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Film based round the ear electrodes (cEEGrids) provide both, the accessibility of
unobtrusive mobile EEG as well as a rapid EEG application in stationary settings
when extended measurements are not possible. In a large-scale evaluation of driving
abilities of older adults (N > 350) in a realistic driving simulation, we evaluated to what
extent mental demands can be measured using cEEGrids in a completely unrestricted
environment. For a first frequency-based analysis, the driving scenario was subdivided
into different street segments with respect to their task loads (low, medium, high)
that was a priori rated by an expert. Theta activity increased with task load but no
change in Alpha power was found. Effects gained clarity after removing pink noise
effects, that were potentially high in this data set due to motion artifacts. Theta fraction
increased with task load and Alpha fraction decreased. We mapped this effect to specific
street segments by applying a track-frequency analysis. Whilst participants drove with
constant speed and without high steering wheel activity, Alpha was high and theta low.
The reverse was the case in sections that required either high activity or increased
attentional allocation to the driving context. When calculating mental demands for
different street segments based on EEG, this measure is highly significant correlated with
the experts’ rating of task load. Deviances can be explained by specific features within
the segments. Thus, modulations in spectral power of the EEG were validly reflected in
the cEEGrids data. All findings were in line with the prominent literature in the field. The
results clearly demonstrate the usability of this low-density EEG method for application
in real-world settings where an increase in ecological validity might outweigh the loss of
certain aspects of internal validity.

Keywords: EEG, driving, Alpha power, Theta Power, mental work load

INTRODUCTION

The recent development of film based round the ear electrodes (cEEGrids) is an important step to
access EEG in situations in which the recording of electrophysiological brain activity has previously
not been possible. Compared to multichannel Cap-EEG, the application of cEEGrids is significantly
less time-consuming, whilst the signal quality is still sufficiently high to derive valid and reliable
measures (Bleichner et al., 2016; Bleichner and Debener, 2017; Denk et al., 2018; Sterr et al., 2018).
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These properties render the cEEGrid electrodes particularly
useful when lab-time is limited as well as in mobile real-
life situations in which minimizing the interference due to
the recording is a concern (Debener et al., 2015; Sterr et al.,
2018; Mikkelsen et al., 2019). Especially when measuring EEG
in non-stationary or outside-of-the-lab situations, recording
technologies need to overcome present restrictions due to
conventional electrode setups (Symeonidou et al., 2018).
Generally speaking, the specific advantages of the cEEGrid
electrodes over multichannel Cap-EEG are especially relevant
in situations in which a high ecological validity is desired.

It has repeatedly been shown that the EEG signal derived
from cEEGrid electrodes may provide reliable correlates for
basic mental processing (Mirkovic et al., 2016; Bleichner and
Debener, 2017). Both, auditory and visually evoked potentials
were shown to be measurable with these types of electrodes
(Bleichner et al., 2016; Pacharra et al., 2017). Moreover, it has been
recently shown that even the localization of cortical sources of
the signal is possible, since the projections of the electric fields of
potentially relevant dipoles are distinguishable by using various
combinations of the cEEGrid channels (Bleichner et al., 2016;
Bleichner and Debener, 2017). It could also be demonstrated that
it is feasible to obtain reliable correlates of cognitive activity in the
frequency domain from a signal recorded via cEEGrid electrodes.
Systematic and task-related modulations of Alpha activity have
been reported when accessed in the laboratory (Debener et al.,
2015; Pacharra et al., 2017).

The data analyzed in the present study source from a
large-scale investigation of the driving abilities of older adults
(N = 395), intended to generate valid indicators and predictors
for driving abilities at higher age. The experimental procedure
comprised a neuropsychological evaluation, the testing of basic
sensory and cognitive abilities as well as the simulated driving test
itself. While driving, the EEG was measured in order to generate
neurophysiological data, indicating neurocognitive deficits of
attentional allocation while driving. In order to fit the whole data
acquisition protocol into a reasonable amount of time, especially
against the background of the large sample-size, cEEGrid
electrodes were chosen as means to record electrophysiological
data from the participants. In the first analysis of the EEG data
presented here, it was tested, whether task-related modulations
of the EEG that are well known from highly controlled laboratory
settings, would be as well observable in the EEG recorded in a
natural scene driving simulator via cEEGrids.

