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The vast majority of studies using functional magnetic resonance imaging (fMRI) are
analyzed on the group level. Standard group-level analyses, however, come with severe
drawbacks: First, they assume functional homogeneity within the group, building on
the idea that we use our brains in similar ways. Second, group-level analyses require
spatial warping and substantial smoothing to accommodate for anatomical variability
across subjects. Such procedures massively distort the underlying fMRI data, which
hampers the spatial specificity. Taken together, group statistics capture the effective
overlap, rendering the modeling of individual deviations impossible – a major source of
false positivity and negativity. The alternative analysis approach is to leave the data in
the native subject space, but this makes comparison across individuals difficult. Here,
we propose a new framework for visualizing group-level information, better preserving
the information of individual subjects. Our proposal is to limit the use of invasive
data procedures such as spatial smoothing and warping and rather extract regional
information from the individuals. This information is then visualized for all subjects and
brain areas at one glance – hence we term the method brainglance. Additionally, our
method incorporates a means for clustering individuals to further identify common traits.
We showcase our method on two publicly available data sets and discuss our findings.

Keywords: fMRI, visualization, brain imaging, group analysis, single subject analysis

INTRODUCTION

With more than 25000 published studies, functional magnetic resonance imaging (fMRI) is a core
method for studying the human brain. fMRI measures brain activity indirectly by detecting signal
changes caused by the blood oxygen level dependent effect (BOLD) with a spatial resolution ranging
from 1 to 4 mm and below. This allows to localize cognitive functions and to chart structure-
function relationships. To map brain functions to brain areas, the de facto standard is to pool
data across all participants and to compute statistics on the group level. However, there are several
compelling reasons why such group-level inference is inherently problematic (Dubois and Adolphs,
2016). For instance, standard group-level inference relies on the similarity of spatial patterns of
brain activation across subjects (Stelzer et al., 2014). In other words, they count upon a very similar
functional topography within the population for a given task. Deviations from this fingerprint
are considered to be noise. Therefore, group-level inference only assesses the effective overlap
and is incapable to truthfully depict heterogeneity across subjects. This reflects negatively on the
scientific inference process, exemplified in the following thought experiment: let us assume we scan
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20 subjects with fMRI probing an experimental task. We further
assume that five of the subjects rely on brain area X to perform
the task, while this area is task-irrelevant for the rest of the group.
We are now facing a dilemma when using conventional group-
level inferences: either brain area X is labeled active or not active.
In the first case, the activations of the small subset of subjects were
sufficiently powerful to establish group-level involvement for area
X. Given that 75% of the subjects did not require that brain area
for the task we would make an incorrect scientific statement here.
The second outcome fails to adequately describe the group, not
deeming the brain area to be involved on the group level: a non-
negligible portion of the subjects relied brain area X and we would
draw an incomplete picture. In earlier work, we have quantified
this responder vs. non-responder effect on group-level statistics
using simulations (Stelzer et al., 2014). We found that scenarios
like the one pictured above are realistic and likely wide-spread
within the brain mapping literature. Unfortunately, such effects
of heterogeneity are hidden and not accessible to researchers if
standard group-level inference was applied.

From an empirical point of view, multiple studies found
concerning levels of group-level heterogeneity in fMRI
data: for instance, Miller et al. (Miller et al., 2009, 2012)
found that individual memory-encoding activation patterns
consistently reappear in a retest setting, however, are distributed
heterogeneously within the group. Large individual variations
have also been found for word encoding (Heun et al., 2000).
Kherif et al. (2009) investigated the sources of inter-subject
variability in a study on reading words aloud and found the main
sources contributing to variability in subject age and cognitive
strategy. Aquino et al. (2019) demonstrated that this issue is
particularly severe when it comes to ultra-high-field fMRI,
where individual response patterns are especially visible due to
the increase in spatial resolution. The inter- and intra-subject
variability in resting-state fMRI have been simultaneously
charted by Chen et al. (2015) finding attention and somatomotor
networks more stable and limbic, default, visual and control
network to exhibit higher inter-subject variability. In summary,
there is a growing body of literature connecting the occurrence
and relevance of individual functional variations. Deviations
from the effective group-overlap thus should not be dismissed
as noise but rather should be incorporated for understanding of
structure-function relationships.

