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Magnetoencephalography has gained an increasing importance in systems neuroscience

thanks to the possibility it offers of unraveling brain networks at time-scales relevant to

behavior, i.e., frequencies in the 1–100Hz range, with sufficient spatial resolution. In the

first part of this review, we describe, in a unified mathematical framework, a large set

of metrics used to estimate MEG functional connectivity at the same or at different

frequencies. The different metrics are presented according to their characteristics:

same-frequency or cross-frequency, univariate or multivariate, directed or undirected.

We focus on phase coupling metrics given that phase coupling of neuronal oscillations

is a putative mechanism for inter-areal communication, and that MEG is an ideal tool

to non-invasively detect such coupling. In the second part of this review, we present

examples of the use of specific phase methods on real MEG data in the context of

resting state, visuospatial attention and working memory. Overall, the results of the

studies provide evidence for frequency specific and/or cross-frequency brain circuits

which partially overlap with brain networks as identified by hemodynamic-based imaging

techniques, such as functional Magnetic Resonance (fMRI). Additionally, the relation

of these functional brain circuits to anatomy and to behavior highlights the usefulness

of MEG phase coupling in systems neuroscience studies. In conclusion, we believe

that the field of MEG functional connectivity has made substantial steps forward in

the recent years and is now ready for bringing the study of brain networks to a more

mechanistic understanding.
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INTRODUCTION

In the last decades, systems neuroscience has made it clear that brain functioning requires the
cooperation of several spatially separated brain regions to allow for integrative functions (e.g.,
vision, audition), as well as for higher order functions (e.g., understanding of actions), for a review
see e.g., Rizzolatti et al. (2018). The reliable estimation of this cooperation, i.e., of functional
connectivity between brain areas, is thus of primary importance to disclose the physiological and
pathological organization of the human brain. To this end, several non-invasive imaging techniques
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and novel analysis methods have contributed to the
examination of whole-brain functional connectivity patterns:
functional Magnetic Resonance (fMRI) and functional Near
Infrared Spectroscopy (fNIRS) have investigated the level
of co-activation between brain regions as a proxy for
functional communication (e.g., Smith et al., 2013; Wang
et al., 2017), while electrophysiological techniques such as
ElectroEncephaloGraphy (EEG) and MagnetoEncephaloGraphy
(MEG), have characterized both the level of co-activation
between brain regions and the coupling of their respective
signals, i.e., the statistical relationship between time-series of
neuronal signals. A recent review on the theory and algorithms
of electrophysiological brain connectivity analysis can be found
in He et al. (2019).

In this review we will focus on MEG, i.e., the measurement
of the magnetic field generated by neural currents. Indeed, MEG
has gained an increasing importance in systems neuroscience
as testified by the impact of MEG related publications (Baillet,
2017). Magnetoencephalography, being able to track neuronal
activity without the filtering effect of the neuro-vascular coupling
(Singh, 2012) can provide direct information about neuronal
activity and functional connectivity. In the last decade, MEG
functional connectivity has contributed to reinforce the concept
of Resting State Networks (RSNs) as defined by fMRI (Deco
and Corbetta, 2011) by assessing the correlation between
the Blood-Oxygen-Level-Dependent (BOLD) time-series of two
brain regions. In MEG, initially Amplitude Envelope Correlation
(AEC) has been used to assess the level of co-activation between
MEG signals of different brain regions. Specifically, MEG AEC
has been calculated as the correlation of the slow temporal
fluctuations (envelope) of the orthogonalized MEG signals (for
a review see O’Neill et al., 2015). Moreover, MEG is able
to track neuronal activity at its characteristic time scale, i.e.,
milliseconds, and it is thus ideally suited to assess the faster
dynamics of the different brain areas as well as of their functional
connectivity. Indeed, this characteristic makes MEG also able
to investigate, with high spectral resolution, neural oscillations
which are known to subserve brain connectivity and to play
important roles in cognitive processes (Varela et al., 2001;
Engel et al., 2013). In more detail, it has been hypothesized
that only coherently oscillating neuronal groups can interact
effectively. This hypothesis, namely Communication Through
Coherence (CTC; Fries, 2005), is grounded in the fact that neural
oscillations are associated to neuronal excitability fluctuations:
two neuronal groups can communicate only when they share
the same excitability state, with a possible time lag between the
two that takes into account the speed of traveling signals (Bastos
et al., 2015; Fries, 2015). Thus, long range connectivity can be
assessed through the characterization of phase-phase coupling
(hereinafter simply referred to as phase coupling) between MEG
signals which has also been related to the concept of RSNs (e.g.,
Marzetti et al., 2013).

This review aims at introducing the different methods used
to assess connectivity in MEG, with emphasis on methods based
on phase coupling. We will discuss the advantages of studying
brain connectivity starting from neural sources, as estimated
from MEG, over studying brain connectivity directly from the

measured signals. MEG has been often considered similar to
EEG since both are related to the electromagnetic field generated
by the currents flowing within neurons and in the surrounding
medium, i.e., the brain volume. Indeed, while sharing the same
elementary neuronal phenomena, each of the two techniques
has its own strengths as summarized in Lopes da Silva (2013),
and the physics laws that describe how these currents translate
into magnetic field and electric potential show the differences
between the two techniques (Hämäläinen et al., 1993). Among
others, the lower sensitiveness of MEG to the properties of
the conducting medium (Vorwerk et al., 2014; Stenroos and
Nummenmaa, 2016) and the need for a reference signal in EEG
(Chella et al., 2016a, 2017; Van de Steen et al., 2019) imply an
important advantage ofMEGover EEG in the assessment of brain
functional connectivity.

This review is organized as follows. Firstly, the principles of
MEG, including the methods used to estimate brain activity and
its relevance to neuronal oscillations, will be revised. Secondly,
an extensive review of the methods commonly used to assess
functional connectivity will be presented, in which the different
methods are classified as undirected or directed according to their
outputs, univariate or multivariate, and same-frequency or cross-
frequency according to their inputs. Finally, the use of phase
coupling methods on MEG data in the context of resting state,
visuospatial attention and working memory will be presented.
Table 1 clarifies the terminology used throughout this review.

MAGNETOENCEPHALOGRAPHY

The aim of this paragraph is to briefly review the major
characteristics of the MEG signal, including its origin, the
identification of brain sources from the measured MEG signal,
and the potential of MEG to detect neuronal oscillations and to
investigate functional connectivity.

Beyond these aspects, we want to emphasize here that the
unique features of MEG have made this technique more and
more attractive to researchers in order to answer neuroscientific
as well as clinical questions (Baillet, 2017). In parallel, the need
for guidelines for the acquisition and analysis of MEG data
has emerged. To instruct newcomers, as well as to standardize
procedures across MEG laboratories, good practice papers have
been recently published for both basic (Gross et al., 2013)
and clinical neuroscience (Burgess et al., 2011; Hari et al.,
2018). To facilitate the analysis, several open-source software
packages are available to the user, the most widely used being:
Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld et al.,
2011), MNE (Gramfort et al., 2014), and SPM8 (Litvak et al.,
2011). Additionally, a multimodal extension of the Brain Imaging
Data Structure (BIDS), originally proposed to standardize MRI
data formats (MRI-BIDS), has been proposed for MEG data
(MEG-BIDS; Niso et al., 2018). This will allow a smoother data
harmonization as well as to reduce sharing efforts across the
MEG community.

Origin of MEG Signal
Nowadays, it is commonly agreed that MEG signals originate
mostly from postsynaptic currents in the apical dendrites of
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TABLE 1 | List of terms and definitions used.

Term Definition

Magnetoencephalography (MEG) MEG is a non-invasive neuroimaging technique that can be used to detect extremely weak magnetic fields generated by

spatially aligned neurons that are simultaneously activated. The measured MEG signal originates from postsynaptic currents

in the apical dendrites of pyramidal neurons.

Neural oscillations Assemblies of neurons influence each other through excitatory and inhibitory synaptic connections which leads to rhythmic

activation and inhibition of neurons in the network. The rhythmic activity is reflected in oscillating signals that can be

measured outside of the scalp with EEG and MEG.

Phase The phase of periodic oscillation, i.e., an oscillation which repeats itself exactly after one period (e.g., sinusoidal wave)

indicates the fractional portion of the period that has been completed. The phase is typically expressed as an angle

spanning a whole turn (2π ) as the oscillation goes through a period. In the context of neural oscillations, the phase reflects

the excitability state of the neurons and therefore the phase influences the discharge times of the neurons in the network.

Functional connectivity Functional connectivity refers to statistical associations or temporal correlations between two or more anatomically distinct

brain regions.

Phase coupling The term phase coupling refers to the relationship between oscillation phases in different brain regions. More specifically, in

this work, the term phase coupling is used to indicate the presence of peaks in the distribution of the phase difference

across time or signal realizations (e.g., trials, or different segments into which continuous signals can be divided). Phase

coupling is considered to be a fundamental neural mechanism that supports neural communication, neural plasticity and it

is considered relevant for many cognitive processes. In the literature also the term phase synchronization is used as a

synonym of phase coupling.