There is a long history of EEG-measurement in order to
analyze the drivers’ mental state. The vast majority of these
studies try to detect mental fatigue as a severe risk for accidents
on the road (Horne and Reyner, 1999; Horne and Baulk, 2004;
Williamson, 2007). Basically, EEG power increases in the lower
frequency bands (Delta, Theta, Alpha) with mental fatigue
(Cajochen et al., 1995; Lal and Craig, 2001, 2002; Zhao et al.,
2012; Arnau et al., 2017). This change in spectral distribution
may reflect reduced levels of arousal and alertness (Makeig and
Inlow, 1993; Makeig and Jung, 1995; Berka et al., 2005, 2007;
Eoh et al., 2005; Tops and Boksem, 2010). Recent studies have
shown that Alpha power also changes with task load and task
engagement (Wascher et al., 2016). Alpha power was found to

be low when participants actively focus on a demanding task
(Wascher et al., 2016; Karthaus et al., 2018). On the other hand,
very high alpha activity has been reported when mind wandering
occurred and participants withdraw their attention from the
primary task (Pattyn et al., 2008; Baldwin et al., 2017). More
generally, Alpha activity is related to mental states in which
errors become more probable (Ogilvie et al., 1991; Jap et al.,
2011). Theta power show inverse effects (Wascher et al., 2014;
Getzmann et al., 2018). Increased Theta power is in particular
observed with higher workload (Wilson and Hankins, 1994;
Gevins et al., 1997) or task engagement (Yamada, 1998; Onton
et al., 2005). These findings led to different approaches toward
EEG-based workload indices (Kumar and Kumar, 2016; Dan and
Reiner, 2017; Di Flumeri et al., 2018) that may be applied in
order to structure work organization (Chen and Vertegaal, 2004;
Huang et al., 2012). Similarly, a number of approaches toward
the development of a countermeasure against driver fatigue have
been proposed (Lal and Craig, 2001, 2005; Lal et al., 2003;
Baldwin et al., 2017), which might be even applied while on-road
driving (Papadelis et al., 2009).

Most of the studies mentioned above focus on the general
state of the user, measured for longer periods of activity.
However, when investigating the spectral properties of the EEG,
it is important to differentiate between sustained effects in
the ongoing EEG, which reflect primarily the general state of
the cognitive system, and task-related spectral modulations,
reflecting specific cognitive processes. Also in the analysis of
event-related EEG, the modulations of the spectral power in the
Theta and the Alpha range were found to be opposed. Theta
power usually increases in response to a stimulus, whereas Alpha
power decreases (e.g., Onton et al., 2005; Hanslmayr et al.,
2012). Moreover, Theta power increases with task complexity (So
et al., 2017). The potentially complex interactions between basic
state and local demands make general approaches to workload
questionable. Therefore, in addition to the general mental states,
specific aspects of the information processing requirements in
different driving situations must also be investigated. When
investigating cognitive processing, data from the laboratory
experiment rely on a large number or repetitions of a given
event. By averaging EEG segments time locked to this event,
random fluctuations and event-related portions of the signal
can be separated (Luck, 2005). In realistic environments, the
possibility to confront an individual with the same stimulus
repeatedly is limited. This holds especially true for driving
simulator studies and even more for on-road driving studies,
in which an extensive repetition of events is hardly possible. In
addition, in realistic contexts it is also hard to control for the
occurrence of task-related and task-unrelated cognitive processes
that may be present during stimulus presentation. This imposes
a great challenge to the analysis of the event-related EEG, as
the signal to noise ratio is significantly reduced compared to
highly controlled laboratory experiments. This is due to the
smaller number of comparable events, as well as to the process-
impure nature of the signal recorded. The benefit of sacrificing
some internal validity of the obtained measures in e.g., driving
simulator scenarios in contrast to laboratory-based tracking
tasks, however, is a great improvement of the ecological validity
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of the study, especially in studies with older participants, who
usually benefit from naturalistic settings (Hahn et al., 2013).
Prioritizing ecological validity is a necessary step toward the
implementation of EEG measures to real-world applications
(Ladouce et al., 2017).