In the field of psychology, recent trends embrace the
importance of studying the individual thoroughly, confirming
that group-level analyses may lead to inferential indeterminacy
(Smith and Little, 2018). Functional relationships are located
within the individual subject and not within a group-level
abstraction. This statement is also true for brain functions;
they are situated in the individual brain and its own
dynamics, and not in an abstracted group level representation
(Turner and De Haan, 2017).

Anatomical variability poses additional challenges for group-
level inference, stemming from differences in morphology
and folding patterns (Rademacher et al., 2001; Fischl et al.,
2008; Stelzer et al., 2014). The differences become especially
pronounced at smaller spatial scales, thus ultra-high resolution
fMRI at 7T and above (Polimeni et al., 2018) are particularly

affected. Voxel-wise correspondence of anatomical locations
within a group thus appears unfeasible, which ultimately hampers
the detection power. Let us assume that there is a large variation
in terms of morphology and functional patterns within some
brain area of interest and a voxel-wise matching is indeed not
possible. Performing voxel-level group analysis may therefore
fail to reveal the area as task-involved, simply because the active
voxels do not overlap across subjects. To mitigate such variability,
spatial smoothing is often employed. However, smoothing is no
cure for this issue and rather creates further problems (Stelzer
et al., 2014). Taken together, the combination of functional
and anatomical variability impedes reproducibility. For instance,
studies examining low number of participants suffer from poor
reproducibility in task-based fMRI (Thirion et al., 2007; Griffanti
et al., 2016; Poldrack et al., 2017), which may be partially
explained by the above issues.

Currently, there exist only a few alternatives to conventional
group-analysis in voxel space. The straightforward solution
would be to analyze each subject separately in native space.
However, not all subjects can be showcased in the reporting of
findings as this would take too much space and be confusing.
Apart from this, showing all subject’s brain maps at once makes
it difficult to spot common patterns within the population.
Rather, researchers handpick a set of representative subjects.
Alternatively, the voxel-wise overlap of a group can be shown
(Seghier and Price, 2016), visualizing the voxel-wise consistency
across subjects. However, this is impractical for finding patterns
of common activations within the group, unless the analysis is
constrained to a region of interest.

Here, we propose an alternative method called Brainglance
to visualize group-level MRI or fMRI data as a simple way
to summarize inter-subject variability. Our method omits data
deformations that come with spatial smoothing and warping
to standard spaces, thus maximally preserves the original
information. Instead, we warp an atlas to the individual subjects
space and summarize the measure of interest in a region-by-
region fashion. Our approach is agnostic to both the underlying
atlas and data, allowing to display arbitrary types of data and their
summary statistics on the group level. In the following, we will
introduce our method and showcase two exemplary fMRI studies.

MATERIALS AND METHODS

We use two exemplary data sets for sake of illustration. We
describe data postprocessing and atlas normalizations. Next, we
will introduce our visualization scheme and algorithm and finish
with a brief description of the clustering methods that can be
optionally employed.

Dataset 1: Midnight Scan Club
We used the Midnight scan club (MSC) data set (Gordon et al.,
2017), as this study was comprised of ten subjects that were
each scanned for ten times, yielding very stable brain patterns
within individuals. We limited our analysis to the resting state
session, which consisted of 818 volumes acquired with a volume
TR of 2.2 s. The data was minimally preprocessed using fMRIprep
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(see above). Next, we computed Eigenvector centrality (Lohmann
et al., 2010, 2018) maps (ECM) for each session. Eigenvector
centrality maps summarize fMRI time series on basis of the
first eigenvector, i.e., a 3D volume indicating the hierarchical
connectivity within the network. Furthermore, we computed
regional homogeneity (Zang et al., 2004) as complementary
measure for local functional connectivity.

The results were then averaged subject-wise across all
ten sessions.

Dataset 2: Human Voice Areas
The second dataset we use is a large-scale study investigating
individual differences in voice-sensitive brain areas (Pernet et al.,
2015). Here, subjects were presented with vocal and non-vocal
sounds. We chose this data set as it comprised a very large
number of subjects, which were all scanned sufficiently long for
stable single subject analysis, allowing to perform clustering. The
data was minimally preprocessed using fMRIprep (see above).
We then computed a General Linear Model, contrasting vocal
minus non-vocal trials (lipsia vwhiteglm). The final output were
subject-wise contrast maps indicating the z-scores of the GLM fit.

