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Electrical stimulation has been playing a significant role in revealing various functions and
mechanisms of the nervous system. It is no different for myelination, a process in which
oligodendrocytes in the central nervous system (CNS) or Schwann Cells in the peripheral
nerve system (PNS) wrap around axons to provide an insulating layer in vitro and in vivo.
It has been widely recognized that the myelin sheath accelerates axon signal conduction
and provides neuroprotection. Recent studies have begun to reveal its role in plasticity.
The major mechanism that enables this process is activity-dependent myelination –
the phenomenon where neuronal activity supports oligodendrocyte maturation and
myelin sheath formation. In light of recent discoveries, a better understanding of this
phenomenon has a potential to provide therapeutic targets for not only demyelinating
diseases, but also psychiatric disorders. There is a growing need for experimental
platforms capable of dissecting the effect of neural activity on myelination in health and
disease. The effect of neural activity is commonly studied by comparing the myelination
levels in cultures with neurons of low and high activity. Electrical stimulation is particularly
well suited as a method of inducing neural activity in these systems. In this review,
we describe in vitro platforms for studying activity-dependent myelination, which utilize
neuron stimulation via electrical field. We also discuss stimulation profiles, as well as the
alternatives to electrical stimulation in the context of regular, compartmentalized, and
organotypic co-cultures.

Keywords: electrical stimulation, optogenetic stimulation, magnetic stimulation, myelination, neural activity,
oligodendrocyte, Schwann cells

INTRODUCTION

Neuromodulation is an emerging technique for treating neurological diseases and psychiatric
disorders in the field of medicine. This technique was first introduced by Merton and Morton
(1980) who employed a high-voltage electrical stimulator to stimulate the primary cortex in humans
through the intact scalp. Upon stimulation, a weak muscle twitch on the contralateral hand was

Abbreviations: BDNF, brain-derived neurotrophic factor; CNS, central nervous system; DRG, dorsal root ganglion; LIF,
leukemia inhibitory factor; OPC, oligodendrocyte progenitor cell; PNS, peripheral nervous system; TES, transcranial
electrical stimulation; TMS, transcranial magnetic stimulation; TTX, tetrodotoxin.
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generated (Merton and Morton, 1980). It became apparent
that the stimulation could activate muscle fibers by inducing
upper motor neuron activities. This observation provided the
evidence that non-invasive brain stimulation would be useful
in both research and medicine. Over the past 30 years,
numerous clinical studies have been performed with different
techniques including transcranial electrical stimulation (TES)
and transcranial magnetic stimulation (TMS). TES applies
constant, oscillating or randomly alternating currents through
two or more electrodes to modulate brain activity. The
predominant direction of the current is radial to the brain
surface. For TMS, stimulation is produced by a brief, high-
intensity magnetic field, which is generated by an electric
current passing through a magnetic coil. In contrast to TES,
the predominant direction of the current is tangential to the
brain surface. In recent years the application of neuromodulation
has been extensively expanding as more studies demonstrate
its therapeutic potential for treating a host of maladies,
including major depressive disorders, obsessive-compulsive
disorder, stroke, epilepsy, Parkinson’s disease, and Alzheimer’s
disease (Tergau et al., 1999; George et al., 2010; Khedr et al.,
2010; Mantovani et al., 2010; Rabey et al., 2013; Torres et al.,
2015). The therapeutic effect mainly results from modulating
neural activity. Low frequency stimulation reduces neural activity
while high frequency stimulation excites neural activity (Hallett,
2007). It is clear that the effect of electrical stimulation is not
limited to neurons. Multiple studies have suggested that electrical
stimulation affects oligodendrocytes or Schwann cells which
support neural conduction in the nervous system.

The nervous system of vertebrates requires rapid propagation
of action potentials to integrate signals from the external
environment. This rapid propagation is possible because of
the myelination of axons, a process by which oligodendrocytes
in the central nervous system (CNS) or Schwann cells in
the peripheral nervous system wrap the axon. During the
embryonic period, myelination begins with the proliferation
of oligodendrocytes and Schwann cells followed by the
establishment of glia-axon contacts (Jessen and Mirsky, 2005;
Nave and Werner, 2014). Upon contact with the axonal
membrane, OPCs and newly differentiated oligodendrocytes
extend and retract their processes (Kirby et al., 2006). When
contact is established, several molecular rearrangements result
in a polarization of myelinating cells toward the axonal
membrane (Baron and Hoekstra, 2010; Ozcelik et al., 2010;
Nave and Werner, 2014). Longitudinal expansion of myelin
segments coincides with secondary axon elongation during
postnatal development (Hildebrand et al., 1993, 1994). After
the peak of myelination in early life, remodeling of mature
myelin membranes slows down. However, OPCs continue
to proliferate and differentiate (Young et al., 2013) while
Schwann cells retain high plasticity (Young et al., 2013;
Jessen et al., 2015).