Thus, in the present study we evaluated to what extent
cEEGrids are suited for EEG measurement in a realistic driving
scenario, focusing on the following questions: (1) Is it possible
to evaluate factors like mental load by means of cEEGrids? (2) Is
it additionally possible to investigate the event-related allocation
of attention in specific, singular situations? In order to answer
these questions, three different EEG analyses were performed
based on the same dataset, all based on a time frequency
decomposition of the signal via Morlet wavelet convolution. First,
to allow comparison to the vast majority of previous experiments
in that field, variations in Alpha and Theta power due to
expert-rated task load were analyzed. Second, the time-frequency
matrices were transformed into track-frequency structure. Note,
since the study intended to observe ecologically valid driving
behavior, the variation of average speed was rather high as it
is known from older adult drivers (Son et al., 2010; Andrews
and Westerman, 2012). Thus, the only systematic way to render
the entire track comparable across all participants was to assign
the electrophysiological signal to track points rather than to
time. Events at particular sections of the route were identical
across all participants. Finally, addressing the influences of
different driving events, time-frequency responses time locked to
a particular moment in time were analyzed.

MATERIALS AND METHODS

Participants
A total of 395 older participants (age range 67–76 years; mean
age 71.5 years; SD 2.98 years; 26.6% female) enrolled in the
experiment. All participants had a valid driving license and stated
to use their car on a regular basis (on average between 5000
and 10000 km/year).

They had normal or corrected to normal vision and
reported an overall good health status (97.2%). The most
commonly used drugs were hypotensive agents (53.0%),
followed by cardiovascular medications (18.6%) and diabetes
medications (10.4%).

Before entering the study, all participants provided written
informed consent. The study was approved by the local
ethics committee of the Leibniz Research Centre for Working
Environment and Human Factors.

Task and Procedure
When entering the laboratory, participants filled out a
questionnaire about their driving history, driving habits
and attitudes toward driving. After a short test drive to become
familiar with the driving simulator, they completed the Montreal
Cognitive Assessment (MoCA; Nasreddine et al., 2005) and other
neuropsychological tests which will not be reported here. The
ride took place in a static driving simulator (ST-Sim, ST Software
B.V., Groningen, Netherlands).

The track was designed in a way that it resembled a
regular German driving examination with all critical driving
situations included. The drive started at a state road with
several intersections, roundabouts and a foggy passage before
they entered the freeway. There were several roadwork sites to
be passed. Back on the state road participants passed several
intersections but also drove along a sustained undistorted passage
before they entered the city where traffic lights, pedestrians, and
cyclists had to be attended. All along the way there was low to
moderate traffic.

Participants were guided by navigation signals that
indicated upcoming maneuvers. Navigation signals consisted
of simultaneously presented acoustic (verbal) and visual
information (arrows on an indicator panel near the dashboard).
There was no instruction with respect to driving speed.
Participants were requested to drive at a comfortable speed as
they would go in real traffic in compliance with German road
traffic regulations. The distance of the full scenario was 37 km
and took the participant between 34 and 85 min (as far as they
finished the entire scenario).

Data Recording and Processing
EEG was recorded with two cEEGrids positioned around the
participant’s left and right ear, respectively (see Debener et al.,
2015; Bleichner et al., 2016; Mirkovic et al., 2016; Pacharra et al.,
2017). The two cEEGrids were connected to a QuickAmp DC-
amplifier (Brain Products Inc., Gilching, Germany) with an on-
line low pass filtering at 280 Hz. Data were sampled at 1 kHz with
a resolution of 24 bits. The two electrodes in the middle of the
right cEEGrid served as ground and online reference respectively
(R4a, R4b). Data were stored together with base data from the
driving simulator (speed, position of the steering wheel).

Preprocessing Pipeline
Despite a short phase of familiarization to the simulator (5 to
8 min), there was a substantial drop out due to simulator sickness.
28.6% (n = 113) of the participants aborted the experiment
before finishing a driven distance of 30 km that was set as the
limit for the analyses presented here. This limit was set because
participants were offered an exit option thereafter in order to
avoid severe simulator sickness evoked by the demanding urban
drive. With this distance all types of roads (urban, highway and
rural road) were substantially covered. From the remaining 282
participants the first 30 km of the route (which were identical for
all participants) were selected for analyses.

EEG data and simulator data were, in a first step, resampled
to 200 Hz and then band-pass filtered (1–40 Hz), in particular
because slow drifts distort some of the subsequent procedures.
Then, single channels of the recorded EEG were checked for
integrity by testing both the probability of data as well as their
kurtosis by applying the rej_channel function as implemented
in EEGLAB (normed data; criterion: 4 standard deviations).
Faulty channels were discarded (on average 2.29 channels, SD
2.29; range 0 – 9).