Preprocessing
Results included in this manuscript come from preprocessing
performed using fMRIPrep 1.3.1 (Esteban et al., 2019), which is
based on Nipype 1.1.9 (Gorgolewski et al., 2011).

Anatomical Data Preprocessing
A total of 2 T1-weighted (T1w) images were found within the
input BIDS dataset. All of them were corrected for intensity non-
uniformity (INU) with N4BiasFieldCorrection (Tustison
et al., 2010) distributed with ANTs 2.2.0 (Avants et al., 2008).
A T1w-reference map was computed after registration of 2 T1w
images (after INU-correction) using mri_robust_template
(FreeSurfer 6.0.1, Reuter et al., 2010). The T1w-reference
was then skull-stripped using antsBrainExtraction.sh
(ANTs 2.2.0), using OASIS30ANTs as target template. Brain
surfaces were reconstructed using recon-all (FreeSurfer
6.0.1, Dale et al., 1999), and the brain mask estimated
previously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived segmentations
of the cortical gray-matter of Mindboggle (Klein et al., 2017).
Spatial normalization to the ICBM 152 Non-linear Asymmetrical
template version 2009c (Fonov et al., 2009) was performed
through non-linear registration with antsRegistration
(ANTs 2.2.0), using brain-extracted versions of both T1w
volume and template. Brain tissue segmentation of cerebrospinal
fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (FSL 5.0.9,
Zhang et al., 2001).

Functional Data Preprocessing
For each of the 1 BOLD runs found per subject (across
all tasks and sessions), the following preprocessing was
performed. First, a reference volume and its skull-stripped
version were generated through co-registration with the OASIS
template (Marcus et al., 2007) using fMRIprep. The BOLD

reference was then co-registered to the T1w reference using
bbregister (FreeSurfer) which implements boundary-based
registration (Greve and Fischl, 2009). Co-registration was
configured with nine degrees of freedom to account for
distortions remaining in the BOLD reference. Head-motion
parameters with respect to the BOLD reference (transformation
matrices, and six corresponding rotation and translation
parameters) are estimated before any spatiotemporal filtering
using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD
runs were slice-time corrected using 3dTshift from AFNI
20160207 (Cox, 1996). The BOLD time-series, were resampled
to surfaces on the following spaces: fsaverage5. The BOLD
time-series (including slice-timing correction when applied)
were resampled onto their original, native space by applying
a single, composite transform to correct for head-motion
and susceptibility distortions. These resampled BOLD time-
series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time-series
were resampled to MNI152NLin2009cAsym standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym
space. First, a reference volume and its skull-stripped version
were generated using a custom methodology of fMRIPrep.
Several confounding time-series were calculated based on the
preprocessed BOLD: framewise displacement (FD), DVARS and
three region-wise global signals. FD and DVARS are calculated
for each functional run, both using their implementations in
Nipype (following the definitions by Power et al. (2014). The three
global signals are extracted within the CSF, the WM, and the
whole-brain masks. Additionally, a set of physiological regressors
were extracted to allow for component-based noise correction
(CompCor, Behzadi et al., 2007). Principal components are
estimated after high-pass filtering the preprocessed BOLD time-
series (using a discrete cosine filter with 128 s cut-off) for the
two CompCor variants: temporal (tCompCor) and anatomical
(aCompCor). Six tCompCor components are then calculated
from the top 5% variable voxels within a mask covering
the subcortical regions. This subcortical mask is obtained by
heavily eroding the brain mask, which ensures it does not
include cortical GM regions. For aCompCor, six components
are calculated within the intersection of the aforementioned
mask and the union of CSF and WM masks calculated in
T1w space, after their projection to the native space of each
functional run (using the inverse BOLD-to-T1w transformation).
The head-motion estimates calculated in the correction step
were also placed within the corresponding confounds file. All
resamplings can be performed with a single interpolation step
by composing all the pertinent transformations (i.e., head-
motion transform matrices, susceptibility distortion correction
when available, and co-registrations to anatomical and template
spaces). Gridded (volumetric) resamplings were performed
using antsApplyTransforms (ANTs), configured with Lanczos
interpolation to minimize the smoothing effects of other
kernels. Non-gridded (surface) resamplings were performed
using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn
0.5.0 (Abraham et al., 2014), mostly within the functional
processing workflow.
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FIGURE 1 | Illustration of the brainglance visualization. Each colored square corresponds to a single brain area from a single subject. (A) Subjects are shown in
rows, here we show four subjects. (B) Brain areas are shown in columns. Here, six brain regions within the insular cortex are visualized. The brain areas are ordered
in mirror-symmetric fashion such that the order of areas correspond to each other. The names of brain areas are shown in the abbreviated format as provided by the
atlas description, here the Brainnetome atlas. For instance, INS_6_1 corresponds to the hypergranular insula, INS_6_2 the ventral agranular insula, INS_6_3 the
dorsal agranular insula, INS_6_4 the ventral dysgranular and granular insula, INS_6_5 the dorsal granular insula and INS_6_6 the dorsal dysgranular insula. (C) The
color corresponds to the measured value of interest, this could for instance be the strength of an activation. The color mapping is customizable, here we show
positive values in orange and negative values in blue. (D) This figure only visualizes illustrative data from the insular cortex. The left insular cortex (L INS) is
represented on the left half of the figure, the right insular cortex (R INS) on the right side.