The mature myelin sheath is interrupted at regular intervals
by unmyelinated regions where the membrane of the axon
is exposed to the extracellular space. This arrangement of
myelination allows for the generation of action potentials
at short, unmyelinated axonal segments, and increases the

velocity at which the action potentials are conducted. As such,
small changes in myelin structure can lead to substantial
changes in conduction velocity (Waxman and Bennett, 1972).
In addition, myelin provides metabolic and trophic factors,
which play a critical role in development of axons and
viability of neurons (Wilkins et al., 2001, 2003; Funfschilling
et al., 2012). Therefore, developmental failure of myelination
in the nervous system in early life or loss of myelin have
debilitating consequences in the remaining axons. It has been
intriguing to examine whether modulating the activity of axons
could induce myelination and hold therapeutic promise in
demyelinating diseases. Interestingly, converging evidence has
demonstrated that neural activity promotes oligodendrogenesis
and myelination (Demerens et al., 1996; Stevens et al., 2002;
Gibson et al., 2014; Mitew et al., 2018). Early support for
this hypothesis emerged from the finding that transection
of the developing optic nerve by axotomy or blockade of
activity in the developing optic nerve by tetrodotoxin (TTX)
dramatically reduces the rate of OPC proliferation (Barres
and Raff, 1993) and the degree of optic nerve myelination
(Demerens et al., 1996). In accordance with these studies, it
was demonstrated that increasing neural activity with α-scorpion
toxin enhances myelination (Demerens et al., 1996). Much of
the in vitro work investigating the mechanisms by which neural
activity regulates myelination has focused on the instructive
roles of neurotransmitters and soluble factors. For instance,
several studies have suggested that glutamate or acetylcholine
released from depolarized neurons induces the synthesis of
myelin (Gallo et al., 1996; Gudz et al., 2006; De Angelis
et al., 2012). In dorsal root ganglion (DRG) neurons and
OPC co-culture, adenosine was released from the neurons in
an activity-dependent manner, promoting OPC differentiation,
and myelination (Stevens et al., 2002). Moreover, brain-derived
neurotrophic factor (BDNF) released from neurons has been
shown to enhance myelin formation from oligodendrocytes and
Schwann cells (Wan et al., 2010; Xiao et al., 2010). Building on
these studies, development of new technologies has uncovered a
rich experimental landscape for understanding neural activity-
dependent myelination. Specifically, the compartmentalized
microfluidic platform has become a valuable tool due to its
applicability and flexibility (Campenot, 1977; Taylor et al., 2005;
Wu et al., 2005; Park et al., 2006, 2014; Cox et al., 2008). The
integration of co-cultures in the compartmentalized platform has
enabled the physical separation of axons and oligodendrocytes
from the neuronal soma (Yang et al., 2012; Malone et al., 2013; Lee
et al., 2016; Prasad et al., 2017; Blasiak et al., 2018). In the present
review, we discuss the role of neural activity in myelination and
induction of myelination in vitro through stimulation of neurons
with different technologies.

EARLY STUDIES ELUCIDATING THE
ROLE OF AXONS IN MYELINATION

Oligodendrocytes in the CNS have the unique ability to
form myelin. Although there is close interaction between
oligodendrocytes and neurons, early evidence that neurons
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directly influence the formation of myelin was lacking. Several
studies have suggested that cultured oligodendrocytes express
proteins necessary for myelination and develop myelin-like
structures even in the absence of neurons (Mirsky et al.,
1980; Dubois-Dalcq et al., 1986). Moreover, oligodendrocytes
isolated from rodent brain could extend their tips to form
myelin-like structures (Sarlieve et al., 1980; Szuchet et al.,
1986). However, contradictory lines of evidence called
into question the validity of myelination in the absence of
axons. Analysis of the myelin-like structures by electron
microscopy demonstrated that these structures were not
compactly organized compared to the myelin that wrap axons
(Althaus et al., 1984; Lubetzki et al., 1993). Ultrastructural
analysis showed that the processes of oligodendrocytes folded
up on themselves rather than winding around themselves.
Moreover, primary oligodendrocytes cultured with astrocytes
and neurons specifically myelinated axons but not astrocyte
processes or dendrites. This exclusive myelination of axons
suggested that a molecular cue from axons may recruit
oligodendrocyte processes (Lubetzki et al., 1993). Later, it
became evident that the factors released from axons play a
trophic role in the proliferation of oligodendrocyte progenitor
cells (OPCs) and subsequent differentiation (Wood and Bunge,
1986; Lubetzki et al., 1992). Following axotomy of the optic
nerve, oligodendrocytes clustered without their longitudinal
orientation, developed fewer processes, and eventually failed
to form myelin in the transected optic nerve (Ueda et al.,
1999). These results suggested that viable axons are essential
for three-dimensional organization of oligodendrocytes and
myelination. Taken together, these pioneer reports strongly
argued that axons play a role in myelination. However,
conclusive evidence of whether neural activity could influence
myelination remained elusive.