Communication through Coherence (CTC) CTC refers to the concept that only coherently oscillating neuronal groups can interact efficiently. The concept is grounded

in the fact that neural oscillations are associated to neuronal excitability fluctuations. Only when inputs from presynaptic

group consistently arrive to the postsynaptic group at the time of high input gain (at appropriate phase) the two groups can

effectively communicate. This requires coherence between the pre- and postsynaptic groups since otherwise the inputs

arrive at random phases of excitability state and will have less impact on the postsynaptic neurons.

pyramidal neurons in the cortical mantle. Maxwell’s equations
in their quasi-static approximation describe how these currents
translate into magnetic field (Hämäläinen et al., 1993). The MEG
challenge lies into measuring such an extremely weak magnetic
field, about one million times smaller than the Earth’s magnetic
field, in an often magnetically noisy environment due to nearby
large metal objects or strong electric currents. Typically, the
simultaneous activation of about tens of thousands of spatially
aligned nearby neurons (i.e., a neuronal pool) is needed to
generate a detectable MEG signal.

All of the currently operating MEG systems are based
on superconducting magnetometers, namely SQUIDs
(superconducting quantum interference device). These
sensors feature an exquisite sensitivity to pick up the weak
neuromagnetic fields the bandwidth of which spans from
few kHz down to almost DC (Baillet, 2017). Moreover, all
MEG systems operate in a magnetic shielded room to reduce
environmental magnetic noise. Recently, the development of
new sensors operating at room temperature, namely Optically
Pumped Magnetometers (OPMs), have open new opportunities
for the widening of MEG applications. These devices, although
still suffering from higher noise and limited bandwidth with
respect to SQUIDs, offer the possibility to record MEG using a
wearable device in a more ecological setting (Boto et al., 2018;
Iivanainen et al., 2019).

Source Space MEG
MEG sensor signals arise from the mixture of the activity of
several neuronal pools. In fact, each MEG sensor measures, with
different weights, the signal generated by all neuronal pools
active at a given time. This results in the overlap, at sensor

level, of the fields generated by each pool. Even if one would
unrealistically assume that only one pool is active, and thus no
actual brain connectivity is present, a fake connectivity profile
between the sensors would be detected as the result of all sensors
measuring the activity of the one brain source. Thus, assessing
true brain connectivity directly from MEG signals at sensor level
is challenging (Schoffelen and Gross, 2009).

A prerequisite to reliably assess functional connectivity is to
rely on source space data, i.e., the activity of each neuronal pool.
In fact, the estimation of functional connectivity from sensor
space data, i.e., from the activities measured by the sensors
outside the head, is not only prone to the above described fake
connectivity profile but is also very difficult to be interpreted
in terms of the underlying functional connectivity between
brain regions given that the same connectivity profile can be
generated by different configurations of interacting sources.
Unfortunately, the estimation of the activities of brain regions
requires the solution of an ill-posed electromagnetic inverse
problem (Ilmoniemi and Sarvas, 2019). In practice, there exist
reasonable approximations incorporating prior knowledge (e.g.,
from fMRI) and constraints (e.g., minimumnorm) that make this
issue less severe and allow the use of MEG in brain imaging and
in the study of brain networks.

The solution to the MEG inverse problem requires a
forward model, which gives the mathematical relationship
between the brain currents (sources) and the measured magnetic
field. The forward model includes models for the sources,
the geometry of the conducting medium (i.e., the head), and
the MEG sensors. Besides the intrinsic non-uniqueness of
the electromagnetic inverse problem solution and the correctness
of a priori assumptions and constraints used to make the
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solution unique, the attainable accuracy in the solution highly
depends on the accuracy of these models. The influence of
the head model has been investigated in a number of studies
(e.g., Güllmar et al., 2010; Stenroos et al., 2014; Vorwerk et al.,
2014). The distinction between white and gray matter and
the inclusion of the cerebrospinal fluid have been shown to
considerably improve forward model accuracy (Vorwerk et al.,
2014; Stenroos and Nummenmaa, 2016). To date, anatomically
realistic and sufficiently detailed head models can be constructed
from the segmentation of structural head images (usually MRI
or computed tomography scans; for guidelines, see Vorwerk
et al., 2014). Nonetheless, the forward model accuracy is still
limited by approximations in geometry structures, uncertainty in
conductivity values (Akhtari et al., 2002; Dannhauer et al., 2011),
as well as errors in head-to-sensor co-registration (Adjamian
et al., 2004; Troebinger et al., 2014; Chella et al., 2019).

The estimates of neural activity are usually obtained by either
a localization approach or an imaging approach. The former
assumes that brain activity at a given time point is generated
by a limited number of neuronal pools, each represented by
an equivalent current dipole (ECD), the location, orientation,
and strength of which need to be estimated. Numerical
approaches based on least-squares techniques are usually used
to this purpose. The latter, i.e., the imaging approach, aims
at estimating the overall distribution of neural activity by
discretizing the brain, and thus is more suitable for whole
brain functional connectivity estimation. Typically, a grid of
elementary sources (dipoles), fixed in location and, possibly,
in orientation, in the brain volume or limited to the cortical
gray matter surface is used: the inverse problem solution for
imaging approaches results in the estimation of the magnitude
of all these elementary sources. Among imaging approaches,
several strategies have been developed, including distributed
source imaging methods (e.g., least-squares techniques such as
minimum norm estimation approaches), scanning methods, and
spatial filter methods. For reviews on the different imaging
methods see Baillet et al. (2001), He et al. (2018), Ilmoniemi and
Sarvas (2019).

The different source imaging methods are all characterized
by a source-leakage effect, namely that the measured activity
coming from a single elementary source is projected onto
several nearby sources depending on the point spread function
of the specific imaging method (Hauk et al., 2011). Source-
leakage may induce a fake connectivity profile, usually referred
to as “artificial connectivity” (Palva and Palva, 2012). This
effect can be mitigated by using functional connectivity
methods which exclude zero-phase correlations between source
signals (see e.g., Marzetti et al., 2008; Nolte et al., 2009;
Brookes et al., 2011a). Similarly, a priori selecting regions-
of-interest as seeds for connectivity analysis, as opposed to
performing whole-brain estimation, can provide misleading
results in terms of “spurious connectivity” (Palva and Palva,
2012) as the activity of the sources not selected as seeds
may leak into the estimated activity of the selected seeds
(Hari and Parkkonen, 2015).

To show an example of this effect, 2-min of synthetic MEG
recordings, sampled at 512Hz, were simulated by using the

head model and MEG sensor layout of one subject taken from
the Human Connectome Project dataset (Larson-Prior et al.,
2013). The time series for two interacting dipolar sources in
the cortex, with orientation perpendicular to the local cortical
surface, were generated as follows: the time series of source 1 was
sampled from a Gaussian distribution; the time series of source
2 was set to a Finite-Impulse-Response (FIR) filtered version
of the time series of the first source; the FIR filter coefficients
were randomly drawn from a standard normal distribution
and a filter order P = 5 was used. The location of source
1 was kept fixed (black dot in panel A of Figure 1), while
the location of source 2 was varied across all the remaining
cortical locations. The source time series were then projected
to the sensor level by solving the MEG forward problem
(Nolte, 2003). Uncorrelated sensor noise was added to sensor
signals. From the synthetic recordings, source time series were
reconstructed by using the eLORETA inverse approach (Pascual-
Marqui et al., 2011). In Figure 1A, we show the cortical map
for the absolute value of the eLORETA Point Spread Function
(PSF) of source 1, a measure of the degree to which the
activity originating from a single elementary source leaks into
nearby sources.

Functional connectivity between reconstructed source
time series was then estimated by using coherence (see
section Methods to assess brain connectivity based on
phase coupling for the mathematical description of the
method). Artificially inflated coherence estimates can be
observed in Figure 1B where the ratio between the estimated
functional connectivity values and the true value (i.e., the
one obtained directly from the generated source time
sources) as a function of the distance between sources
1 and 2 is shown. Values larger than 1 indicate inflated
functional connectivity values due to zero-lag correlations
induced by source leakage. Such an effect is more relevant
when the distance between the two interacting sources
is small.

MEG, Neuronal Oscillations, and
Functional Connectivity
The activity of neuronal pools features several oscillatory bands
with frequencies ranging from about 0.05Hz up to 500Hz
(Buzsáki and Draguhn, 2004). These frequencies are classified
into several frequency bands. Figure 2 below shows one typical
classification scheme, although finer grained classifications
are also possible (e.g., low alpha/high alpha as well as low
gamma/high gamma).

The different frequencies are related to the different properties
of the physical architecture of neuronal networks as well as
to the speed of neuronal communication limited by axon
conduction and synaptic delays. Indeed, higher frequency bands
are characteristic of smaller spatial scales, while lower frequencies
are distinctive of large-scale networks (von Stein et al., 2000;
Florin and Baillet, 2015). Magnetoencephalography, thanks to
its exquisite temporal resolution, excels in picking up this
rhythmic brain activity and is thus an ideal tool to study local
oscillatory activity.
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FIGURE 1 | Effects of source leakage on connectivity estimates. (A) Cortical map for the absolute value of the Point Spread Function (PSF) of source 1. (B) Ratio

between the estimated functional connectivity values and the true value (i.e., the one obtained directly from the generated source time sources) as a function of the

distance between sources 1 and 2.