Following the channel rejection procedure, it was checked
whether reference channels (L4b, R4b) were still available. 245
data sets remained and were re-referenced to the average of
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L4b and R4b. These data were entered into the artifact subspace
reconstruction (ASR) procedure Mullen et al., 2014, 2017).

Subsequently, a time frequency decomposition was performed
on each channel of the remaining data. This was done by
convolving the data with complex Morlet wavelets defined as
complex sine waves tapered by a Gaussian. We used a set of 29
wavelets with frequencies ranging from 2 to 30 Hz in linearly
spaced steps. The widths of the tapering Gaussians were chosen in
a way that the spectral resolution was the same at each frequency
with a full-width at half-maximum (FWHM; Cohen, 2018) of
2 Hz. This corresponds to a FWHM of 450 ms in the temporal
domain. Spectral power estimates were calculated as the squared
absolute values of the complex convolution result and averaged
across channels.

The obtained data were finally checked for data integrity. Both,
subjects with incomplete or corrupt transmission of simulator
data into the EEG recording files (n = 17) or a total EEG power
that deviated by more than three standard deviations from the
median (n = 12) were discarded. Thus, all following analyses were
conducted based on 216 participants.

Data Analyses: Estimated Mental Load
In order to test the influences of task load on the driver’s mental
status, the driving scenario was classified by an expert according
to their assumed mental demand to the driver (task load low,
medium, high). Passages of low task load (cumulative 12.83 km)
were characterized by an undisturbed ride on a free route; in
passages of medium task load (cumulative 8.42 km), junctions
with turning, roundabouts, left turns, motorway entrances and
exits had to be passed; finally, passages of high task load

(cumulative 8.75 km) comprised interactions with other traffic
participants, like overtaking, driving behind a vehicle ahead,
waiting for oncoming traffic, giving way, avoiding obstacles,
construction zone passages, and traffic light intersections (cf. also
Pauzié, 2008; Rahman et al., 2017). Task load rating was oriented
on specific aspects of functional changes with higher age and their
impact on driving behavior (Karthaus and Falkenstein, 2016).

Driving speed, steering wheel angle velocity, and the spectral
power in the Theta (3–6 Hz) and the Alpha (7–10 HZ) band
were averaged across all segments of each task load and mean
values were entered into ANOVAs. Two aspects have to be
mentioned here: (1) The speed profiles of participants were
highly inter-correlated (see Figure 1). Thus, it can be assumed
that each participant despite the high interindividual variance
in driving speed spent the same proportion of his/her driving
time in either task load condition. (2) The selection of the
band borders was slightly shifted to the left compared to
traditional analyses because only old adults were tested and
at least the individual Alpha frequency has been reported to
decrease dramatically with age (Surwillo, 1961; Klimesch, 1999;
but see also Figure 2). These frequency borders were kept for all
subsequent analyses.

Since at some points of the route massive broadband artifacts
(affecting all frequency bands) were still visible despite the
extensive pre-processing procedure, we additionally calculated
the contribution of each frequency to the overall signal by
applying a vector normalization across all frequencies for
each time point. These data (called Alpha fraction and Theta
fraction) were entered to the same analyses as described for the
raw signal above.

FIGURE 1 | In the upper row distribution of average speed and speed-pattern correlation are shown (the speed profile of each participant was correlated with the
grand average of speed profiles). The lower row depicts analyses of driving speed and steering wheel angular velocity with respect to task load (lower row).
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FIGURE 2 | Average power spectrum from all participants (upper panel) and
analyses of the impact of task load for raw power in the two frequency bands
(middle panel) and power fractions (lower panel). In the EEG-data, only
fractional power revealed strong and reliable effects of task load.

Data Analyses: The Track-Frequency Analysis
The track-based analysis bases on the knowledge of 43 predefined
landmarks that were set during EEG recording. For each
participant, a TTL-trigger was set in the EEG recording file when
the vehicle passed these points. In-between two landmarks, for
each time point of recording, the waypoint on track was estimated
based on vehicle speed as transmitted from the simulator. The
estimate included the upcoming landmark and was compared
to the known position of this point. The maximal error for all
estimates was below 1.5%.

In a second step, segments were built 10-meter wise and
mean power fraction was calculated for each frequency band for
each segment. The obtained data were z-transformed across all
3000 data points and low-pass filtered by an ± 40 m moving
average. The 95% confidence interval was calculated and depicted
in Figure 2.