Next, we temporally filtered the data using a high-pass with a
cutoff frequency of 1/100 s (vpreprocess in lipsia 3.1.0). The
MNI coregistered data was furthermore smoothed with Gaussian
kernels with FWHMs of 3, 6 and 9 mm (vpreprocess
in lipsia 3.1.0).

We used the resulting non-linear transformations and their
inverse to coregister the atlas to the individual subjects. All
analyses outside of fMRIprep were parallelized using GNU
parallel (Tange, 2011).

Atlas-Based Processing
Summarizing data across subjects requires a common reference
system. Our method relies on the brain parcelation provided by
an atlas and accommodates any atlas defined in volumetric space.
Here, we chose the Brainnetome atlas (Fan et al., 2016), which
consists of 210 cortical and 36 subcortical subregions, thus a total
of M = 246 brain areas. For each of the N subjects, we warped
the MNI-based atlas onto the individual anatomy by applying the
inverse of the T1 to MNI warping as provided by fMRIprep. We
used nearest-neighbor interpolation, ensuring integer values for
the labels in native subject space. Next, we iterated through all
M areas of the atlas and extracted the values (e.g., ECM, reho
and GLM) of each individual subject for each of the M brain
regions. We then averaged the voxel data for each brain area.
Iterating over all subjects and brain areas yielded a matrix S of
size M × N, where Sij corresponds to the values within the i-th
brain area of subject j.

Brainglance Visualization
The core idea of brainglance is to simultaneously depict all N
subjects and all M brain areas at one glance. The underlying
information is contained in the matrix S, as described above.
Each brain area of each subject is then displayed in a square,

the color indicating the given value found in the given brain
area. This value can for instance be the mean activation level
within the region, or any other summery statistics in scalar
form. As the number of brain areas is large, the brain areas are
shown grouped to their gross anatomical locations, e.g., grouping
together frontal, temporal or parietal regions. We show the left
hemisphere on the left side of the figure and the right hemisphere
on the right. Within each gross region, we sorted the brain areas
mirror in a symmetric fashion, so that the most inner brain areas
for the left and right hemisphere correspond to each other. An
example illustration is found in Figure 1.

Clustering of Subjects
Our proposed method optionally includes clustering of the
subjects. This can be useful if the subjects should be displayed
in a grouped fashion, according to their similarity. Clustering
may be employed if the number of subjects is very large and
the data should be condensed for visualization. The starting
point for the clustering procedure is a full single subject analysis
for the entire group, represented as binary matrix S with size
M× N, where M is the number of brain areas and N the number
of subjects. Any clustering can be applied. Here, we chose the
affinity propagation (AP) algorithm (Frey and Dueck, 2007),
which uses the concept of message passing between the samples.
AP has two main advantages: firstly, the identified clusters are
a subset of the actual subjects thus the clustering approach
attempts to find a representative subset and not an abstraction.
Secondly, the number of does not have to be defined a priori. Both
properties make affinity propagation clustering a viable approach
and better suited as compared to other standard methods such as
k-means clustering.