FIGURE 2 | Major brain rhythms as classified by their frequency span.

Modulations of local oscillatory activity can be observed as
a consequence of task execution or stimulus presentation in a
variety of conditions. One of the most prominent examples is
provided by motor execution in which the oscillatory beta power
in the primary motor cortex is reduced during the movement
in comparison to the preceding period (ERD, Event Related
Desynchronization) while it is enhanced after the movement
(ERS, Event Related Synchronization, i.e., beta rebound), see
Pfurtscheller and Lopes da Silva (1999) for details, or section
“Magnetoencephalography as a tool for imaging brain activity”
in Pizzella et al. (2014) and references therein. A modulation
of local oscillatory activity shared by two brain regions is
often considered as a marker of functional connectivity. In
fact, Amplitude Envelope Correlation approaches have been
extensively used to disclose brain functional connectivity during
task (Brookes et al., 2011a) as well as at rest (de Pasquale et al.,
2010; Brookes et al., 2011b). However, a more physiologically
oriented probe on brain functional connectivity can be identified
by phase-based metrics under the CTC hypothesis (Fries, 2005),
that states that only coherently oscillating neuronal groups can
interact effectively. Thus, MEG can be an ideal tool to assess
functional connectivity by investigating the phase relationship
between two (possibly) interacting areas. This approach will be
discussed extensively in the following section.

METHODS TO ASSESS BRAIN
CONNECTIVITY BASED ON PHASE
COUPLING

This section provides an overview of the most widely used
methods for assessing brain connectivity based on phase coupling
between neural oscillations. The notion of phase is usually
associated to a periodic oscillation, i.e., an oscillation which
repeats itself exactly after one period (e.g., a sinusoidal wave). For
a periodic oscillation, the phase indicates the fractional portion
of the period that has been completed. It is typically expressed
as an angle spanning a whole turn (2π) as the oscillation goes
through a period. Of note, the value of the phase is meaningless
if the origin of the oscillation has no physical meaning (e.g., a
trigger or a stimulus). Nonetheless, the phase difference between
two oscillations is always well-defined, since the dependence on
the origin is implicitly canceled out in the computation of the
difference. Indeed, the phase difference can be used to assess
phase couplings between oscillations, as discussed below.

The concept of phase coupling has been widely discussed
in the literature (e.g., Rosenblum et al., 1996; Pascual-Marqui,
2007a; Stam et al., 2007). In this work, the term “phase
coupling” between two signals is meant as the presence of
peaks in the distribution of the phase difference across time or
signal realizations (e.g., trials, or different segments into which
continuous signals can be divided), that reflect preferred values
of the phase difference irrespective of the signal amplitudes (see
Figure 3). To clarify this concept, we simulated two scenarios
depicted in Figure 3. For scenario 1 (Figure 3A), we simulated
one-thousand realizations, each of 1-s length and sampled at
512Hz, of two phase-coupled signals i and j as described in the
next sentences. The time series of a 5-Hz oscillator was generated
by band-pass filtering white Gaussian noise around 5Hz with
1Hz bandwidth. The time series of the signal i, i.e., xi (t), was
set to the time series of the 5Hz oscillator while the time series
of the signal j was set to a time-delayed copy of the time series
of signal i, i.e., xj (t) = xj(t − τ ), with a time delay τ = 75ms.
Uncorrelated white Gaussian noise was finally added to both
the generated signals. For each signal realization, the circular
phase difference between signals i and j was calculated as the
phase of their complex-valued coherency (see section Univariate
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FIGURE 3 | Distribution of the circular phase difference across signal

realizations for phase-coupled signals (A) and independent signals (B). Top

plots: an illustrative example of signal realization. Bottom plots: polar

histogram for the distribution of the circular phase difference. A narrow peak in

the circular phase difference distribution can be observed in the case of

phase-coupled signals, as opposed to the case of independent signals.

methods for mathematical details). For scenario 2 (Figure 3B)
the two signals i and j were independently generated as two 5-
Hz oscillators. A narrow peak in the circular phase difference
distribution can be observed in the case of phase-coupled signals
(A), as opposed to the case of independent signals (B).

In the following paragraphs, the different connectivity
methods will be classified as frequency-specific or cross-
frequency phase-coupling methods, depending on whether they
allow investigating the phase coupling at the same or different
frequencies, respectively. Moreover, they will be divided into
univariate and multivariate methods; the formers are designed
to assess connectivity from two univariate (or scalar) time series,
while the latter take as input multivariate (or vector) time series
(see also Table 2).

Frequency-Specific Phase Coupling
Methods
Univariate Methods

Let us denote by xi (t) and xj (t) the time series of the signals i
and j, which can be, e.g., the estimated activities of two distinct
elementary sources. The cross-spectrum between two signals i
and j at a given frequency f is defined as

Sij
(

f
)

:=

〈

Xi

(

f
)

X
∗

j (f )
〉

,

where Xi

(

f
)

and Xj

(

f
)

are the Fourier transforms of xi (t) and
xj (t), respectively, (�) ∗ denotes the complex conjugate, and 〈�〉

denotes the expectation value. The latter is usually evaluated
as the average across a sufficiently large number of signal
realizations (or segments) under ergodicity assumption.

The coherency is a normalized version of the cross-spectrum
(Brillinger, 1981; Rosenberg et al., 1989; Halliday et al., 1995), i.e.,

Cij

(

f
)
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Sij(f )

√
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(

f
)
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,

the absolute value of which, termed coherence, is a measure
of the phase coupling between signals at a given frequency.
This can be seen by representing the complex-valued Fourier
transforms in terms of their amplitudes Ai

(
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denotes the imaginary unit. Using this notation, coherence has
the following form:
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where the argument of the exponential function contains the
phase difference between signals i and j, i.e., 1θ ij

(

f
)

= θi
(

f
)

−

θj
(

f
)

∈ [−π ,π]. It turns out that coherence is the absolute value

of the weighted average of eι 1θ ij(f ) across signal realizations,
where the weights are a function of the amplitudes. If the signals
are independent, the phase difference varies randomly across
realizations and the coherence vanishes. If the signals are phase-
coupled, the phase difference fluctuates around some constant
value, and the coherence is non-vanishing.

If the amplitude weights in the above equation are omitted,
we get the mean resultant length of the phase difference (i.e.,

the absolute value of the average of eι 1θ ij(f ) across signal
realizations), which is called phase-locking-value (PLV; Lachaux
et al., 1999), i.e.,

PLVij

(

f
)

:=

∣

∣

∣

〈

eι 1θ ij(f )
〉∣

∣

∣
.

Alternative formulations for the PLV rely on the instantaneous
phase difference between signals, which can be obtained from,
e.g., a wavelet or Hilbert transform (Tass et al., 1998, Lachaux
et al., 1999; Colclough et al., 2016).

A limitation on the use of the above measures for the
assessment of phase coupling between reconstructed source
signals is that they are affected by artificial zero-lag correlations,
such as the ones induced by source leakage, which inflate the
estimated values. In the last two decades, a number of measures
have been proposed to mitigate this issue. Nolte et al. (2004)
suggested the use of the imaginary part of coherency (ImCoh)

ImCohij
(

f
)

:= ℑ
(

Cij
(

f
))

,

since it requires a phase difference between signals to be
non-vanishing, and thus it does not lead to artificial phase

Frontiers in Neuroscience | www.frontiersin.org 6 September 2019 | Volume 13 | Article 964

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Marzetti et al. Brain Connectivity With MEG

TABLE 2 | List of phase coupling measures.

