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In this paper we describe and validate a new coordinate-based method for meta-analysis

of neuroimaging data based on an optimized hierarchical clustering algorithm: CluB

(Clustering the Brain). The CluB toolbox permits both to extract a set of spatially coherent

clusters of activations from a database of stereotactic coordinates, and to explore each

single cluster of activation for its composition according to the cognitive dimensions

of interest. This last step, called “cluster composition analysis,” permits to explore

neurocognitive effects by adopting a factorial-design logic and by testing the working

hypotheses using either asymptotic tests, or exact tests either in a classic inference, or

in a Bayesian-like context. To perform our validation study, we selected the fMRI data

from 24 normal controls involved in a reading task. We run a standard random-effects

second level group analysis to obtain a “Gold Standard” of reference. In a second step,

the subject-specific reading effects (i.e., the linear t-contrast “reading > baseline”) were

extracted to obtain a coordinates-based database that was used to run a meta-analysis

using both CluB and the popular Activation Likelihood Estimation method implemented

in the software GingerALE. The results of the two meta-analyses were compared against

the “Gold Standard” to compute performance measures, i.e., sensitivity, specificity, and

accuracy. The GingerALE method obtained a high level of accuracy (0.967) associated

with a high sensitivity (0.728) and specificity (0.971). The CluB method obtained a similar

level of accuracy (0.956) and specificity (0.969), notwithstanding a lower level of sensitivity

(0.14) due to the lack of prior Gaussian transformation of the data. Finally, the two

methods obtained a good-level of concordance (AC1 = 0.93). These results suggested

that methods based on hierarchical clustering (and post-hoc statistics) and methods

requiring prior Gaussian transformation of the data can be used as complementary

tools, with the GingerALE method being optimal for neurofunctional mapping of pooled

data according to simpler designs, and the CluB method being preferable to test more

specific, and localized, neurocognitive hypotheses according to factorial designs.
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HIGHLIGHTS

- We report a new method for coordinate-based meta-analysis
of brain imaging data.

- We describe the software implementation of themethod called
CluB—Clustering the Brain.

- The CluB method is based on hierarchical clustering of
stereotactic coordinates.

- The CluB method allows for quantitative characterization of
the cognitive dimensions.

- A formal comparison between CluB and GingerALE
is performed.

INTRODUCTION

Quantitative Meta-Analysis of
Neuroimaging Data: the Past
In the past decades there has been an explosive growth in the
use of neuroimaging techniques to explore the neurofunctional
correlates of cognitive functions, such as memory, language,
action and motor planning, as well as the neurofunctional and
neuromorphometrical changes that characterize the life-cycle of
neurological and psychiatric pathologies.

Indeed, while in 2000 only 9,334 fMRI papers were published,
in 20171 about 19,178 appeared in the international peer-
reviewed literature. This “scientific boom” produced such a huge
amount of empirical evidence that sometimes it can be easy to
lose one’s bearings. This issue becomes even more problematic
when it is necessary to translate this type of experimental
findings in the clinical practice, i.e., in what has been called
translational medicine. For example, more than 40 papers used
the voxel-based morphometry to identify the pattern of brain
atrophy typically associated with Alzheimer’s disease (AD) and
the most of them reported a significant decrement of the gray
matter density within the hippocampal formation and the medial
temporal lobe regions. This finding had become so stable in the
international literature, and it has been replicated with several
neuroimaging in-vivo and post-mortem investigations, that the
presence of documented hippocampal volumetric reductions had
been included in the revised clinical criteria for the diagnosis of
probable AD since 2007 (Dubois et al., 2007; McKhann et al.,
2011). This is to suggest that neuroimaging studies represent
an important source of evidence not only for basic cognitive
neuroscience, but also for the treatment and management of
psychiatric, neurological and neuropsychological deficits. In such
a translational perspective, it is self-evident that the development
of rigorous statistical methods to “sum-up” large amount
of data represents an important milestone for cognitive and
clinical neuroscience.

In the past, let’s say before the 2000, the most common
approach to pool together the neuroimaging data coming from
different studies was based on merging the activation foci (i.e.,
the stereotactic coordinates corresponding to fMRI activations)

1The result has been extracted from searching in the PUBMED database the

following terms: (((fMRI) AND human being) AND (“2017” [Date—Publication]:

“3000” [Date—Publication])).

reported in several independent experiments into a table (see,
for example, Démonet et al., 1996; Cabeza and Nyberg, 2000) or
a summary picture (see for example, Berlingeri et al., 2008). In
these cases, the evaluation of the between-studies concordance
was completely subjective: the scientist that was taking the
responsibility to review the literature had to decide whether a
certain brain region was consistently associated with either a
specific task, or a specific cognitive dimension, either on the basis
of the spatial proximity between the activation peaks reported in
the figure, or exploring the spatial contiguity of the anatomical
labels reported in the table, without, however, applying any
kind of objective data-driven statistic method. Although valuable,
these studies cannot be referred to as meta-analyses due to their
level of subjectivity, and now they can be rather considered like
“illustrated reviews.”

To overcome these limitations, in the past years several new
computerized methods designed to classify the neuroimaging
data reported in the literature have been developed.