To get a qualitative impression of the differences in
clustering, we averaged the 6 mm MNI data according to
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the clustering and show the results using the inflated MNI
template for freesurfer.

Statistical Evaluation Comparing Native
Processing With MNI Space
We carried out further analyses to compare processing in native
subject space (and coregistering the atlas to the individual
anatomy as described above). For each subject and brain area,
we subtracted the measured value (e.g., ECM, reho or GLM) in
native space from the MNI warped results. This was done for all
four smoothing levels for the MNI space data (0, 3, 6 and 9 mm).
Next, we computed a one-sample t-test across all subjects for
each individual brain area and thresholded the results at p = 0.05
(uncorrected). Furthermore we computed the mean difference
across subjects for sake of visualization.

BRAINGLANCE SOFTWARE

This publication is based on the commit code.
e77c07fc7357cc60d1754481bb01b894a741620b.

Installation
The software can be downloaded from a git repository found at:

https://github.com/lipsia-fmri/brainglance.
After cloning the repository (e.g., git clone1) the requirements

need to be installed:
pip install -r requirements.txt

Prerequisites
The following inputs are needed to run brainglance:

• A 3D brain map for each subject, containing results
you want to display (preferentially in native subject
space without smoothing). This could for instance be
a GLM or ECM map.
• An atlas (e.g., Brainnetome, AAL,.). The atlas consists of a

3D nifty file and should be in the same space as the 3D brain
map of each subject. Make sure to use nearest neighbor
interpolation for any resampling steps involving the atlas,
as the atlas 3D file should only include integer values.
• A description of the atlas. This description needs to be

entered manually (see below). The description maps integer
values found in the 3D atlas file to information that is
necessary for display. Each occurring brain area in the
3D atlas file needs to be associated with the name of the
region (“name_region”), the largescale name of the region
(“name_largescale_region”) for sake of grouping (e.g., FRO,
TEM,.) and lastly the hemisphere (can only be L and R).
This type of information usually is supplied with every atlas.

Running Brainglance
The first step is to instantiate the brainglance object:
bg = BrainGlance()

1https://github.com/lipsia-fmri/brainglance

You will need to fill the description of the atlas. The “label” is
corresponding to the integer value in the atlas. You can add all
information manually, e.g., manually:

bg.add_atlas_definition_area(label = 1,
name_area = "area1", name_largescale_region
= "FRO", hemisphere = "L")

bg.add_atlas_definition_area(label = 2,
name_area = "area2", name_largescale_region
= "FRO", hemisphere = "L")

bg.add_atlas_definition_area(label = 3,
name_area = "area1", name_largescale_region
= "FRO", hemisphere = "R")

bg.add_atlas_definition_area(label = 4,
name_area = "area2", name_largescale_region
= "FRO", hemisphere = "R")

In case of the Brainnetome atlas, the following code
achieves this:

M = 246

dp_atlas = ’/media/3tbd/studies/_data’

fn_atlas_descr = os.path.join(dp_atlas,
’BNA_brainatlas_areas.txt’)

atlas_descr = np.loadtxt(fn_atlas_descr,
dtype = str,comments = ’#’,delimiter = ’\t’)

atlas_descr = atlas_descr[1:M + 1,:]

Next, we will read in this list into the brainglance object.

for i in range(M):

label = np.int(atlas_descr[i][0])

name_area = atlas_descr[i][1]

name_largescale_region = atlas_descr[i]
[5].upper()

hemisphere = atlas_descr[i][2].upper()

bg.add_atlas_definition_area(label,
name_area, name_largescale_region,
hemisphere)

Now you need to add your subjects. For each subject, you
need to provide the 3D brain map with values you want to show
(fp_brainmap) and a coregistered atlas in native subject space
(fp_atlas). Furthermore, you can supply the name of the subject
as third argument, however, this is optional.
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Add a single subject via

bg.add_subject(fp_brainmap, fp_atlas,
"subject-01")

You can add more subjects with the same call:

bg.add_subject(fp_brainmap2, fp_atlas2,
"subject-02")

bg.add_subject(fp_brainmap3, fp_atlas3,
"subject-03")

Now you can generate a brainglance plot, supplying the figure
output file fp_figure.

bg.draw_fingerprint(fp_figure)

RESULTS

In the following, we briefly describe visualization with our new
method of the two example datasets: (1) the midnight scan
dataset, where 10 individuals were scanned for 10 sessions each,
and (2) the human voice area dataset, where 216 subjects had
been scanned while listening to human voice versus control
auditory stimuli.