Connectivity

measure

Abbreviations Phase coupling

type

Class Directionality Artifactual

detections due to

zero-lag coupling

References Software

Coherency C Same-frequency Univariate Undirected Yes Brillinger, 1981 Brainstorm; FieldTrip;

MNE; METH

Phase locking value PLV Same-frequency Univariate Undirected Yes Lachaux et al., 1999 Brainstorm; FieldTrip;

MNE; METH

Imaginary part of

coherency

ImCoh Same-frequency Univariate Undirected No Nolte et al., 2004 Brainstorm; FieldTrip;

MNE; METH

Lagged coherence ρ2 Same-frequency Univariate Undirected No Pascual-Marqui, 2007a Brainstorm;

LORETA-KEY; METH

Imaginary part of

phase locking value

iPLV Same-frequency Univariate Undirected No Palva and Palva, 2012

Phase lag index PLI Same-frequency Univariate Undirected No Stam et al., 2007 MNE; METH

Weighted phase lag

index

wPLI Same-frequency Univariate Undirected No Vinck et al., 2011 FieldTrip; MNE

Phase slope index PSI Same-frequency Univariate Directed No Nolte et al., 2008 FieldTrip; METH

Phase transfer

entropy

pTE Same-frequency Univariate Directed No Lobier et al., 2014 Brainstorm

Multivariate

interaction measure

MIM Same-frequency Multivariate Undirected No Ewald et al., 2012 METH

Multivariate lagged

coherence

P Same-frequency Multivariate Undirected No Pascual-Marqui, 2007b LORETA-KEY

Multivariate phase

slope index

MPSI Same-frequency Multivariate Directed No Basti et al., 2018

n:m phase locking

value

PLVn :m Cross-frequency Univariate Undirected Yes Palva et al., 2005

Bicoherency Bic Cross-frequency Univariate Undirected Yes Nikias and Petropulu, 1993

Antisymmetric part of

bicoherency

aBic Cross-frequency Univariate Undirected No Chella et al., 2016b

For each connectivity methods we indicate: (i) the abbreviation used in this paper; (ii) whether it investigates same- or cross-frequency phase coupling; (iii) whether it is either a

univariate or a multivariate connectivity measure; (iv) whether it is directed or undirected connectivity methods; (v) whether or not the method handles the issue induced by the

artificial zero-lag correlation; (vi) a reference publication for the method; (vii) main software toolbox in which the measure is implemented: Brainstorm Tadel et al., 2011; FieldTrip

Oostenveld et al., 2011; LORETA-KEY (http://www.uzh.ch/keyinst/loreta.htm#_Toc391372607); METH (https://www.uke.de/english/departments-institutes/institutes/neurophysiology-

and-pathophysiology/research/working-groups/); MNE Gramfort et al., 2014.

coupling detections due to zero-lag correlations due to e.g. source
leakage. An alternative approach was proposed by Pascual-
Marqui (2007a) with the lagged coherence (ρ2), i.e.,

ρ2
ij

(

f
)

:=

[

ℑ
(

Sij
(

f
))]2

Sii
(

f
)

Sjj
(

f
)

−
[

ℜ
(

Sij
(

f
))]2 ,

where the instantaneous, i.e., zero lag, contributions are partialled
out. This formulation is equivalent to the “corrected” imaginary
coherence defined in Ewald et al. (2012).

Based on similar arguments, the imaginary part of PLV (iPLV;
Palva and Palva, 2012), i.e.,

iPLVij
(

f
)

:=

∣

∣

∣

〈

ℑ

(

eι 1θ ij(f )
)〉∣

∣

∣

solely detects phase-lagged coupling.

Instead of averaging the imaginary part of eι 1θ ij(f ), the phase-
lag-index (PLI; Stam et al., 2007) quantifies the asymmetry in the

distribution of the phase difference across realizations, when this
distribution is centered around zero, as

PLIij
(

f
)

:=
∣

∣

〈

sign
(

1θ ij
(

f
))〉∣

∣ .

To improve the robustness of PLI with respect to correlated and
uncorrelated noise, as well as to increase the statistical power of
the metric, Vinck et al. (2011) proposed the weighted PLI (wPLI)
as a weighted average of the signs of the phase difference, i.e.

wPLIij
(

f
)

:=

∣

∣

∣

〈∣

∣

∣ℑ

(

Xi

(

f
)

X
∗

j (f )
)∣

∣

∣ sign
(

1θ ij
(

f
))

〉∣

∣

∣

〈∣

∣

∣
ℑ

(

Xi

(

f
)

X
∗

j (f )
)∣

∣

∣

〉 ,

where the weights are equal to the imaginary part of the cross-
spectra computed within realizations.

The effects of source leakage on these different connectivity
measures is shown in Figure 4. Synthetic source time series were
simulated as described in section Source space MEG. Functional
connectivity between reconstructed source time courses was
estimated by using either coherence (C; top left), or phase locking
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FIGURE 4 | Effects of source leakage on different connectivity measures. Functional connectivity was estimated by using: coherence (C; top left), phase locking value

(PLV; bottom left), imaginary part of coherency (ImCoh; top center), imaginary part of phase locking value (iPLV; bottom center), lagged coherence (ρ2; top right),

weighted phase lag index (wPLI; bottom right). For each connectivity measure, the ratio between the estimated functional connectivity values and the true value is

plotted as a function of the distance between sources 1 and 2. Artificially inflated connectivity estimates (ratio values larger than 1) can be observed for coherence and

phase locking value, but not for other measures which were specifically designed to handle the effects of source leakage.

value (PLV; bottom left), or imaginary part of coherency (ImCoh;
top center), or imaginary part of phase locking value (iPLV;
bottom center), or lagged coherence (ρ2; top right), or weighted
phase lag index (wPLI; bottom right). For each connectivity
measure, the ratio between the estimated functional connectivity
values and the true value (i.e., the one obtained directly from
the generated source time sources) is plotted as a function
of the distance between sources 1 and 2. Artificially inflated
connectivity estimates (ratio values larger than 1) can be observed
for coherence and phase locking value as an effect of source
leakage. Of note, this effect is not limited to close by sources but
is present also when the sources are far apart (e.g., with distance
of about 6 cm). Conversely, measures which were specifically
designed to handle the effects of source leakage (e.g., ImCoh or
iPLV) are rather conservative (ratio values smaller than 1) and
tend to underestimate true connectivity values.

The following two methods are conceived to investigate the
directionality of phase coupling. Specifically, Nolte et al. (2008)
exploited the properties of the complex-valued coherency, and
introduced the phase slope index (PSI) as

PSIij (F) :=
∑

f∈F

ℑ

(

Cij

(

f + df
) (

Cij

(

f
))∗

)

=
∑

f∈F

∣

∣

∣
Cij

(

f + df
)

C
∗

ij

(

f
)

∣

∣

∣
sin

(

1θ ij
(

f+ df
)

− 1θ ij
(

f
))

,

where df is an incremental step in the frequency domain, and
F denotes the frequency band of interest. PSI is essentially
a weighted average of the slope of the phase difference
1θ ij

(

f + df
)

−1θ ij
(

f
)

across F, whose sign provides a measure
of the directionality. In particular, a positive value indicates that
the signal i precedes (thus leads) the signal j, while a negative
value indicates the opposite (Basti et al., 2017). Similarly to

ImCoh, PSI requires a phase slope between signals to be non-
vanishing, and thus it does not lead to artifactual detection of
directed connectivity due to artificial zero-lag correlations.

Lobier et al. (2014) applied the concept of transfer entropy
(Schreiber, 2000), developed in the framework of information
theory (Shannon, 1948), to the assessment of directed phase
coupling, by introducing the phase transfer entropy (pTE). The
pTE from a signal i to a signal j is defined as

pTEij (F, τ) := H
(

θj (F, t) , θj (F, t − τ)
)

+H
(

θj (F, t

− τ) , θi (F, t − τ)) −H
(

θj (F, t − τ)
)

−H
(

θj (F, t) , θ
j
(F, t − τ) , θi (F, t − τ)

)

.

In the above notation, θj (F, t) denotes the instantaneous phase
signal obtained from, e.g., Hilbert or wavelet transform of
the bandpass filtered signal j; F denotes the frequency band
of interest; τ denotes a given time delay; and H (Z) : =

−
∫

p(Z) ln
(

p(Z)
)

denotes the information entropy of the
random variable Z, where p(Z) is the probability density function
(see Lobier et al., 2014, and references therein for more details).
The direction of the phase coupling can be assessed through the
comparison between the pTE from signal i to j and the one from
j to i (Hillebrand et al., 2016). pTE has the advantage over the
traditional transfer entropy measure of being able to handle the
artificial zero-lag correlation effects (Lobier et al., 2014).

The above described methods are univariate methods since
they are designed to assess connectivity between pairs of
univariate signals, e.g., MEG signals at sensor level. When
dealing with brain activity estimated from MEG signals, e.g.,
according to one of the strategies described in section Source
space MEG, the most general situation results into three brain
activity components (also termed dipole orientations or dipole
moments) at each location of the discretized brain. To apply
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univariate connectivity methods on these three-dimensional
activity components, it is necessary to perform a dimensionality
reduction to one-dimensional signals which might result in
a loss of information and in a subsequent inaccuracy in the
estimation of connectivity. Conversely, multivariate connectivity
methods are specifically designed to take into account the whole
information contained in the multidimensional nature of the
input signals, i.e., they do not require a dimensionality reduction
of the input signals. In the following subparagraph, a review of
multivariate methods for MEG connectivity is provided.

Multivariate Methods

Let xI (t) =
(

xi1 (t) , . . . , xiN (t)
)T

and xJ (t) =
(

xj1 (t) , . . . , xjM (t)
)T

be the multivariate time series for the
N-dimensional signals I and theM-dimensional signals J, where
T denotes the transpose operator. For instance, these could
represent the three-dimensional vector-source activities at two
given brain locations, and thus they would have a dimension
N = M = 3, or they could indicate two different multivariate
time series consisting of the activities of all the sources within
a region of interest, and thus they would have a dimension
equal to the number of locations belonging to those parcels.
Let also XI

(

f
)

and XJ

(

f
)

be the corresponding vector Fourier
transforms. The cross-spectral density matrix between xI (t) and
xJ (t) at a given frequency f is defined as

SIJ

(

f
) 〈

XI

(

f
)

XH
J

(

f
)〉

:=










〈

Xi1

(

f
)

X
∗

j1

(

f
)

〉

· · ·

〈

Xi1

(

f
)

X
∗

jM

(

f
)

〉

...
. . .