Based on this rather descriptive analysis, a simple algorithm
is proposed to classify task load based on EEG data. Starting
with the assumption that high Theta activity is related to mental
effort whereas high Alpha is related to reduced attentional
allocation, for each time point Theta and Alpha fraction were
tested against each other by a paired sample t-test. Significantly
higher Alpha fraction was assigned to low task load, increased
Theta as high task load. Waypoints with no differences between
the two frequency bands were assigned to median task load. This
classification was correlated with the expert rating.

Strong differences between the two classification approaches
(expert vs. EEG) will be discussed based on properties of the
respective road section.

RESULTS

Behavior
Average speed (see Figure 1, upper left graph) varied markedly
across participants, however, showed a good approximation to a
normal distribution. Mean driving speed was 47.79 km/h. The
variations across participants (standard deviation = 6.99 km/h)
reflected the well-known strategy of older adults to reduce speed
when they feel unsecure (Trick et al., 2010).

When mental load is considered as derived from an expert
rating, driving parameters (see Figure 1 lower row) fit these
estimates. Speed varied reliably with task load, F(2,215) = 5356.5,
p < 0.001. Decrease in speed was in particular pronounced
from low to median load, F(1,215) = 7284.5, p < 0.001.
From median to high task load, driving speed increased again,
F(1,215) = 1347.9, p < 0.001.

Steering wheel angular velocity also varied with task load,
F(2,215) = 3040.3, p < 0.001. It increased steadily from low to
median, F(1,215) = 3240, p < 0.001, and from median to high
task load, F(1,215) = 212.15, p < 0.001.

Thus, as defined in the criteria of the expert rating, straight
and undistorted driving defined low task load. Medium and
high task load showed comparable driving speeds, however with
medium task load showing a reduced steering activity compared
to high task load.

Spectral Analyses
The power spectra obtained (see Figure 2, first row) nicely
reflect an 1/f function. The only distinct peak in the spectra
most probably reflects Alpha activity. Although its maximum
was below 9 Hz, the high age of participants would predict such
slow Alpha activity (Klimesch, 1999) and therefore support the
validity of data.

Raw Theta power varied with task load, F(2,215) = 5.982,
p = 0.002. The power increased from low to median task load,
F(1,215) = 20.082, p < 0.001, but did not differ between median
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FIGURE 3 | Track-based analyses of driving parameter (upper panel; black: driving speed; red: steering wheel angular velocity) and EEG-data. Note that each time
point of each participant was assigned to a waypoint. All measures presented here were then averaged 10-meter wise. The middle panel shows mean Alpha
(black) and Theta (red) fractions shaded by their 95% confidence interval. The lower panel depicts the entire spectrum.

and high, F(1,215) = 0.362, p > 0.2. Raw Alpha power did not
change with task load, F(1,215) = 0.541, p > 0.2.

More differentiated was the picture obtained with power
fractions. Theta fraction varied with task load, F(2,215) = 82.167,
p < 0.001. Theta fraction increased from low to median,
F(1,215) = 69.442, p < 0.001, and from median to high task
load, F(1,215) = 11.435, p < 0.001. Also Alpha fraction showed
a significant effect, F(2,215) = 8.9843, p < 0.001. It decreased
from low to median task load, F(1,215) = 12.181, p < 0.001,
but no further when median and high task load are compared,
F(1,215) = 0.243, p > 0.2.

The Track-Frequency Analysis
The track-frequency analysis (see Figure 3) refers to average
values of each parameter for 10 m segments of the scene. It
supports the findings from the mental load analysis. Segments
with high Theta fractions are characterized by increased steering
wheel angular velocity due to junctions or roundabouts. This is
in particular visible when participants entered the city (around
27 km). High Alpha fraction was only visible in segments where
participants drove on a more or less constant speed without much
steering activity. As indicated already from the rating-based task
load analysis, Alpha suppression did not take place on a constant
level for a longer time period, which might explain the missing
effect on Alpha fraction with high task load.

In a second step, an estimate of task load was derived based
on the track-frequency analysis. Segments in which Theta was

significantly higher than Alpha fraction were denoted as high task
load. The reversed effect was assigned to low task load. Segments
where no difference between the two frequency bands were found
were assigned to medium task load (see Figure 4).