INDUCTION OF MYELINATION BY
NEURAL ACTIVITY

Myelination is a finely orchestrated process that involves
interactions of oligodendrocytes or Schwann cells with other
cells through extracellular signaling and physical contacts.
Thus, it would be logical to speculate that these myelinating
cells synchronize their differentiation according to neural
development and activity. In the 1960s, Gyllensten and Malmfors
introduced the idea that neural activity could influence the
function of oligodendrocytes. Their study demonstrated that
mice reared in the dark developed fewer myelinated axons in
the optic nerve compared with control mice (Gyllensten and
Malmfors, 1963). Lack of myelination was also observed in the
optic nerve of blind rats, whereas myelination was accelerated
in the optic nerve by pre-mature eye opening (Tauber et al.,
1980; Omlin, 1997). These findings were further supported
by a similar study showing that blockade of action potentials
with 10−6 M TTX inhibited myelination, whereas increase
in duration and frequency of action potentials with 10−9

M α-scorpion toxin enhanced myelination (Demerens et al.,
1996). The idea that neural activity can induce myelination

has been further advanced by a number of recent studies that
employed powerful genetic and imaging tools. For instance,
channelrhodopsin 2 (ChR2) has been utilized as an optogenetic
tool to manipulate neural activity since its discovery. ChR2 is
a light-gated cation channel derived from photoreceptors in
microalgae (Nagel et al., 2003). Because ChR2 can depolarize
neurons within milliseconds with 470-nm light, expression of
ChR2 in a specific group of neurons allows spatial and temporal
regulation of neuronal activity (Boyden et al., 2005; Arenkiel
et al., 2007). Optogenitic stimulation (cycles of 30 s on, 2 min
off, 10 min/d for 7 days) of the premotor circuit in Thy1:ChR2
mice resulted in newly generated oligodendrocytes and increased
thickness of the associated myelin sheath (Gibson et al., 2014).
In accordance with this result, pharmacogenetic stimulation
of somatosensory axons in the mouse brain almost doubled
the number of mature oligodendrocytes capable of myelination
(Mitew et al., 2018). Conversely, the study also demonstrated
that attenuation of neural activity reduces myelination. Neural
activity modulates myelination not only by directly stimulating
oligodendrocytes but also by activating microglia and astrocytes
(Ishibashi et al., 2006). Studies in both visual and auditory
systems have demonstrated that neural activity induces the
activation of microglia (Tremblay et al., 2010; Rosskothen-Kuhl
et al., 2018). The activated microglia could promote myelination
through clearance of the cellular debris that could potentially
to interfere with myelination processes (Kotter et al., 2006;
Church et al., 2017). In line with this, Cx3cr1−/− mice exhibiting
severe deficiency of microglia phagocytosis have impaired
myelination (Lampron et al., 2015). Microglia also directly
regulate proliferation, differentiation, and migration of OPCs
(Miron, 2017). Taken together, recent studies strongly suggest
that neural activity potentiates myelination. In line with the
in vivo studies, several studies have elucidated potential molecular
mechanisms mediating neural activity-dependent myelination.
For instance, ATP released from DRGs in an activity-dependent
manner is hydrolyzed to adenosine. Subsequently, adenosine
binds to adenosine receptors on the OPC and promotes
myelination (Stevens et al., 2002). There is also mounting
evidence that neural activity triggers release of BDNF from axons
and microglia (Trang et al., 2009; Parkhurst et al., 2013), which
can subsequently induce myelination formation through the
TrkB/Erk signaling pathway (Wan et al., 2010; Xiao et al., 2010;
Ishii et al., 2012, 2013). Leukemia inhibitory factor (LIF) released
from astrocytes in response to neural activity also appears to
promote myelination (Ishibashi et al., 2006). Thus, it is clear
that neural activity is an external regulator of myelination with
important functional implications.