...
〈

XiN

(

f
)

X
∗

j1

(

f
)

〉

· · ·

〈

XiN

(

f
)

X
∗

jM

(

f
)

〉











,

where (�)H denotes the Hermitian conjugate of a matrix. The
elements of SIJ

(

f
)

are the cross-spectra between all the pairwise
combinations of univariate time series of I and J.

The multivariate interaction measure (MIM, Ewald et al.,
2012) is an index of the total phase coupling between vector-
signals I and J, and it is defined as

MIMIJ

(

f
)

:= Tr

(

(

S
ℜ
II

(

f
)

)−1
S
ℑ
IJ

(

f
)

(

S
ℜ
JJ

(

f
)

)−1 (

S
ℑ
IJ

(

f
)

)T
)

,

where the superscripts ℜ and ℑ denote the real and imaginary
part of the complex-valued cross-spectral density matrices,
(�)−1 and Tr (�) are the inverse and trace operators. MIM
is the generalization of ImCoh to multivariate time series
analysis and, in the case of two univariate time series, it
coincides with the squared ImCoh. Similarly to ImCoh, MIM
does not lead to artifactual phase coupling detections due to
artificial zero-lag correlations. Furthermore, MIM is invariant
under invertible and static linear transformations of xI (t)
and xJ (t) (Ewald et al., 2012), such as rotations of the
physical coordinate system in which the MEG source space
is defined.

The generalization of the lagged coherence to the multivariate
case will be here referred to as the multivariate lagged coherence
(P; Pascual-Marqui, 2007b), and it has the form

IJ

(

f
)

:= ln

det

(

ℜ

[

SJJ
(

f
)

SJI
(

f
)

SIJ
(

f
)

SII
(

f
)

])

/

det

(

ℜ

[

SJJ
(

f
)

0

0T SII
(

f
)

])

det

([

SJJ
(

f
)

SJI
(

f
)

SIJ
(

f
)

SII
(

f
)

])

/

det

([

SJJ
(

f
)

0

0T SII
(

f
)

])

where det (�) denotes the determinant of a matrix, and 0

is a M × N matrix of zeros. In the particular case of
univariate time series, the following identity holds: Pij

(

f
)

=

− ln
(

1− ρ2
ij

(

f
)

)

. Similarly to MIM, the multivariate lagged

coherence is invariant under invertible and static linear
transformations of input signals.

To assess the directionality from pairs of vector-signals, Basti
et al. (2018) generalized the definition of PSI to multivariate
time series, called multivariate phase slope index (MPSI). MPSI
is defined as

MPSIIJ(F) := 4
∑

f∈F

Tr

(

(

SℜII(df+ f)+ SℜII(f)
)−1

SℑIJ(df + f )
(

SℜJJ (df + f )+SℜJJ (f )
)−1

SℜJI (f )

+

(

SℜII
(

df + f
)

+ SℜII
(

f
)

)−1
SℜIJ

(

df + f
)

(

SℜJJ (df + f )+SℜJJ (f )
)−1

SℑJI
(

f
)

)

where df and F denote an incremental step in the frequency
domain and the frequency band of interest, respectively. MPSI
solely detects the directionality of phase-lagged coupling; a
positive value of MPSI indicates that the vector-signal I
leads the vector-signal J, while a negative value indicates the
opposite. Moreover, similarly to MIM, MPSI is invariant under
invertible and static linear transformations, and thus it is
independent on rotations of the physical coordinate system
of MEG source space (Basti et al., 2018). In the case of two
univariate time series, MPSI coincides with PSI, apart from
a normalization factor.

Cross-Frequency Phase Coupling Methods
In section Frequency-specific phase coupling methods,
we introduced a large set of connectivity methods based
on phase coupling of oscillatory signals at the same
frequency, which has been hypothesized as a mechanism
for communication, at large scale for slower rhythms and
at small scale for higher frequencies. Additionally, neuronal
oscillations at different frequencies can also couple according
to different possible relations between their phases, their
amplitudes or in a phase-to-amplitude mode (Jensen and
Colgin, 2007). This cross-frequency coupling has been
hypothesized as a mechanism for information integration
across different spatial scales characteristic of the faster and
slower oscillations.

In this review, consistently with what already presented for
coupling at the same frequency, we focus on methods to detect
phase to phase cross-frequency coupling.

A popular cross-frequency measure in this framework is the
n:m synchronization index (Rosenblum et al., 1996; Tass et al.,
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1998). This measure relies on the estimation of the generalized
phase difference Φn :m

ij between two signals i and j, i.e.,

Φn :m
ij

(

f1, f2, t
)

:= n θi
(

f1, t
)

−m θj
(

f2, t
)

,

where f1and f2 are two frequencies whose ratio is given by the
integers n and m, i.e., n f1 = m f 2, and θi

(

f , t
)

denotes the
instantaneous phase signal. A n :m coupling between two signals
occurs when the mean resultant length of 8n,m

ij is non-vanishing

(Tass et al., 1998). This can be evaluated, e.g., through the n :m
phase-locking-value (PLVn :m) which is defined as

PLVn :m
i,j

(

f1, f2
)

:=

∣

∣

∣

〈

e
ι Φ

n,m
ij (f1,f2 ,t)

〉∣

∣

∣ .

where 〈�〉 denotes the average over signal realizations and time
(Palva et al., 2005; Siebenhühner et al., 2016).

A different class of cross-frequency phase-coupling measures
relies on the estimation of the third order spectrum, or cross-
bispectrum, between signals (Nikias and Petropulu, 1993). The
most general expression for the cross-bispectrum involves three
signals, i, j and k, and three frequencies, f1, f2 and f3 = f1 + f2,
and it has the form

Bijk
(

f1, f2
)

:=

〈

Xi

(

f1
)

Xj

(

f2
)

X
∗

k(f1 + f2)
〉

.

The frequency f3 is set to f1 + f 2 because all other choices
lead to vanishing cross-bispectra under stationarity assumption
(Chella et al., 2016b; Shahbazi Avarvand et al., 2018). A pairwise
bispectral analysis between two signals can be accomplished by
setting two out of the three signal indices equal to each other, e.g.,
i = j which yields Bik

(

f1, f2
)

Biik
(

f1, f2
)

.
The bicoherency (Nikias and Petropulu, 1993) is the

normalized version of the cross-bispectrum, which is
the analogous of the coherency for the cross-spectrum. The
absolute value of bicoherency, i.e., the bicoherence, is a measure
of the coupling between the phases in signals i and j at two
possibly different frequencies, θi

(

f1
)

and θj
(

f2
)

, with respect to
the phase in signal k at a third frequency which is the sum of
the other two, θk

(

f1 + f2
)

, such that the mean resultant length

of the phase difference Φ
q
ij

(

f1, f2
)

θi
(

f1
)

+ θj
(

f2
)

− θk
(

f1 + f2
)

is non-vanishing. Such a phenomenon is called quadratic phase
coupling, and it conceptually different from the n:m coupling
described above. There is one case in which the two phenomena
coincide, that is the case of f1 = f2 =: f and f3 = 2f , in which
the quadratic phase coupling involves only two frequency
components, i.e., one frequency and its double, thus matching
the 1:2 phase locking.

Similarly to coherence, bicoherence estimates are inflated
by artificial zero-lag correlations. To face this issue, Chella
et al. (2014, 2016b) proposed to use the antisymmetric part
of bicoherency,

aBicijk
(

f1, f2
)

:=
Bijk

(

f1, f2
)

− Bkji
(

f1, f2
)

Qi

(

f1
)

Qj

(

f2
)

Qk

(

f1 + f2
)

+ Qk

(

f1
)

Qj

(

f2
)

Qi

(

f1 + f2
)

whereQi

(

f
)

= 3

√

〈

∣

∣Xi(f )
∣

∣

3
〉

(Shahbazi et al., 2014). The aBic is the

difference between two bicoherencies where two signal indices
have been switched, i.e., i and k in the above equation.

EXEMPLARY APPLICATIONS OF PHASE
COUPLING TO ASSESS BRAIN
CONNECTIVITY

In the following, exemplary applications of phase coupling
estimated from MEG data to neuroscience are recalled. To
this end, we will focus on three widely studied domains in
which phase coupling methods have contributed in disclosing
the putative mechanisms underlying brain operations: resting
state, visuospatial attention, and working memory. The aim of
this chapter is not to give an exhaustive review of respective
literature but rather to give the reader an idea of how phase
coupling methods from MEG data has contributed in the study
of the covered fields. It is worth noting that the same domains
that we recall here, have been studied also with EEG and the
contribution of these studies to our knowledge in the respective
domains cannot be underestimated (e.g., Crespo-Garcia et al.,
2013, Sauseng et al., 2004, 2005a,b). However, in line with the
perspective of this review we will focus on the studies that have
used phase couplingmethods on source-spaceMEG data. Finally,
it needs to be highlighted that applications of the phase coupling
methods are not limited to the covered examples. Specifically, the
value of neurophysiological signals as potential biomarkers has
been recognized. Recent literature have identified the potential
in using neurophysiological signals for diagnostic purposes in
schizophrenia (Bowyer et al., 2015), autism spectrum disorders
(Port et al., 2015), post-traumatic stress disorder, mild traumatic
brain injury (Huang et al., 2016), Alzheimer’s disease (Maestú
et al., 2019) and epilepsy (Soriano et al., 2017). Furthermore, the
use ofMEG-basedmarkers is not limited to diagnostics but shows
promise also in probing cognitive decline in multiple sclerosis
(Schoonhoven et al., 2018) and even in treatment response
monitoring (Light and Swerdlow, 2015) and drug development
(Javitt et al., 2008).