The task load values from the expert rating and the
calculated estimates of task load correlated with r = 0.311,
p < 0.001, indicating that there was some similarity between
the two measures, however, that there were as well some
substantial differences.

Looking at the most prominent differences includes the
following driving segments:

(1) Driving into the foggy passage was not assigned to
medium mental load, as proposed by the expert, but
showed a short passage of high task load that rapidly
declined to low task load in the track-frequency analysis.

(2) Driving on the freeway was not demanding when
interaction with other road users was required.

(3) Driving into the city was highly demanding for the
participants independent of the specific requirements in
a particular situation.

Apart from these global aspects, it is to be mentioned that high
task load appeared to be a rather local phenomenon, occurring
primarily when participants entered a new situation. In order to
demonstrate these situations, three positions were selected where
participants had to break and entered a demanding segment
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FIGURE 4 | Track-based driving parameter and estimates of task load as derived from an expert rating (middle panel) and the track-frequency analysis (lower
panel). There are substantial similarities between the two classifications, but also strong differences e.g., when participants entered the foggy passage (around
3 km), on the freeway (between 17 and 20 km) and when entering the city (27 km).

(see Figure 5). In all cases a short, phasic increase in Theta
fraction is visible accompanied by low Alpha activity.

DISCUSSION

The present study intended to investigate neurophysiological
parameters of mental load in older adults while driving along a
realistic scene in a driving simulator. Due to temporal constraints
in the experimental design no full-cap EEG was recorded, but
film-based round the cEEGrids were used to pick up the EEG
signal. Here we demonstrate how reliable and valid the obtained
EEG signal from this type of electrodes was and to what degree
the EEG data reflect mental load.

Participants drove a scenario that included all elements of
a regular German driving test (except parking). They were not
instructed to drive at a specific speed, which might explain the
high variability in this parameter. One of the main compensation
mechanisms with respect to driving behavior in older adults is an
adaptation of driving speed when they feel unsecure (Trick et al.,
2010; Andrews and Westerman, 2012). Thus, the data pattern
measured in this experimental setting is well in line with natural
driving behavior.

Raw inspection of the data revealed segments with large
motion artifacts that affected the entire frequency range. Here
it is to be mentioned that film-based electrodes on the skin of
older participants did not always reveal a good signal. Regular

aging of the skin leads to wrinkles that prevented even adhesion
of the film electrodes. It appears plausible that this fact amplified
the distortion of the signal due to motion artifacts. However,
applying Artifact Subspace Reconstruction, revealed a stable
signal that showed a well-defined and plausible measure for
almost all participants.

The first analysis of data was based on an expert rating
that was guided by known factors of mental load in driving
situations (Pauzié, 2008; Engström et al., 2017; Rahman et al.,
2017) and by known critical issues of older drivers due to
functional decline (Karthaus and Falkenstein, 2016). The driving
parkours was a priori subdivided in passages of low, medium, and
high task load, characterized by an undisturbed ride on a free
route, passages with junctions with turning, roundabouts, and
left turns, as well as interactions with other traffic participants,
respectively. One has to be aware, however, that in particular
in older adults the variance of driving strategies and perceived
task load are highly variable (Andrews and Westerman, 2012).
Nevertheless, the criteria applied appeared to be a suitable first
guess for differences in task demands that are also reflected in
the behavioral data. Driving speed and steering activity varied
plausibly with task load.

Applying this categorization to EEG data revealed results that
are well in accordance with the literature. Aspects of Alpha
and Theta activity varied with task load. For the raw power, a
modulation with task load was only visible in the Theta band.
Relative power (power fraction), however, varied in the Alpha
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FIGURE 5 | Time frequency based analyses of entering new situations. When entering the foggy passage (left panel), the rest area on the freeway (middle panel)
or the first junction in the city (right panel). A short and phasic increase in Theta activity can be observed but not in the Alpha band.

and in the Theta band in the expected direction. Theta increased
with task load and Alpha decreased (Wascher et al., 2016). Such
a discrepancy between raw and relative power is not unusual
(Arnau et al., 2017). In particular the high variability of raw
power (as also visible in Figure 2) might prevent effects from
becoming significant.

On the other hand, it is also likely that the expert rating
did not fully coincides with the demands as they are perceived
by the older population that was tested. In particular the
interaction with other road users that is generally assumed to
be demanding (Rahman et al., 2017), might result in a less
demanding situation exerting very defensive driving behavior.
This is usually attributed to compensation strategies deployed by
older drivers (e.g., Karthaus and Falkenstein, 2016) to avoid i.e.,
overtaking maneuvers.