Midnight Scan Dataset
Eigenvector Centrality Mapping
We found striking similarities across subjects in their respective
patterns of Eigenvector centralities. We show the results of the
Frontal and Temporal Lobe in Figure 2 for the 10 subjects MSC01
to MSC10, note that the results are a subject-wise averages across

10 sessions. All subjects feature very low ECM values in the
Orbital Gyrus (OrG 6_5, OrG 6_4 and OrG 6_3 bilaterally), the
Parahippocampal Gyrus (PhG 6_5, PhG 6_4 bilaterally) and in
the Superior Temporal Gyrus (STG 6_1 bilaterally). In contrast,
subjects have larger variations in the Fusiform Gyrus (Fug 3_1)
and the Inferior Temporal Gyrus (ITG 7_7, ITG 7_6, ITG 7_4
and ITG 7_3) and the in the Middle Temporal Gyrus (MTG 4_2).
Our results largely follow conclusions from Gratton et al. (2018),
highlighting large between-subject differences, which would be
lost if subjects were averaged (see Figure 3).

Next, we compared the results from the single subject analysis
in native space to analysis in MNI space after spatial smoothing.
We used four different smoothing kernels (0, 3, 6 and 9 mm)
for the MNI space data. We observed that multiple brain
areas featured much larger ECM values in the smoothed MNI
variants, most dominantly in bilateral PCL_2_1, FuG_3_2 and
pSTS_6_2. On the other hand, several regions have much smaller
ECM values when smoothing and MNI warping are used, e.g.,
in PhG_6_5, OrG 6_5, OrG 6_4 and Org 6_3. Thus, spatial
smoothing and MNI warping modify the results in a spatially
dependent matter. Furthermore, the differences are larger and
more significant for 6 and 9 mm smoothing kernels.

Regional Homogeneity Analysis
Regional homogeneity analysis revealed striking differences
across brain regions. Very high values were found bilaterally
in the frontal area Org_6_5, and several temporal areas
(PhG_6_5, PhG_6_4 and STG_6_1). While this overall pattern
appears similar for all 10 subjects, there is also a large
amount of variability across subjects for the given regions,
rendering the practice of averaging across subjects questionable
(see Figure 3).

Carrying out the regional homogeneity analysis in MNI
space with spatial smoothing (with four smoothing kernels

FIGURE 2 | Results of the midnight-scan dataset, displaying the eigenvector centrality of the resting state scans (averaged over all sessions). We show only frontal
and temporal regions here, the full results are shown in the supplements.
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FIGURE 3 | Group average computed on basis of MNI warped data with
spatial smoothing of 6 mm. In contrast to individual subject-level analysis
using brainglance, all inter-subject variability is lost.

0, 3, 6 and 9 mm) massively altered the results. Larger
smoothing kernels resulted in higher values for reho (thus
in a larger negative difference, as we computed native minus
MNI processing). The result is not surprising, as spatial
smoothing increases the local spatial correlation and thus
homogeneity; therefore nearly all brain regions for all smoothing
levels feature a significant change in reho. Interestingly, even
without further spatial smoothing, the measured regional
homogeneity in MNI space differed significantly from the
native processed data.

Human Voice Areas Dataset
In principal, brainglance would be capable to visualize the
complete sample size of N = 216 subjects all at once. However,
this amount of information might be overwhelming, therefore
here we summarize the information by means of clustering,
which also allows to detect sub groups in the cohort. The 216
subjects were separated into 20 subgroups, which we visualize in
Figure 4. We show the distribution of group sizes in Figure 5.
Note that the sizes of groups are also reflected in the brainglance
plots in Figure 4, where the height corresponds to the logarithm
of the group size.