MEG Resting State Connectivity
Resting state is defined as an intrinsic state in which the subject
is not engaged in a specific task or acting in response to a given
stimulus. More specifically, according to Snyder and Raichle
(2012), “. . . rest is an operational definition referring to a constant
condition without imposed stimuli or other behaviorally salient
events.” The definition of resting state encompasses eyes closed
or eyes open conditions, the latter with or without visual fixation.

In the first decade of the 2000s, the study of the functional
architecture of the resting brain has become an emerging line
of research in neuroscience, although it poses some challenges
(e.g., signal-to-noise ratio and lack of temporal reference) due to
rest being a quite uncontrolled experimental paradigm compared
to task-based experiments. Specifically, a growing number of
fMRI studies have investigated functional topographies in the
resting brain, as well as the relation of these topographies to
evoked-response patterns and to anatomy (for a review see Fox
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FIGURE 5 | Comparison of brain networks obtained using ICA independently on MEG and fMRI data. Modified from Brookes et al. (2011b) (CCBY license). (A) Top

row: fMRI derived Default Mode Network (DMN); bottom row MEG derived DMN. (B) Top row: fMRI derived Right lateral FrontoParietal Network; bottom row MEG

derived Right lateral FrontoParietal Network. (C) Top row: fMRI derived Left lateral FrontoParietal Network; bottom row MEG derived Left lateral FrontoParietal

Network. (D) Top row: fMRI derived Sensori-Motor Network; bottom row MEG derived Sensori-Motor Network.

and Raichle, 2007). Taken together, these studies have shown
that the resting brain is characterized by distributed large-scale
cortical networks of coherent activity, namely RSNs, which cover
at least the 66% of the human brain (Deco and Corbetta, 2011)
and account for the largest part of brain energy consumption
(Raichle, 2006). The RSNs most commonly identified by fMRI
include (Yeo et al., 2011): The Default Mode Network (DMN),
the Dorsal Attention Network (DAN), the Ventral Attention
Network (VAN), the Sensori-Motor Network (SMN), the Visual
Network (VN), the Fronto-Parietal Control Network (FPN), the
Language Network (LN).

Nevertheless, given that fMRI BOLD activity is not a
direct measure of neuronal activity, neuroscientists have
become more and more interested in using electrophysiological
techniques, as a stand alone or in combination with fMRI,
to unravel the electrophysiological correlates of RSNs and
their potential relation to brain oscillations (see e.g., Mantini
et al., 2007). In the last decade, advancements in MEG
data analysis have made it possible to rely on source space
MEG connectivity to study RSNs. The richness of the MEG
signal has offered several perspectives to look at RSNs
(Larson-Prior et al., 2013) and, from that, to enhance the
understanding of the putative mechanisms underlying their
formation. The first studies (de Pasquale et al., 2010, 2012)
used a signal analysis strategy aimed at extracting slow
fluctuations of the MEG signal and investigating their temporal
correlation, closely resembling the signal analysis strategy used

for resting state fMRI data. Additionally, spatial Independent
Component Analysis (ICA) has been used on resting state
MEG (rsMEG) data to extract networks of coherent fluctuations,
showing that MEG RSNs feature significant similarity in their
spatial structure compared with fMRI RSNs as evidenced in
Figure 5 (Brookes et al., 2011b).

In addition, rsMEG has shown its potential to move beyond
fMRI RSNs by relying on connectivity metrics which can
exploit the rich frequency content of the MEG signal (typically
1–80Hz; Baillet, 2017) by assessing phase locking between
oscillatory activities. Metrics based on phase coupling have
thus been used to assess frequency specific patterns of coupled
activity. By using Multivariate Interaction Measure (Ewald
et al., 2012), our group has shown that coupling within and
between RSNs features frequency specific signatures (Marzetti
et al., 2013). Specifically, by seeding parietal and frontal
node of the Dorsal Attention Network in the left hemisphere
(namely left inferior parietal sulcus and frontal eye field) we
observed coupling with the contralateral regions specific to
the delta and the alpha frequency bands (Figure 6 for the
alpha band). Concurrently, we observed that the same DAN
nodes are coupled to nodes belonging to other networks in
different specific frequencies: DAN and SMN couple in the
beta band while DAN and visual network couple in the alpha
band. Overall, our work demonstrated that brain networks
that can be observed with resting state MEG show frequency
specificity and that the involved frequencies overlap to those
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FIGURE 6 | (Left) Topography of the phase synchronization between the major nodes of the Dorsal Attention Network (DAN) in the left hemisphere, i.e., left Frontal

Eye Field (lFEF), left posterior Inferior Parietal Sulcus (lpIPS) and the homologous DAN nodes in the alpha band (right FEF and right pIPS). (Right) Frequency specificity

of the coupling shown on the left. Modified from Marzetti et al. (2013).

FIGURE 7 | Group averaged map in the alpha band between the primary visual cortex (V1) and all other locations over the cortex obtained by MPSI. The cortical

locations in red exert an influence on V1 while V1 exerts an influence on the regions in blue. The dots, in color according to the legend, represent resting state network

nodes which overlap areas which lead or follow V1. Modified from Basti et al. (2018) (CCBY license).

observed during tasks which are known to recruit regions in
these networks.

More recently, our group introduced a novel phase coherence
metric, namely the Multivariate Phase Slope Index, to investigate
the directionality of functional coupling in MEG and EEG data
(Basti et al., 2018). This novel metric has been used to investigate
the directionality of functional coupling in the alpha frequency
band between the visual network and the whole brain in resting
state MEG data from a large cohort of healthy subjects from the
Human Connectome Project (Larson-Prior et al., 2013). With
this approach, we observed sets of regions belonging to various
RSNs which either lead or follow the primary visual cortex (Basti
et al., 2018) as shown in Figure 7. For example, we observed
coupling between the primary visual cortex (V1) and the Dorsal
Attention Network. Parietal areas of the latter lead V1, in line
with the notion of a feedbackmechanism, while no clear evidence
of follower or leader relationship was observed between V1 and

the frontal regions in the DAN, suggesting that coupling of V1
to frontal DAN areas observed in Marzetti et al. (2013) can
possibly exhibit both feed-forward and feedback characteristics
which might lead to the absence of a clear directionality observed
in Basti et al. (2018).

Additionally, with mPSI we observed a consistent relationship
in the alpha band between V1 and the dorsolateral pre-frontal
cortex (dlPFC) with the latter following V1 in accordance with
the putative role of dlPFC in action preparation in response to the
visual stimulus (Heekeren et al., 2006). For the interested reader,
we refer to the original paper for details on the method and on
the coupling of V1 to the other RSNs shown in Figure 7.

While literature on resting state frequency specific coupling
by MEG is relatively abundant, less has been investigated about
cross-frequency coupled networks. To date, few studies have
investigated the coupling between the local phase of a low
frequency oscillation and the local amplitude of a high frequency
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oscillation, i.e., Phase-Amplitude Coupling (PAC). In their
interesting paper, Roux et al. (2013) showed that in resting-state
MEG, local gamma-band activity is coupled with the phase of
the alpha band rhythm in the visual cortex. Furthermore, Florin
and Baillet (2015) showed that resting-state networks derived
from signal model based on the PAC, substantially overlapped
with DMN, DAN/SMN, VN, and right FPN, indicating that
the PAC is an important component of the network generation
in the resting-state. More recently, an effort to disclose n:m-
cross-frequency phase coupling RSNs and to disentangle these
networks from phase-amplitude coupling networks has been
made by Siebenhühner et al. (2019). Nevertheless, the topic still
needs further investigation.

Visuospatial Attention
As the selection of information relevant to behave in the
environment is a fundamental process, the human brain is
endowed with selective attention mechanisms necessary to
route information in order to perform different tasks while
ignoring distracting input. MEG and EEG evidence show that
long range coupling of neuronal oscillations through phase
coherence in a large-scale functional connectivity network,
identified through the synchronization of neuronal oscillations,
subserve this attentional selection process (Siegel et al., 2008;
Doesburg et al., 2009; Sauseng et al., 2005b; Lobier et al., 2018;
D’Andrea et al., 2019).