Historically, Goutte et al. (2001) were the first to
use hierarchical clustering to perform meta-analyses of
neuroimaging data: in their initial paper entitled “Feature-
Space Clustering for fMRI Meta-Analysis” they suggested that
clustering algorithms could be adopted to pull-together the fMRI
results reported in the literature: “An investigator interested in
comparing methods would typically produce activation maps
for the different analyses and find some kind of consensus
by identifying regions that ‘activate in the same way’ on the
different maps. The proposed meta-clustering method is a way of
automating this process” (Goutte et al., 2001; page 170).

Hierarchical clustering has become a relatively popular meta-
analytical method for some time: even though it is less used than
other methods (see below) it has been the basis of some with
well-cited papers (e.g., Jobard et al., 2003; Salvador et al., 2005;
Shehzad et al., 2009; Liakakis et al., 2011) and a method of choice
of our group (Cattinelli et al., 2013a; Crepaldi et al., 2013; Paulesu
et al., 2014; Zapparoli et al., 2017; Devoto et al., 2018).

Other methods for meta-analysis have rapidly appeared in
the literature: the highly popular Activation Likelihood Estimates
(ALE) technique (Turkeltaub et al., 2002, 2012; Eickhoff et al.,
2009), with more that 300 papers easily identified on MEDLINE;
the multilevel kernel density analysis—MKDA—method of
Wager et al. (2007) or the signed differential mapping approach
(Radua et al., 2012).

It is worth noting that the description of the pros and cons
associated with each single method goes beyond the specific aims
of this paper: excellent such reviews can be found elsewhere
(see, for example, Wager et al., 2007). Recommendations on best
practices when performingmeta-analyses are described inMüller
et al. (2018).

In this paper we propose a revival and an in depth examination
of the hierarchical clustering approach of brain imaging data
in its implementation with a software package that we called
CluB (from Clustering the Brain). From the presentation of the
method, it will become apparent the specific situations where
CluB offers a more flexible approach to data that can be framed
according to factorial designs. As the reader shall see, CluB
also offers a region-of-interest oriented interrogation of the
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data that may appeal to investigators with specific anatomically
constrained hypotheses.

Clustering Algorithms for Meta-Analyses
and the Problem of Non-uniqueness of the
Clustering Solution
The basic idea underlying clustering algorithms is to group
elements into subsets, called clusters, according to some
homogeneity measure, so that objects inside a cluster are more
similar among them, and more dissimilar from objects belonging
to other clusters. In the literature several clustering methods
had been developed; among these, hierarchical clustering (HC)
is one of the most widely used as it has been proved to be a
flexible method that can be applied to bioinformatics data (Sturn
et al., 2002), medical data (Makretsov et al., 2004; Whitwell
et al., 2009), and neuroimaging data (Cordes et al., 2002), for
example. In what follows we briefly describe the overall logic
underlying a classic HC procedure to introduce the problem
of “non-uniqueness” (Cattinelli et al., 2013b). In classic HC
a progressive partitioning of the data elements is achieved by
iterative operations: at start, each single element represents a
different cluster (partition S1) and step-by-step, two clusters are
merged according to a dissimilarity measure and a new data
partition is generated. The procedure is repeated iteratively to
obtain a final partition containing a single cluster that includes all
the clusters of the S1 partition. As a result, a hierarchy of nested
clustering solutions is obtained. This solution can be represented
in a tree-like structure called dendrogram (Figure 1A). The final
pool of clusters, hence called the clustering solution, is obtained
by cutting the dendrogram at a certain level according to what
has been called “the user’s spatial criterion” (i.e., the user decides
the amount of global variability that is acceptable for the specific
scientific issue of interest; in what follows we will better specify
this term).

Within the clustering procedure described above, the user can
play a role at different levels:

1) s/he can decide the dissimilarity measure to be adopted
2) s/he can set up the user’s spatial criterion

Let’s start with the first source of “subjectivity” within a clustering
procedure: the choice of the dissimilarity measure. It is worthy to
note that several “between-clusters dissimilarity measures” had
been proposed in the literature, like for example the single linkage
and Ward’s method (Xu and Wunsch, 2005). In particular, the
Ward’s method aims at partitioning the data by minimizing the
loss of information associated with each cluster. Thus, at each
step the union of every possible cluster pair is considered and the
two clusters whose fusion results in the minimum increase of the
information loss are combined. Ward defines information loss in
terms of an error sum-of-squares criterion (ESS) according to the
Equation (1):

ESSk =
∑

xiεCk

(xi − µk)
2 (1)

Where Ck is one of the clusters in the partition S obtained at step
l: S= (C1, C2, . . . Ck),µk represents the centroid of the cluster Ck

and xi is one of the element included in cluster Ck. In general, at
step l the error sum-of-squares for the generic cluster Ck (ESSk) is
calculated according to Equation (1) and to obtain the minimum
information loss, the measure to be minimized is

1ESSk,j = ESSk,j − ESSk − ESSj (2)

Where ESSk,j is the error sum-of-squares of the new cluster
obtained by merging Ck and Cj at step l + 1. The total cluster
error sum of squares ESStot, i.e., the total amount of variability
within our partition is given by Equation (3):

ESStot =

|C|
∑

k=1

ESSk (3)

Where ESSk is obtained according to Equation (1) and |C|
is the number of clusters obtained at step l. The result
of these operations is the creation, for each step l of the
clustering procedure (represented by the level of the dendrogram,
Figure 1A) of a dissimilarity matrix (see Figure 1B): a |C|-by-|C|
symmetric matrix where the diagonal element is set to 0 (i.e.,
there is no dissimilarity between a cluster Ck and itself) and
the remaining elements correspond to the 1ESSk,j computed
according to Equation (2). Among these, in step l + 1 the two
clusters with the lowest 1ESSk,j are merged together.