From a coarse perspective, there are large overlaps and
shared patterns across all groups, e.g., a strong bilateral
activation in the Posterior Temporal Sulcus (pSTS 2_1 and pSTS
2_2). Furthermore, the Superior Temporal Gyrus shows strong
activations across most groups, with exception of cluster 1, 7
and 8. More individual traits are visible in cluster 5, 9 and 11 in
the right Posterior Temporal Sulcus (pSTS 2_1), which featured

the strongest activation. Interestingly, cluster 14 showed large
activations throughout the entire temporal cortex, while cluster
1 only featured very small activations here.

Given the clustering, we computed mean activation maps for
each group on basis of the MNI warped 6 mm data, shown
in Figure 6. While the temporal gyrus activation is shared
across all subjects from a coarse perspective, there are substantial
differences across the rest of the brain.

Furthermore, we assessed the impact of MNI warping and
spatial smoothing for the voice areas study. Even without
spatial smoothing, we found significant differences in activation
strengths between native and MNI processing. For larger
FWHMs, the difference was more pronounced; due to spatial
smoothing z-values in the MNI maps were higher for regions
particularly in the superior temporal gyrus (STG_6_2 to
STG_6_6), but also in the middle temporal gyrus (MTG_4_4).
The difference between 6 and 9 mm smoothing on the other hand
is rather small.

DISCUSSION

We present a new tool for visualizing group-level data for
MRI and fMRI called brainglance. Our approach combines
the strengths of both traditional group-level pooling methods
and single-subject analysis: we preserve individual-level
information without overwhelming researchers with a plethora
of results from single subject brain map. Our approach
targets to enable researchers to investigate individual patterns
of brain activations and their relations within the group –
all at one glance. Comparing the results of the commonly
practiced group-level analysis to our brainglance method
reveals that group-level procedures are only able to capture
an effective overlap and ignore heterogeneity, as shown
in Figures 2, 4, 7.

Our method has several conceptual advantages over group-
level averaging: no spatial smoothing and non-linear warping
procedures distort the raw data, which remains in the native
space of acquisition. Depending on the underlying measure,
MNI warping and smoothing can massively alter the results,
as shown in Figures 8, 9, 10. Interestingly, even without
additional spatial smoothing, we found significant differences
between native data processing (with the atlas warped to
the individual) and warped data processing (taking the MNI
atlas). As the difference itself depended on the underlying
analysis method (i.e., ECM or reho, see Figures 8, 9) the
difference is likely not due interpolation effects of warping
the atlas to native space but rather stems from warping fMRI
data to MNI space.

From a theoretical point of view, we want to point out
that it is very desirable to avoid smoothing and thus mixing
data across regions (e.g., consider signal washing from one
hemisphere or gyri to the other). Furthermore, our method does
not rely on a strict (and often unfeasible) voxel-level alignment
of the activation peaks between subjects. Averaging over subjects
on the voxel level may well cancel the activations if they are
slightly offset. Thus, given anatomical variability and small-scale
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FIGURE 4 | Results of a large-scale study involving 216 subjects that were presented auditory stimuli. Based on their GLM contrast subtracting non-vocal from
vocal stimuli, we clustered the subjects into 20 clusters (as 216 subjects would be infeasible for visualization). The relative sizes of the resulting groups are indicated
by the height of the group in the display, with logarithmic scaling. We show the full figure including all brain areas in the Supplementary Material. Note that the
clustering procedure was based on whole-brain data.

FIGURE 5 | Size of the groups resulting from the clustering procedure of the human voice areas study. The largest group (cluster 15) contained 26 subjects, the
smallest groups consisted of one individual subject (cluster 4, 5, 9, 12, 18 and 19).
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FIGURE 6 | On basis of the clustering (taking place in native subject space), we averaged the GLM results of the voice areas study. Resulting mean images show
substantial variation.

FIGURE 7 | Results of the midnight-scan dataset, displaying the regional homogeneity of the resting state.

anatomical and organizational differences across subjects, voxel-
wise averaging imposes biases, as more heterogeneous brain
regions are subject to increased false negativity. The proposed
brainglance method summarizes data on the level of a scalar
summary statistic for each brain area. Therefore, heterogeneous
spatial distributions of signal brain areas is accounted for and our
approach avoids the above pitfalls.