The study from Siegel et al. (2008) provided one of the
first evidence for a modulation of phase coherence induced

by attention with different spectral signatures and stimulus
dependence between cortical areas. Indeed, Siegel et al. recorded
MEG data in eight subjects performing a motion discrimination
task, in which they had to discriminate the motion direction
of a cloud of dots in the cued hemifield ignoring the uncued
hemifield. Coupling between five regions specifically implicated
in the attention mechanisms and visual motion processing (see
Figure 8 for details on the regions) was estimated through phase
coherence, either in the stimulus or in the delay interval. A
relative enhancement of phase coherence was found at high
frequencies (35–100Hz) and a relative decrease was found at
low frequencies (5–35Hz) in the hemisphere contralateral to
the attended hemifield (Figure 8). Specifically, in the delay
interval a reduction of gamma band connectivity was observed
in the hemisphere ipsilateral to the cued hemifield between
the posterior Intra Parietal Sulcus (pIPS) and middle Temporal
(MT+), sustained also during the stimulus presentation, and
between FEF and MT+. This reduction was paired to an
enhancement of alpha phase coherence between pIPS and MT+
in the all intervals (Delay and Stimulus) as well as to an
enhancement of phase coherence in the beta band between FEF
and MT+ specific to the Stimulus Interval. By using coherence
it was shown that attentional modulations of synchronization
between ROIs is spatially selective, across all bands and intervals,
representing a long range synchronization that does not depend
on power effects.

More recently, another study (Lobier et al., 2018) investigated
the role of long-range phase coupling in visuospatial attention

FIGURE 8 | Cartoon of the interregional phase coherence modulated by attention in Siegel et al. (2008), displayed on a flattened cortex. Circles indicate cortical areas

in which phase coupling was observed to be modulated, namely: posterior intraparietal sulcus (pIPS), middle temporal (MT+), and frontal eye field (FEF). Panels on the

left show the cortical areas between which attention significantly reduced phase coherence in the hemisphere ipsilateral as compared to contralateral to the attended

hemifield. Panels on the right highlight the corresponding attentional enhancement of phase coherence. The different frequency bands (alpha, beta, low gamma, and

high gamma) involved are indicated by different colors.
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processes, without a priori selection of frequency-bands or
regions of interest. This study is particularly relevant from a
methodological point of view since here phase coupling was
assessed both using the weighted Phase Lag Index and the Phase
Locking Value, the former to minimize the contribution of source
leakage and the latter to exclude changes in phase lags without
a change in coupling strength. Cortical activity was recorded
with MEG from fourteen healthy participants performing a
cued stimulus discrimination task. After a rightward or leftward
cue presentation, subjects had to discriminate between two
geometrical shapes with two different contrast conditions. The
shapes were presented in the attended or non-attended hemifield.
The results showed an increased inter-areal phase coupling in the
high-alpha frequency band between visual, parietal, and frontal
cortices. Interestingly, no major difference was observed between
phase coupling assessed through wPLI or through PLV indicating
that the observed findings cannot be attributed merely to source
leakage nor to “systematic changes in phase lags without a change
in coupling strength” (Lobier et al., 2018). No other frequency
bands such as gamma and beta were found to be involved in
this task.

A recent study from our group, D’Andrea et al. (2019),
further investigated, through MIM, PSI and aBic, the frequency
specificity of the inter-areal phase coupling induced by
attention, and, at the same time, the relationship between
this inter-areal phase coupling and anatomical connections.
Magnetoencephalographic data from 28 participants performing
a visuospatial attention task and high angular resolution diffusion
imaging (HARDI) magnetic resonance (MR) data, in the same
subjects, were used. From MEG data seed-based MIM in the
alpha and beta frequency bands, and cross-frequency aBic
coupling between these two frequency ranges were quantified.
From MR data, the Superior Longitudinal Fasciculus branches
were reconstructed and asymmetry for each branch was
calculated as the difference between the volume of the left branch
and that of the right branch (for details see D’Andrea et al., 2019).

The MIM and the PSI highlighted an increase of functional
connectivity in the alpha band from parietal areas to the occipital
cortex (Figure 9) always larger in the hemisphere ipsilateral to
the hemifield to which attention is directed.

This interaction, reflecting a top down mechanism exerted
by parietal areas for the inhibition of visual cortices, was found
to be related to behavioral performance and to indices of
anatomical connectivity. Specifically, the hemispheric asymmetry
of this occipito-parietal modulation of connectivity was predicted
by the asymmetry in the volume of the first and the second
tracts of the Superior Longitudinal Fasciculus and was positively
correlated to the accuracy in performing the task. Additionally,
the antisymmetric part of bicoherency revealed an increase in
alpha-beta coupling, induced by the cue presentation, between
the right FEF and parietal areas in both hemifields (Figure 10).
No other frequency band was observed.

Overall, these results highlight that neuronal oscillations
and functional connectivity at low frequencies are strongly
implicated in attentional mechanisms and are possibly related to
functional inhibition through feedback mechanisms (Jensen and
Mazaheri, 2010). Nevertheless, further investigation is needed to

FIGURE 9 | Grand average MIM functional connectivity modulation (mMIM)

with respect to the left superior occipital cortex (indicated by the black dot) for

the “Attend Left” condition vs. Baseline in the alpha band. Modified from

D’Andrea et al. (2019) (CCBY license).

FIGURE 10 | Attend Left and Attend Right conjunction map of aBic

modulation vs. Baseline in the alpha-beta band with respect to the right frontal

cortex seed (indicated by the black dot). Modified from D’Andrea et al. (2019)

(CCBY license).

clarify the specific role of the different frequency (sub-)bands
observed in long-range phase coupling. Indeed, while it is
conceivable that gamma frequencies are implicated in bottom-
up information processing, still poor evidence demonstrate the
involvement of long-range gamma-band coherence in top-down
processing (Siegel et al., 2008; Gregoriou et al., 2009) and
further investigation are needed to associate different frequency
bands with specific mechanism of feedback and feed-forward
interactions (Siegel et al., 2012).

Working Memory
Complex cognitive tasks such as language comprehension,
reasoning and learning rely on our brains’ ability to temporary
maintain and manipulate information, that is, working memory
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(WM) (Baddeley, 1992). The phase coupling is fundamental
neural mechanism that supports neural communication and it
is therefore an apparent prospect for the underlying neural
mechanism of the WM. Indeed, the role of phase coupling in
memory processes has been studied extensively and the literature
supports the relevance of phase coupling in memory processes
(see Fell and Axmacher, 2011 for review). The majority of the
studies examining the phase coupling in WM have relied on
EEG data. Moreover, most of the studies have evaluated the
phase coupling in sensor space, which, as discussed earlier in
this review, is problematic. Here we focus on those WM studies
that have examined the role of phase coupling in source space
using MEG data, with the benefit of being more specific about
the involved brain areas.

Palva et al. (2010) used combined recordings of MEG and
EEG to characterize phase coupled networks underlying the
maintenance phase of delayed match to sample task (DMS).
The inter-areal phase coupling was assessed by PLV, and
statistically significant couplings were represented as undirected
graphs in which vertices were the cortical areas and edges the
significant couplings. Network hubs were identified by using
vertex degree and betweenness centrality (graph theoretical
indices). The phase coupling in alpha, beta, and gamma bands
was shown to be sustained and stable throughout the visual
working memory (VWM) retention period. Increasing memory
load strengthened interareal coupling among the frontoparietal
regions particularly strongly in the alpha band, while beta
and gamma bands underlay coupling in visual regions. These
observations, combined with the trend of alpha band hubs
being located more frontally compared to beta and gamma
band hubs, led to the suggestion that alpha band network
underlies higher level attentional functions. Conversely, coupling
in the beta and gamma bands were suggested to be involved
in binding neuronal representations. The analysis of the most
important hubs revealed that the intraparietal sulcus (IPS)
was the most central hub predicting individual WM capacity
and it also connected the visual and frontoparietal networks
(beta and gamma). Therefore, it was concluded that IPS might
control the information flow between visual representation and
frontoparietal attention network (Palva et al., 2010).

Another study examined phase coupling (wPLI) networks
underlying the maintenance phase of DMS task in 6-year
old children (Sato et al., 2018). The results showed that,
compared to baseline, whole brain connectivity in the alpha band
was increased during the retention period. Sato et al. (2018)
associated the alpha band connectivity to attentional functions
similarly to Palva et al. (2010). The whole brain connectivity
was significantly greater in correct trials compared to incorrect
trials. The authors speculated that the decreased connectivity
associated with incorrect trials might be due to children’s inability
to dedicate enough attentional resources to trials which were
incorrectly answered. The children also showed more fronto-
temporal coupling rather than the more common fronto-parietal
coupling. Furthermore, key network hubs were located to the
left inferior frontal triangularis, left hippocampus, left middle
temporal gyrus, and the left superior temporal gyrus. It was stated
that these results might indicate that the children used rehearsal

strategies and recognition processes to perform the task. Further
evidence of fronto-temporal coupling during the maintenance
phase of WM task was presented in a study by Daume et al.
(2017). They combined directional and non-directional metrics
to show that phase coupling in theta/alpha range (ImCoh) was
significantly greater in memory condition compared to control
and the direction of this coupling (PSI) was from frontopolar
cortex to inferior temporal cortex, possibly indicating that the
frontopolar cortex to temporal area coupling is involved in
coordinating the maintenance of visual object representations in
a top down manner (Daume et al., 2017).