It is worth noting that this measure is computed by an iterative
procedure that can suffer of a serious, although sometime
neglected, problem: the final clustering solution may depend by
the order of the data entered in the algorithm (van der Kloot
et al., 2005) when the data to be clustered are represented by
integer values, as in the case of stereotactic coordinates used in
neuroimaging. This means that the same data-set arranged in a
different manner could give rise to different clustering solutions
due to the presence of ties in the dissimilarity matrix at a given
step. In other words, the problem of non-uniqueness in the
clustering solution can emerge when the minimum dissimilarity
(MD) value (that is minimum value within the pool of possible
dissimilarity measures between two clusters) is shared by more
than one pair of clusters.

In order to overcome this problem, Cattinelli et al. (2013b)
proposed a modified version of the HC that is based on the
identification of critical and non-critical MD pairs. A non-critical
pair consists of a pair of elements (clusters) that do not share
any element with other MD pairs; thus even if they are merged
together at different merging sequences, they do not result in
different dendrograms. In the Catinelli’s algorithm the non-
critical pairs are identified and merged together in a random
order producing, as a consequence, a single dendrogram that
represents the scaffolding structure to build up sets of alternative
dendrograms. All the possible alternative dendrograms are
grouped into classes of equivalent clustering solutions. Clustering
solutions are considered equivalent if, notwithstanding the
shapes of the dendrograms diverge in the intermediate step, they
do converge in pooling together the same set of data (Cattinelli
et al., 2013b). The iterative process ends with the creation of all
the possible non-equivalent dendrograms (neD). At this stage,
different solutions are generated by cutting each dendrogram

Frontiers in Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 1037

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Berlingeri et al. Clustering the Brain With “CluB”

FIGURE 1 | Hierarchical clustering dendrogram and dissimilarity matrix. (A) Example of a hierarchical clustering dendrogram. The initial dataset of peaks is

represented on the x-axis. On the y-axis are represented the spatial thresholds that can be selected by the users to let the clustering solution emerge. For example,

the red dotted line shows the clustering solution for a user’s spatial criterion = 6mm. (B) Example of a dissimilarity matrix. In each cell of the matrix is represented the

difference of error sum of squares (1ESS) between different clusters.

according to the users’ spatial criterion. For each solution “neD”
a quality measure is computed as follows:

bESSneD =

|C|
∑

k=1

nk(uk − uX)
2 (4)

Where |C| is the number of clusters in the solution neD, nk is
the number of elements included in cluster Ck, uk is the mean
of cluster Ck (i.e., the centroid) and uX is the grand mean of the
data-set X. The above formula can be expressed also as:

bESSneD = ESStot − ESSk (5)

Where ESStot is the total error sum of squares (3) and ESSk is the
within-clusters error sum-of-squares computed at (1).

Among the neD solutions, the best one is the solution that
maximizes the bESSneD; as the maximization of this measure
favors a better spatial separation between clusters. This is
the clustering method that is implemented as a collection of
MATLAB 2016b (MATLAB and Statistics Toolbox Release 2016b,
The MathWorks, Inc., Natick, Massachusetts, United States)
functions in CluB to perform coordinate-based meta-analysis of
neuroimaging data. The entire algorithm and theMATLAB script
associated are available at the webpage: https://osf.io/4b2pc/.

Coordinate-Based Meta-Analysis of
Neuroimaging Data: Methodological
Considerations
Data pooling is critical for establishing the reproducibility
and the meaningful convergence of empirical evidence about
functions and the structures in the human brain across life-span
and pathologies. To pursue this aim, two different classes of

strategies are available: (i) creating open shared databases of raw
neuroimaging data; (ii) pooling together the positive findings
reported in peer-review scientific literature. While the first
solution would be the optimal one and the most desirable
from the scientific and methodological point of view, only
few attempts have been made so far (see for example ADNI:
http://www.adni-info.org/, fRMIDC: https://www.nitrc.org/
projects/fmridatacenter/, Human Connectome Project: http://
www.humanconnectomeproject.org/, NeuroVault: https://
neurovault.org, OASIS brains: http://www.oasis-brains.org,
Open Neuro: https://openneuro.org, OpenfMRI: https://
openfmri.org, SchizConnect: http://schizconnect.org) and
nowadays the creation of open-source databases is still far from
being the norm.