ENHANCEMENT OF MYELINATION
FOLLOWING MODULATION OF NEURAL
ACTIVITY IN VITRO

The therapeutic effect of TES and TMS has been attributed
to its ability to modulate neural activity, which provides
hope that TES and TMS can restore myelination via neural
activity modulation. Although studies conducted over the past
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two decades collectively demonstrated that neural activity
promotes myelination, a more complete understanding of
activity-dependent myelination is essential for the development
of activity-based therapies to treat demyelinating diseases.
Moreover, there are very limited findings regarding the
response of oligodendrocytes to TES or TMS. It is critical
to carefully examine the influence of TES or TMS on
oligodendrocytes, especially when they are simultaneously
stimulated with neurons. To address the cellular and molecular
mechanisms, in vitro models allowing electrical or optogenetic
stimulation in neuron/oligodendrocyte co-culture have been
developed (Ishibashi et al., 2006; Yang et al., 2012; Lee
et al., 2016, 2017; Blasiak et al., 2018). These models
benefit from a compartmentalized microfluidic platform which
allows the isolation of neuronal cell bodies from axons
and oligodendrocytes. The features of the compartmentalized
microfluidic platform were leveraged for myelination studies
to more accurately mimic the in vivo microenvironment, to
stimulate neurons exclusively and to study the effect of a focal
stimulation on different subcellular locations. When 10 Hz
electrical stimulation was applied to DRGs for 7 days (1 h/day),
the formation of myelin segments was increased by fivefold
compared to the non-stimulated groups (Yang et al., 2012).
The formation of myelin was also enhanced following electrical
stimulation of DRGs (10 Hz, 1 h/day for 7 days) prior to
introducing oligodendrocytes in the culture (Malone et al.,
2013). This study also demonstrated 10 Hz to be the most
effective stimulation frequency in the range of 1 to 100 Hz,
and 7 days to be the most effective length of the stimulation
course. These findings were consistent with previous studies
showing an active role of neurons in myelination of their
axons. The optimized stimulation parameters were also used
to demonstrate that electrical stimulation enhances myelination
independent of subcellular location (Lee et al., 2017). When
electrical stimulation (10 Hz, 1 h/day for 3–14 days) was
delivered to soma, proximal axons, or distal axons, the degree
of myelination was similar regardless of the stimulation site,
but higher than in non-stimulated neurons (Lee et al., 2017).
Similarly, subcellular optogenetic stimulation was applied to
study the effect of neural stimulation on myelination (Lee et al.,
2016; Blasiak et al., 2018). In line with previous studies, focal
stimulation (10 Hz, 1 h/day for 3–14 days) on neurons was
sufficient to promote myelination of axons. Based on these
findings, it is reasonable to speculate that neural stimulation
of distal axons innervating muscles could be as effective as
neural stimulation of soma in the spinal cord as a treatment for
demyelinating diseases.

PERSPECTIVES, UNANSWERED
QUESTIONS AND CONCLUDING
REMARKS

In summary, we have provided an overview of the role of
neural activity in myelination, with an emphasis on myelination
via modulation of neural activity. The pioneering efforts in
the field have unraveled the complex interactions between

oligodendrocytes and neurons. Particularly, recent in vivo
studies employing optogenetics and pharmacogenetics have
provided strong evidence that stimulation of neural activity
promotes myelination (Gibson et al., 2014; Mitew et al., 2018).
Interestingly, stimulation of demyelinated axons could enhance
oligodendrocyte differentiation and remyelination (Ortiz et al.,
2019). While the role of neural activity in myelin formation
has become apparent, many mechanistic details remain to
be filled in through further investigations. Perhaps most
important is the identification of factors involved in activity-
dependent myelination, which will enable choosing targets
for remyelination and lesion repair. Because stimulation of
neural activity could enhance myelination in co-culture of
neurons and OPCs, molecular mechanisms linking neural
activity and myelin formation should be further studied with
in vitro models.

As transcranial electrical stimulation and transcranial
magnetic stimulation allow modulation of neuronal firing
pattern, they could induce activity-dependent myelination.
However, it is still unclear how the interaction between
oligodendrocytes and neurons will be influenced when both
cell types are simultaneously stimulated. It is conceivable
that external stimuli might change the contents of soluble
factors released from both oligodendrocytes and neurons,
which in turn activate numerous signaling pathways. In
addition, the external stimuli could abruptly change the cellular
membrane potential of both oligodendrocytes and neurons,
which does not occur in the brain. The stimuli parameters,
such as duration, current input, and frequency, need to be
optimized for each disease condition. Therefore, it is crucial
to carefully evaluate the advantages and disadvantages of TES
and TMS using well-established models. In this review, we
introduce in vitro models employing the compartmentalized
microfluidic platform. Despite their unique advantages, these
models also have limitations such as gliosis following electrical
stimulation and requirement of a transient transfection
prior to optogenetic stimulation (Williams et al., 1999;
Zhong and Bellamkonda, 2008). Regarding this, there is an
urgent need for the development of new tools and models
that will become useful in investigating activity-dependent
myelination. With a clearer understanding of molecular
mechanisms, the modulation of neural activity has the
potential to become as a novel therapeutic strategy for treating
demyelinating diseases.
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