Alpha band phase coupling has also been related to inhibitory
process in the context of WM. Overall alpha band connectivity
(wPLI) was found to be stronger during the retention period of
a variant of Sternberg task compared to baseline (Wianda and
Ross, 2019). The most prominent connections involved occipital,
frontal, and mid-brain sources. Long-range connectivity was
observed between visual cortices and the retrosplenial cingulate
cortex and thalamic sources. Furthermore, pre-frontal cortices
were connected to midbrain sources and temporal cortices. The
authors proposed that alpha coupling between frontotemporal
and occipital areas is involved in inhibiting distractors. This
interpretation is in accordance with some results reported in
attention studies (see Working Memory) highlighting the close
relationship between WM and attention.

The studies presented above have all focused on the
maintenance phase of the WM. Kaplan et al. (2014) focused
on the retrieval phase of spatial memory. The phase coupling
was assessed by calculating PLV between a seed voxel in the
medial Pre-frontal Cortex (mPFC) and all the other voxels in
the brain. Significant increase (compared to baseline) in theta
coupling was found between right anterior medial temporal
lobe (aMTL) and the seed voxel and this theta coupling was
argued to play a role in mnemonic functions. The phase
coupling was also analyzed with PLI and this analysis confirmed
that the increase in theta coupling was not an artifact of
volume conduction. The PLI analysis also showed increased
theta coupling between the seed and nearby anterior cingulate
cortex. However, the authors acknowledged that the phase
coupling between so nearby regions should be interpreted
with caution (Kaplan et al., 2014). The evidence indicates that
phase coupling within different frequency bands plays a role
in WM processes. Siebenhühner et al. (2016) expanded the
perspective by showing that during the maintenance period
of DMS task, cross-frequency coupling (assessed by PLVn :m)
was enhanced above baseline between high-alpha and beta and
gamma band oscillations. Similarly, cross-frequency coupling
between high-theta and alpha, beta and gamma band oscillations
were enhanced in contrast to baseline. The strength of the
cross-frequency coupling of theta and high-alpha with their
corresponding higher frequencies was also positively correlated
with the VWM load and predicted inter-individual variability
in VWM capacity. The hubs characterized by low-frequency
oscillation were located predominantly in the frontoparietal
and to a lesser extent in dorsal attention areas. The low
frequency oscillations exhibited by these hubs were coupled
with faster oscillations in the visual system and dorsal attention

Frontiers in Neuroscience | www.frontiersin.org 15 September 2019 | Volume 13 | Article 964

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Marzetti et al. Brain Connectivity With MEG

areas. In contrast, the higher frequency oscillations had hubs
pre-dominantly in dorsal attention areas and in the visual cortex
(gamma band). Moreover, the most central hubs involved in the
cross-frequency coupling were co-localized with the most central
hubs involved in the slow and fast within frequency coupling.
These results suggest that cross-frequency coupling connects the
visual system and attentional networks and therefore integrates
the representational and central executive functions of VWM
(Siebenhühner et al., 2016).

Taken together, various MEG studies have shown that phase
coupling within different frequency bands plays a role in WM
memory processes. Phase coupling in alpha band is the most
frequently reported observation and it is linked to inhibiting
distractors (Wianda and Ross, 2019) and attentional functions
(Palva et al., 2010; Sato et al., 2018). Phase coupling in beta
and gamma bands on the other hand is linked to binding
neuronal representations, a process in which IPS could be the
key hub between the visual and frontoparietal networks (Palva
et al., 2010). Furthermore, cross-frequency coupling could be
the mechanism which integrates different functional systems
together (Siebenhühner et al., 2016).

Interestingly, all the WM studies referred made contrast
only between one working memory state and baseline/control.
This approach can lead to an illusion that observed phase
coupling networks are dedicated solely to the WM state that
has been studied. This combined with a-priori selection of
seed regions or frequency bands can lead to a conclusion
where single or few functional interactions are dedicated
to the function of interest. An fMRI study (Soreq et al.,
2019) recently showed, by contrasting a broad range of
behavioral conditions, that different aspects of WM were
characterized by heavily overlapping multivariate activation and
connectivity patterns.

CONCLUSIONS

In the last decade, the increasing body of work dealing with MEG
functional connectivity analysis and with method development
has demonstrated the efficacy of this technique in assessing
the coupling between brain regions and in characterizing
brain networks.

In this review, we focused on data-driven methods to
estimate functional connectivity based on phase coupling
by MEG. All of these methods are here formulated for
static connectivity analysis, which requires averages over a
theoretically infinite number of data segments. In practice,
data length is always finite, and the reliability of these
methods is impacted by the overall number of available
data time points. This issue has been discussed in simulated
data for linear coupling methods (e.g., Sommariva et al.,
2017), while for cross-frequency coupling methods this is
still to be explicitly investigated. Moreover, to date several
evidences have been provided concerning the changes of
functional connectivity patterns across different time-scales
(Breakspears et al., 2004). The extension of the above
described methods to the study of dynamical phase coupling

is straightforwardly achievable through the use of the Time-
Frequency resolved versions of these metrics, at least for task-
induced connectivity.

Besides the above reviewed methods, there is a wide family of
connectivity methods which could be used to assess functional
or effective couplings between neuronal oscillations, both at the
same or at different frequencies. These include, but are not
limited to: phase-amplitude coupling methods, which assess the
coupling between the phase of a low-frequency oscillation and
the amplitude of a high-frequency oscillation (Canolty et al.,
2006; Cohen, 2008; Tort et al., 2010; Özkurt and Schnitzler, 2011);
amplitude-amplitude coupling methods, which investigate the
covariation of aperiodic fluctuations such as the amplitudes of
brain oscillations at a specific frequency (Brookes et al., 2011b;
Hipp et al., 2012); model-based approaches, such as the dynamic
causal models (Friston et al., 2003), which infer the causal
structure of brain connections by relying on Bayesian inference;
methods to assess the directionality of interactions based on
the concept of Granger causality (Geweke, 1982; Kaminski
and Blinowska, 1991; Sameshima and Baccalá, 1999; Marinazzo
et al., 2008). In addition, methods to identify brain states can
provide further insight into brain networks and especially into
their dynamics. In this framework, microstate analysis identifies
sensor level topographies that remain stable for a certain period
of time before transitioning to a different topography. Changes
in the topography are assumed to indicate a reorganization in
the global coordination of neuronal activity over time. This
approach has a long lasting tradition in EEG, but it has seen a
new flourishing in the recent years due to close link to brain
network analysis. For timely reviews seeMichel and König (2018)
and He et al. (201. Similarly, Hidden Markov Model (HMM)
approaches reveal the transition of brain networks between
states that recur at different points in time. This approach has
been used in MEG source space data in Baker et al. (2014)
for network identification through amplitude based correlation,
and in Vidaurre et al. (2018) to identify phase coherence based
networks. A more detailed description of all these methods for
assessing brain connectivity and brain networks would require
a dedicated review paper and it is thus beyond the scope of
this work.

There are a number of methodological issues and open
questions concerning connectivity estimation which need to
be addressed. For instance, the question of whether increases
in connectivity might be merely driven by increases in the
amplitude of oscillatory activity, or whether the connectivity
itself might induce increases in local amplitudes is still
debated (Daffertshofer and van Wijk, 2011; Moon et al., 2015;
Tewarie et al., 2019). Another methodological issue is that all
connectivity methods, including those which have been designed
to specifically handle artificial connectivity detections due to
zero-lag correlations, are not safe from spurious connections
caused by source leakage in the proximity of true interactions, i.e.,
the so-called “ghost interactions” (Palva et al., 2018). Finally, the
relationship between some couplingmeasures and the underlying
physiological mechanisms is not well-understood. For instance,
cross-frequency coupling measures might be influenced by
features in the signal that do not relate to interactions, such as the
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non-sinusoidal waveform of brain oscillations which generate the
coupling between harmonically related frequencies (Aru et al.,
2015; Lozano-Soldevilla et al., 2016; Deco et al., 2017).

In this review, we also show examples of applications of
phase coupling methods to MEG data from different cognitive
domains. Of note, in these studies, connectivity results were
disentangled from power results proving evidence for a genuine
phase coupling between brain areas. Moreover, in the resting
state and in the visuospatial attention examples, the MEG
connectivity results have been supported by MRI functional
or anatomical connectivity. While the benefits of integrating
different modalities in the study of functional connectivity
by MEG is self-evident, still actual multimodal connectivity
analysis tools are lacking. Along the same line, a comprehensive
characterization of the benefits and/or limitations in the
integration procedures is missing. One example of integrating
MEG functional connectivity with MRI information is the recent
characterization of the impact of MEG-MRI coregistration errors
in functional connectivity estimated through different metrics
(Chella et al., 2019).

In conclusion, we believe that the field has made substantial
steps forward in the recent years and is now ready for bringing
the study of functional connectivity toward a more mechanistic
understanding of the role of brain rhythms, also aided by high-
level modality integration tools for connectivity.
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