Alternatively, it is possible to pool together the results
of multiple data-sets by collecting the information reported
in the peer-review literature and in particular, by collecting
the stereotactic coordinates (x, y, z) that correspond either
to significant activations, or to structural changes in specific
samples. This collection of processes represents the basic steps
of the “coordinate-based meta-analysis” (CBMA) methods.
Although, CBMAs are now fully accepted in the international
literature, some methodological considerations need to be done.
The first obvious limitation is that CBMAs are unlikely to be
able to reproduce exactly the results of pooled image based
meta-analysis (Salimi-Khorshidi et al., 2009). This information
loss is inevitably due to the relative spatial sparseness of
the stereotactic coordinates reported in the different scientific
reports. Moreover, one has to consider that there is not a
standard rule to report the activation (or structural) peaks
in a scientific paper, nor in terms of thresholds applied nor
in terms of number of the peaks reported from any given
cluster. Indeed, different laboratories adopt different strategies
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to report their results. Finally, the stereotactic coordinates that
emerge from a study depend on a series of methodological
choices made by the researcher and in particular, on the
selected experimental paradigm, on the selected baseline, on
the statistical threshold adopted and on the dimension of the
kernel Gaussian filter applied during the smoothing phase.
Salimi-Khorshidi et al. (2011) suggest that the adoption of a
voxel-wise comparison with an uncorrected p-value threshold
is the best methodological choice to pool together stereotactic
coordinates and to obtain a meta-analytic map similar to
the one that we would have obtained by directly pooling
together several fMRI (or MRI) data-sets. We took this
suggestion to explicitly test our new meta-analytic toolbox
by borrowing the “performance analyses” typically run in
clinical studies.

Aim of the Study
In what follows we will first describe the CluB toolbox and
its components, while in the second part of the paper we will
report the results of a validation study for this new meta-
analytic method. In particular, we followed this logic: if a CBMA
algorithm performs well, than it should be capable of reproducing
the effects obtained by pooling together the data in standard
random effect group analysis, an approach similar to the one
adopted by Salimi-Khorshidi et al. (2009) and that has been
further tested and validated in a more recent methodological
paper (Maumet and Nichols, 2016).

Accordingly, we selected the fMRI data from normal controls
involved in words and pseudo-words reading (Danelli et al.,
2017). We run standard random effects second level analysis
to obtain the pattern of activations associated with words and
pseudo-words reading. The results were thresholded at p <

0.001 uncorrected and were considered our “Gold Standard”
reference. In a second step, the subject-specific reading effects
(namely the first-level linear contrast “reading > baseline”) were
extracted at p < 0.001 uncorrected and all the activation peaks
reported in the SPM table were saved to create a coordinates-
based database. Accordingly, each single participant was treated
as an independent fMRI study on reading. The coordinates-based
database was used to run a meta-analysis using the CluB software
and the last version of the GingerALE algorithm (version
2.3.6; Eickhoff et al., 2009). The two meta-analytic results were
compared against the Gold Standard to compute performance
measures, i.e., sensitivity, specificity and accuracy. We choose
to compare our software with GingerALE for two simple
reasons: (1) GingerALE is the most commonly used software
for coordinate based meta-analysis (CBMA), (2) GingerALE and
CluB are based on completely different assumptions. In fact,
while GingerALE is based on the idea that each focus of activation
is better represented by a probability distribution and is modeled
accordingly, in CluB each activation peak is considered as a single
data-point and it is not weighted or modeled any further. This
means that if CluB will perform similarly to GingerALE and
the two methods will reach a good level of concordance, then
we will have a further measure of concurrent validity for the
CluB toolbox.

CluB—A DETAILED DESCRIPTION OF THE
SOFTWARE

CluB is designed as a collection ofMATLAB functions that can be
easily run through a Graphic User Interface (GUI; Figure 2). The
GUI is divided into three sections that correspond to the main
modules of the software: (a) Spatial transformation, (b) Cluster
Analysis, and (c) Cluster Composition Analysis. Eachmodule can
be independently run and the entire procedure can be performed
in separated MATLAB sessions. The module-specific results are
saved in dedicated folders with specific file extensions. In what
follows we will briefly describe each single module and the
ensuing functions.

The Spatial Transformation Module permits to perform
the MNI2TAL and the TAL2MNI conversion of the stereotactic
coordinates included in the data-input file according to the
main algorithms available in the literature (Brett et al., 2002;
matthew.brett@mrc-cbu.cam.ac.uk). This preliminary step is
necessary to ensure that all the activation peaks (i.e., the
stereotactic coordinates) entered in the clustering procedure
belong to the same anatomical space. The input file for this
procedure is a tab-separated text file (.txt). The data must be
entered as a matrix with N rows (as many rows equal to the
number of stereotactic coordinates that have to be transformed)
and three columns (i.e., the x, y, z distances from the origin
of the stereotactic space). As a result, in the working directory,
i.e., in the same directory of the input file, a .txt file including
the N transformed peaks is saved. This file can be used to
refine the entire data-set and obtain a data input made of peaks
that are all conforming to the same stereotactic space for the
clustering analysis.

The Clustering analysis module is the heart of CluB. This
module is based on themodified hierarchical algorithm described
in Cattinelli et al. (2013b). The algorithm takes into account the
squared Euclidean distance between each pair of foci included
in the dataset. Then, the clusters with minimal dissimilarity
are recursively merged using Ward’s criterion (Ward, 1963),
to minimize the intra-cluster variability and maximizing the
between-cluster sum of squares (Cattinelli et al., 2013b). To run
this analysis, a number of parameters need to be set:

(a) The INPUT data-file, i.e., a .txt file including the activation
peaks reported in the literature together with their “cognitive”
characterization (e.g., whether that particular peak was
activated either in patients or in healthy subjects, and whether
it was activated either in task “A” or “B”; see Figures 3A,B).
The cognitive characterizations of the tasks/populations
that generated the local effects represented by stereotactic
coordinates are reported as numeric factor (i.e., categorical
variables in which each number correspond to a level of
the factor);

(b) The dissimilarity measure (at the moment only the Ward’s
method is implemented);