In order to challenge these shortcomings, an approach was
used that might provide EEG-based workload indices (Kumar
and Kumar, 2016; Dan and Reiner, 2017; Di Flumeri et al., 2018)
for every section of the track in high spatial resolution. Each time
point of the individual EEG recording of each participant was
assigned to a particular waypoint by stretching and compressing
the data in the temporal domain. Based on this assignment,
spectral power estimates were averaged for 10-meter segments.
Then, Alpha and Theta fractions were calculated for each of these
segments. The pattern of the course of these two frequency traces
varied systematically with the characteristics of the assigned

street segments. Reliable high Theta activity was only visible
at very prominent loci where much activity and attentional
allocation were required. In contrast, Alpha activity was high
when participants drove undistorted on free street segments,
without much activity.

Thus, an estimate for a workload index was calculated based
on Alpha and Theta power and subsequently compared to the
expert rating. There was a substantial correlation between the
two indices but also remarkable deviations. These deviations,
however, might appear to be plausible when analyzing the
situation more closely, in which they occurred.

The first situation was the foggy passage. The expert rated
this situation as medium task load, because all the way vision
was disturbed, but sufficient for save driving at reduced speed.
Therefore, a higher amount of attention was expected to be
required, relative to driving in conditions with good visibility
conditions. In fact, the EEG-based estimation of workload was
high when entering the fog passage. While driving through
the fog, the EEG pattern suggested low task load. Looking at
the behavior, it became clear that participants did not behave
as initially expected. At the beginning of the fog passage,
they strongly reduced driving speed, but then continuously
accelerated despite the profoundly reduced visibility. It is a well-
known phenomenon, however, that driving speed may be heavily
misperceived in fog (Brooks et al., 2011; Mueller and Trick, 2012),
which is one of the reasons for severe accidents. Obvious risks
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might be ignored and lead to reduced perceived task load, as also
found here in older adults. It is to be mentioned that passing
a junction in the fog (after about 4 km drive) led to a short
reduction in speed and a short moment of higher task load
(cf., Figure 3). More generally, approaching a new situation went
along with phasic increases of task load in measured EEG. The
longest period of deviating estimates of task load was a passage
on the freeway with increased traffic and therefore increased
interaction with other road users. The assumption of the expert
that interaction might lead to increased task load turned out
to be wrong. The possibility to flexibly adjust behavior in such
a situation (by reducing the driving speed, for example) might
have rendered the situation less demanding. Finally, entering the
city revealed EEG-based task load estimates that were always
at a medium or high level. Obviously, the rapid sequence of
events in urban traffic prevented the drivers’ attentional system
from going into a relaxed state of low task load. Thus, there
are plausible explanations for the deviations between the expert
rating and the EEG-based estimates which are in fact in favor
of the latter.

One possible flaw remains at this point. The EEG-based
estimate of task load might be driven by motor rather
than cognitive demands. Activity in the Alpha frequency
range is also closely related to motor activity. So-called Mu-
activity (8–12 Hz over sensorimotor areas) is suppressed in
relation to motor processes and sensory motor integration
(for a review see Pineda, 2005). Because the data quality
of cEEGrids did not allow source allocation of the obtained
signal, such activity cannot be dissociated from Alpha activity.
However, there are two arguments against this notion: (1)
as can be seen in Figure 5, the strongest cognitive demands
when entering the city came along with the lowest steering
(motor) activity. (2) A post hoc correlation between task
load and steering activity revealed a rather week correlation
(r = 0.132).

In summary, it was demonstrated that cEEGrids did not only
provide a reliable EEG signal but also data that allowed for a valid
interpretation of task load in a minimally controlled, realistic

task. For sure, task load was not well controlled in the driving
task but it was approached under high ecological validity. Derived
from an activity in the Alpha and the Theta band, an estimate of
task demands was generated that at least a posteriori, in a detailed
analysis, appeared to explain task load of a driving situation more
plausible than a criterion-based rating of an expert. The findings
presented here therefore create new opportunities in cognitive
neuro-ergonomics and mobility research. Since the system is
in principle completely mobile, real-world applications become
possible and might generate access to an objective measure of task
load in any context.
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