and cellular
metabolism (Holmstrom et al., 2013). Therefore, dimethyl
fumarate clinical effects might involve modulatory effects on
mitochondrial dysfunction hereby described in MS. To sum up,
we believe that the association between MS treatment and T-cell
superoxide overproduction and mitochondrial (dys) function are
worth exploring in future studies. Further, our data support
the potential use of mitochondrial characteristics of circulating
T cells for development of biomarkers of disease activity, and
they may contribute to heterogeneity to treatment response
and MS prognosis.

CONCLUSION

Our findings demonstrate that PBMCs of MS patients show
impaired mitochondrial redox status and deficient antioxidant
capacity. These results allow us to speculate that peripheral
immune cells might partially contribute to the OS reported in the
CNS of MS patients.
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