(c) The user’s spatial criterion, i.e., the maximal spatial
variability on average that is acceptable for the specific purpose
of the study. It indicates the level at which the algorithm “cuts”
the dendrogram (Figure 1A, dotted line) to obtain a set of
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FIGURE 2 | Graphical User Interface (GUI) of the CluB toolbox. Refer to section Introduction of the main text for a more detailed description of the toolbox.

clusters. Usually it ranges from 5 to 7.5mm to resemble the
typical spatial resolution of neuroimaging results;

(d) The visual threshold, i.e., the minimum number of
activation peaks included into a cluster—e.g., if it is set
to 10, then only the clusters that include at least 10
activation peaks are visualized in the digital image outputs, the
clustering-maps;

(e) The peak segregation tool: this toolbox allows one to run a
semantic clustering on neuroimaging meta-analysis datasets.
It permits to create specific combinations of regions that
will be treated separately by the clustering algorithm and
the clustering solution will be constrained within the pre-
defined region. This is particularly useful, for example, to avoid
that cerebellar data points contribute to occipital clusters or
vice-versa. A similar example can be made for the thalamus
and nearby basal ganglia, or peaks nearby the mid-sagittal
line of the brain in the frontal, parietal and occipital lobes.
The Peaks Segregation (Figure 4) creates groups of brain
regions derived from the Automatic Anatomical Labeling
(AAL) template labels (Rorden and Brett, 2000). The grouping
function distributes the data points in the dataset in several

independent groups, as defined with the editor. The clustering
function runs the Ward hierarchical clustering algorithm
separately on each cluster prepared by the grouping function,
obtaining one or more clusters. Then it produces a final
result by putting together all the clusters obtained in each
group; when necessary, it renames the cluster labels to avoid
label collisions;

(f) The edit labels tool: this is used to edit the labels of the
factors that are included in the INPUT data file. In particular, it
is possible to attach a name at each factor and to convert each
single numbered level of each factor as a string. This passage
is useful to obtain a pool of output data files that can be easily
read and interpreted;

The cluster analysis module produces the following
output files:

(a) A cardinality clustering-map, an ANALYZE file including
all the clusters above a specified visualization threshold; in
this file, the intensity of the voxel values is determined by the
number of peaks included in each cluster Ci (see Figure 3C,
for an example);
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FIGURE 3 | Input and output files of the “Cluster Analysis” module. (A) Example of a dataset in a spreadsheet file. (B) Example of an input .txt file. The first three

columns represent the x, y, and z coordinates in stereotaxic space, whereas the last four columns represent the categorical factors (F1, F2, F3, and F4). In particular,

the number in these columns represents the level of each factor for every peak. (C) “Cardinality” map representing the number of peaks included in each cluster. (D)

“Density” map representing the ratio of the cardinality and the spatial extent of the cluster. (E) “Cluster Mapping” spreadsheet file in which the anatomical and spatial

information about the clusters is stored. (F) “Peaks Clustering” spreadsheet file in which each peak is associated with its cluster.

density clustering-map, a ANALYZE file including
all the clusters above the visualization threshold; the
intensity of the voxel values is determined by the
spatial density of each cluster Ci (see Figure 3D, for
an example);

(b) A ∗ClusterMapping.xls file including the x, y, z of the
centroid, the standard deviation along the three axes, the
cardinality and the anatomical label of each cluster Ci (see
Figure 3E, for an example);

(c) A ∗PeaksClustering.xls file including all the activation peaks
reported in the input file, the factors that characterize each
activation peak, the cluster ID of each peak (see Figure 3F, for
an example);

(d) A ∗PeaksCompAnalysis. cca (the file extension cca
stands for “cluster composition analysis) file containing the

aforementioned information in an encrypted format (to
prevent casual corruption of the input data) for statistical
assessment of the significance of condition specific effects in
each cluster.

The cluster composition analysis (CCA)module2 represents the
most innovative part of the CluB toolbox. This module allows one
to assign a “neurocognitive meaning” to each cluster by means of
categorical data analyses (see Crepaldi et al., 2013 and Paulesu
et al., 2014 for practical examples). The results of the tests are
saved to dedicated .xls files, which are labeled according to the
selected statistical test.

2The Cluster Composition Analysis (CCA) was not used in the validation

experiment described in this paper.
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FIGURE 4 | Example of the “Peaks Segregation” function. The CluB’s “Peaks Segregation” module permits to perform a clustering and statistical inference on

pre-defined regions or groups of regions taken from the Automatic Anatomical Labeling template (Rorden and Brett, 2000). In the figure, a new group of brain regions

named “BasalGanglia” has been created (left—“Menage groups”). The list of brain regions included in the group is reported in the middle of the figure

(mid-left—“Regions in the selected group”), along with the remaining brain regions (mid-right—“Available regions”). This operation will allow CluB to perform the

clustering by taking into account the anatomical constraints selected by the user.

Once the graphical user interface (GUI) is activated, the
statistical tests associated with the cluster composition analysis
(CCA) can be set by using the options located in the bottom part
of the GUI (Figure 1).

The CCA GUI includes six sections: (1) the select INPUT
option and two text strings to visualize the path and name of the
INPUT file, (2) the factors text field, (3) the binomial test, (4) the
multinomial test, (5) the Fisher’s exact test for 2 × 2 interaction
effects, and (6) theMantel-Haenszel test for 2× 2× 2 interactions.
Of note, for each of the previous statistical tests, it is possible to
save a map in ANALYZE format that displays only significant
clusters, by flagging the option “CCAMap.”