Our method is flexible from a practical perspective: it can
be employed for studies spanning only a handful of subjects
but also for large-scale studies. In the latter case, we provide
clustering methods to uncover common patterns of activation,
stemming from different cognitive styles, genetic variability
or environmental effects. Our approach is agnostic to the
underlying data values: brainglance can display any type of

data, ranging from task-based GLMs to network measures
such as Eigenvector centrality, regional homogeneity and more.
Furthermore, our method allows displaying any summary
statistic representing brain areas, such as the mean, the variability,
the maximum or minimum.

The Python-based software is distributed as an open-
source repository on github: https://github.com/lipsia-
fmri/brainglance. As open-source project, it enables further
extensions, such as incorporating frameworks for statistical
inference, multi-voxel pattern analyses or interactive browsing
and display.

The main limitation of Brainglance is the dependency on
accurate atlases. Warping standard atlases onto the individual
brain does not warrant a correct anatomical delineation and
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FIGURE 8 | Comparison between analysis in native subject space versus MNI space with different smoothing FWHMs for eigenvector centrality mapping for four
different smoothing levels (one per row), using 0, 3, 6, and 9 mm kernels. The upper panel shows absolute differences (native minus MNI), the lower panel shows a
statistical evaluation of the differences.

may cause biases. It is worth stating our method is principally
agnostic to the underlying atlas or segmentation. Here we
chose the Brainnetome Atlas (Fan et al., 2016). The gold
standard for deriving an anatomically realistic brain parcelation
uses features from the individual micro- and macrostructure
of the subject’s brain. Such in vivo Brodmann mapping
approaches (Geyer et al., 2011) are the holy grail of quantitative
neuroanatomy and show promising potential. They can be
readily plugged into our method, boosting the spatial precision.
Another alternative are individual segmentations that are derived
manually from experts.

A further limitation is the dependency on correct
coregistration to the individual subject. For instance, if
there is a systematic shift in the registration, brainglance
will reflect this error. Worst case, such shifts in registration
will be falsely ascribed to functional variability, while they
were indeed just registration errors. The smaller the brain
area, the more problematic is this issue, as the relative
count of misregistered voxels scales with the volume
assuming the same shift. Furthermore, it also depends on
the brainglance measure: the mean over each area might
be considerably less sensitive to this issue than if only
considering the minimum or maximum values. To mitigate
this issue, we recommend the users to carefully check the
coregistered atlases for accuracy and fix the registration, if
problems are apparent.

Regarding the clustering procedure, we want to highlight
a limitation with regards to the interpretation: on basis
of our proposed method it is not possible to derive the
underlying causal reasons for the subjects to fall into
different subgroups. Reasons may range from large-scale
differences in functional organization to effects that are
due to differences in the individual neurovasculature and
BOLD response strength. Thus, in the worst case, subjects
have comparable neural responses but vastly different BOLD
effects and thus would fall into different subgroups. The
clustering provided by brainglance intends to provide a
qualitative means for researchers to cluster their subjects
and investigate whether this clustering is reflected in other,
independent measures.

Abstracting data on the level of anatomical regions
comprising hundreds of voxels may seem a suboptimal
strategy due to the loss of spatial resolution. However,
it should be common sense that group level analysis of
fMRI always imply a loss in spatial specificity. While
preprocessing steps such as non-linear registrations and
spatial smoothing may preserve the nominal resolution,
they drastically reduce the effective spatial resolution. After
such operations, only a tiny fraction from the signal of
the original spatial location is contained in a voxel (Stelzer
et al., 2014), typically far below 10%. Overlaying such
spatially imprecise results onto high resolution anatomical
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FIGURE 9 | Comparison between analysis in native subject space versus MNI space with different smoothing FWHMs for regional homogeneity analysis. Larger
smoothing kernels cause larger differences, however, there is already a substantial difference without further smoothing (0 mm) due to processing in MNI space.

FIGURE 10 | Comparison between analysis in native subject space versus MNI space with different smoothing FWHMs for the voice area study. While there are
already changes in z-values without further spatial smoothing, the differences increased substantially for larger smoothing kernels.

images falsely suggests an unrealistic spatial precision,
and this practice should be considered misleading and
scientifically unsound.

Future work will include various statistical tools for
quantitative evaluation of individual differences to the group,
which are outside the scope of the current visualization-based
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work. Such evaluations remain a great challenge, as individual-
subject data often is lacks the statistical power for an
appropriate statistical evaluation or test–retest reliability
(Brandt et al., 2013).
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