The cluster composition analysis file (extension .cca) is the
source one, as for any other analysis. Once the file has been
loaded, the user can select one of the aforementioned tests. One
important aspect left to the user’s choice is the setting of the prior-
likelihood; this can be specified manually or derived from the
distribution in the data set for each factor.

Below we illustrate the statistical tests included in CluB
with some examples. The examples were taken from
analyses performed on a dataset of peaks created ad hoc
as example, enclosed in the Supplementary Materials

(ExampleForFigures.txt).

Binomial Test
The software computes a binomial test within each cluster, the
output is saved in a dedicated XLS file: “input file name”-
binomial-“tested factor—tested level(s)”.xls (Figure 5A). The
result is a matrix with as many rows as the number of clusters.
For each cluster the cluster ID, the factor of interest, the category
of the successful events (i.e., the level of the factor of interest),
the number of observed successes, the cardinality and the p-value
of the binomial test are displayed. The chosen null and alternative
hypotheses are also printed. This would be the test of choice when
one wants to evaluate the association of a cluster with one level of
a two-levels factor: for example, the comparison of normal and
dyslexic readers (Paulesu et al., 2014).

Multinomial Test
The software performs a multinomial test within each cluster
and saves the output in a dedicated XLS file: “input file name”-
multinomial—“tested factor”.xls (Figure 5B). The result is a
matrix with as many rows as the number of clusters. For each
cluster, the software gives back the cluster ID, the factor of
interest, the distribution of the observed frequencies (i.e., the
number of peaks within level 1, level 2, and so on), the cardinality,
the p-value. In the last n columns (depending on the number
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FIGURE 5 | Output files of the “Cluster Composition Analysis” module and ensuing statistical inferences. (A) Output .xls file for a “binomial test” on the Level B of

Factor F1. (B) Output .xls file for a “multinomial test” on Factor F4. (C) Output .xls file for a “Fisher’s test” for 2 × 2 interaction of the Factors F2 and F3. (D) Bar plot

generated by the “Fisher’s test” procedure for 2 × 2 interactions in the Cluster Composition Analysis module. (E) Output .xls file for a “Mantel-Haenszel test” for 2 × 2

× 2 interaction of the Factors F1, F2, and F3. (F) Bar plot generated by the “Mantel-Haenszel test” for 2 × 2 × 2 interactions in the Cluster Composition Analysis

module.

of levels of the factor), the prior likelihood (PL) of each level is
reported, as well as the observed probability for each cluster (i.e.,
the proportion of foci for each level with respect to the cardinality
of the cluster). This information is needed to infer which of the
n levels significantly exceeds the PL. On the top row, the selected
H0 and the selected type of multinomial test are reported. This
would be the test of choice when one wants to test the association
of a cluster with one level of a multi-level factor, for example,
the comparison of three tasks within the same group, or the
comparison of three groups.

Fisher’s Exact Test
In this case two binary factors X and Y are considered. The
four possible combinations of the levels of the factors can
be represented as the cells of a 2 × 2 contingency table.
Also, different types of null hypothesis are considered: (1) the
hypothesis of independence is H0 :OR = 1; (2) the Prior
Likelihood hypothesis is H0 :OR = ORdataset (i.e., the OR
computed in the whole dataset before clustering the data). The
alternative hypothesis isH1 :OR 6= OR0. The program computes
a test in each cluster and saves the output in a XLS file: “input
file name”-fisher—“tested factors”.xls (Figure 5C). The result is
a matrix with as many rows as the number of clusters. For
each cluster, the software returns the cluster ID, the observed

odds ratio and the p-value. The selected null hypothesis is also
printed. Finally, a bar-plot representing the observed distribution
of each cluster is printed in a dedicated folder “Fisher_figures”
(an example is reported in Figure 5D). This would be the test of
choice, for example, when one wants to test the hypothesis that
two groups of subjects differ in a given cluster specifically for one
of two tasks (Paulesu et al., 2014; Devoto et al., 2018).

The Mantel-Haenszel Test (MH)
This can be considered as an extension of the Fisher’s exact
test. It can be applied to explore 2 × 2 × 2 interactions
by identifying the factor that, according to the specific users’
hypotheses, can be considered the moderator. Similarly to the
previous tests, the program computes a MH test for each cluster
and saves the output in a dedicated XLS file: “input file name”—
Mantel_Haenszel.xls (Figure 5E). Finally, a bar-plot representing
the observed distribution of each cluster is printed in a dedicated
folder “Figure-Mantel_Haenszel-tested factors” (an example is
reported in Figure 5F). The joint bar-plot is split according with
the factor chosen to stratify the analysis.

This test would allow one, for example, to the hypothesis that
two groups (e.g., lean or overweight subjects) differ for one of two
stimuli (e.g., high calorie food) providing that this is delivered
during one of two physiological states (e.g., when fasting).
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SECTION 2: VALIDATION STUDY—A
FORMAL COMPARISON BETWEEN CLUB
AND GINGER ALE BASED ON
PERFORMANCE MEASURES

This validation focussed on the Cluster Analysis module and
implied the following steps:

1. The analysis of the fMRI data of 24 subjects during a
reading experiment (block-design) and the identification of a
reference reading map with a standard second–level random
effect analysis;

2. The extraction of individual activation peaks for the reading
task from individual fixed-effects analysis;

3. The meta-analysis of the individual data collected at step 2
with both CluB and GingerALE;

4. The comparison of the meta-analyses with the reference
reading map and estimates of sensitivity, specificity and
accuracy for both the CluB and GingerALE analyses.

Here is worth noting that by means of this approach we treated
each single subject as a single experiment in which within-study
variability can be assumed to be roughly constant (as a result
of the experimental task constraints), while taking mostly into
account between-studies variability.

The methods of fMRI scanning are fully described in Danelli
et al. (2017). The fMRI task involved 120 fMRI entire brain
volumes collected in alternating blocks of 10 scans of the baseline

condition and 10 scans of the experimental task (TR = 3
′′
); thus,

we had six blocks of baseline and six blocks of experimental
stimuli. The participants were asked to silently read words and
pseudowords. A total of 45 words and 45 pseudowords were
presented in the six experimental blocks (15 for each block).

For all participants, the sampled anatomical space included
the entire cerebral hemispheres and the cerebellum. For each
participant, a standard pre-processing and a Hemodynamic
Response Function (HRF) convolution were applied using
SPM12; once obtained the smoothed-normalized-realigned-
coregistered images, the two experimental conditions (baseline
and reading conditions) were modeled in a first level-analysis
conforming to a standard block-design. This allowed us to
estimate, according to the general linear model implemented
in SPM12, the subject-specific effect of interest: the contrast
image (con-image) “reading > baseline” extracted at p < 0.001
uncorrected. The significant activation peaks were saved in an
excel file to create a database for the meta-analytic procedures.
As a consequence, each single subject was considered as an
independent study. In particular, a total of 579 activation peaks
were extracted from the 24 subject-specific reading > baseline

comparison. Thus, for the 24 participants we extracted a mean

of 24.2 activation peaks (min =3; MAX =77). The raw dataset
was then passed to the GingerALE 2.3.6 software in order to

exclude, from the pool of 579 activation peaks, coordinates laying

outside the less conservative brain mask available within the
software (this was done in order to maintain only the stereotactic
coordinates located in gray matter). After this anatomical
filtering process, we remained with 520 activation peaks (the

10.19% of the original dataset was eliminated). The 520 activation
peaks constituted the pool of data that we used to run the two
meta-analyses: one with the GingerALE method and the other
with the CluB method.

The analysis with Ginger-ALEwas run by setting the following
parameters: (1) brain mask: less conservative; (2) uncorrected
threshold p < 0.001; (3) no minimum cluster volume.

The GingerALE method identified 10 clusters (average
extended volume 8,154 mm3), the detailed description of the
brain regions underlying reading, according to GingerALE, is
reported in Table 1 and in Figure 6C.

For the meta-analysis run with CluB the following parameters
were set: (1) Users’ spatial criterion: mean standard deviation
along the three axes <6mm. This was done in order to conform
the spatial resolution of the CluBmethod to the spatial resolution
applied in GingerALE 2.3.6 (the standard deviation of the
Gaussian Probability Distribution used to compute the ALEmaps
is set to 6 mm).

The algorithm identified a total of 75 clusters scattered all over
the brain, with 3–15 individual activation peaks each (median
value = 6). The mean standard deviations along the three axes
was 5.60mm (x axis), 5.94mm (y axis) and 5.78mm (z axis).
A complete list of these clusters is provided in Table 2 and the
spatial distribution of the clusters (according to the cardinality
and the density measures) is represented in Figure 6B3.

Finally, the 24 con-images representing the single-subject
voxel-by-voxel difference between reading and baseline were
entered in a random effect second level analysis to obtain our
gold-standard reference activation map. The General Linear
Model (GLM) was designed to model a one-sample t-test and
to extract the mean neural network associated with single word
silent reading (once the effect of the early visual processes was
eliminated). The results were extracted at p < 0.001, no spatial
extent threshold has been adopted here. The results are reported
in Figure 6A and inTable 3, and are in line with the large amount
of literature available on this topic (Turkeltaub et al., 2002).

As described at point 4, we compared the results of the two
meta-analytic procedures with the results of the standard random
effect analysis according to the following steps:

1) We extracted the t-map corresponding to the reference
reading map (our gold-standard) from the SPM12 analyses,

2) We converted the results of our meta-analyses from .nii
to .voi,

3) The .nii and the .voi files were overlapped to the “ch2bet”
template available in MRIcron (Rorden and Brett, 2000) to
identify, for each single meta-analytic map the brain regions
shared with the reference-reading map,

4) We saved the shared regions in dedicated .voi files called
GingerALE-intersection and CluB-intersection, respectively.

The intersections were overlaid to the “ch2bet” template and
explored using the “descriptive” function available in MRIcron.

3We did not impose a threshold of a minimum # of peaks per cluster in our

validation analyses to maximize the chance of overlap between the HC solution

and the uncorrected GingerALE map (p < 0.001 uncorrected). However, in daily

practice one should avoid considering clusters with limited cardinality.
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TABLE 1 | Results of the ALE analysis with a cluster forming threshold of p < 0.001, uncorrected.

Cluster ID Anatomical label Volume (mm3) Left hemisphere Right hemisphere Maximum ALEscore observed

x y z x y z

1 Inferior frontal gyrus, pars triangularis (47) 35,280 −42 34 0 0.0056

Inferior frontal gyrus, pars opercularis −48 14 10 0.0069

Middle temporal gyrus (22) −60 −4 −12 0.0050

−60 −38 2 0.0066

−62 −24 −4 0.0052

2 Inferior occipital gyrus (18) 17,520 −24 −100 −10 0.0110

3 Inferior occipital gyrus (17) 15,752 24 −102 0 0.0092

Cerebellum 34 −80 −26 0.0045

4 Middle temporal gyrus (21) 6,272 58 −28 −8 0.0049

62 −32 −4 0.0050

64 −40 −2 0.0050

64 −40 −6 0.0050

5 Precentral gyrus (6) 3,912 −48 0 54 0.0055

6 Inferior frontal gyrus, pars orbitalis (47) 1,968 46 36 −12 0.0047

7 Fusiform gyrus (37) 528 −42 −60 −20 0.0039

−44 −48 −22 0.0040

8 Supramarginal gyrus 224 −54 −42 26 0.0039

9 Inferior parietal lobule (40) 48 −50 −46 54 0.0038

10 Middle occipital gyrus (19) 40 −28 −70 36 0.0037

For each cluster, the volume, the coordinates in MNI stereotaxic space of the local maxima and the maximum ALEscore observed are reported.

FIGURE 6 | Comparison of GingerALE and CluB solutions with reference to a data set of 24 subjects involved in a reading task. Axial view (top) and 3D rendering

(bottom) of the results generated by (A) the second-level SPM random-effects analysis (i.e., the “Gold Standard”); (B) the optimized hierarchical clustering algorithm

implemented in CluB; (C) the GingerALE software.

As a result we obtained the anatomical distribution of the
overlays and the associated voxel-count and volumetry. This
result represents, for each single meta-analytic procedure, the
so called true positives (TP), i.e., the voxels that are actually
activated by our subjects, and that resulted to be active
according to the specific pooling method of each meta-analytic
algorithm (Figure 7).

To identify the true negatives (TN), i.e., the brain regions that
were not active in our sample and that did not result activated

in the meta-analytic procedures, we selected the mask file of the
SPM 12 one sample t-test (i.e., the neurofunctional space mapped
by our experiment) and we subtracted the reference reading map
to obtain the so-called “inactive map.” Secondly, we overlapped
the inactive map with each single meta-analytic map and we
applied the masking procedure (i.e., a subtraction) to obtain the
distribution of the TN voxels (Figure 7).

The false positives (FP, i.e., the voxels that resulted to be
activated in the meta-analytic map, but that were not active
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TABLE 2 | Results of CluB with user’s spatial criterion set to 6mm.

Left hemisphere Right hemisphere

Anatomical label µx µy µz SDx SDy SDz N µx µy µz SDx SDy SDz N

Middle frontal gyrus 39 39 40 3.06 3.06 6.93 3

Middle frontal gyrus, pars orbitalis −36 51 −7 5.18 4.15 8.79 5 37 45 −15 8.64 8.01 4.22 10

Superior frontal gyrus −16 19 63 6 5.03 7.02 3

−14 57 38 6 5.76 8 5

Superior medial frontal gyrus 10 58 36 9.59 4.75 7.13 8

7 38 58 8.08 1.91 4.43 4

Inferior frontal gyrus, pars orbitalis 52 34 −2 4.88 5.03 5.15 10

Inferior frontal gyrus, pars triangularis −46 37 3 6.72 5.11 6.64 14 57 34 16 3.21 7.21 5.09 7

−42 32 29 4.27 4.08 11.08 6

Inferior frontal gyrus, pars opercularis −49 14 10 2.6 4.46 2.14 8 54 9 19 13.37 4.76 6.61 4

−45 11 24 5.01 5.89 5.99 11

Gyrus rectus −3 50 −19 4.16 7.21 4.16 3

Precentral gyrus −45 4 55 5.75 6.89 3.91 10 49 10 43 4.6 8.65 3.03 5

−39 5 38 4.93 7.87 3.4 11 36 −10 58 2.61 8.29 10.77 5

−27 −25 73 8.33 8.33 1.15 3

Supplementary motor area −4 2 68 7.21 8.41 5.92 9

Middle cingulum −6 22 39 3.65 8.39 6.19 4

Postcentral gyrus −61 −3 21 3.06 9.02 3.06 3

−59 −16 43 1.15 8.17 1.91 4

Paracentral lobule 5 −27 60 8.25 3.83 6.32 4

Insula −37 16 −4 5.93 6.84 4.77 5

Superior parietal lobule −31 −63 60 3.03 3.9 6.16 5

Inferior parietal lobule −50 −42 57 4.29 5.9 7.42 9 48 −42 56 8.29 9.63 4.97 6

Supramarginal gyrus 65 −39 26 4.76 5.51 8.49 4

Superior temporal pole −41 28 −19 4.43 4 4.43 7 62 9 −1 2.49 9.97 5.35 8

−28 8 −29 5.17 8.17 5.2 9 48 15 −19 7.13 5.29 8.16 12

Superior temporal gyrus −58 4 −10 2.63 5.96 7.71 10

−53 −44 24 7.12 7.86 6.36 10

Middle temporal gyrus −62 −20 −7 4.78 6.77 8.53 15 63 −44 1 4.03 8.39 6.24 12

−58 −36 2 3.55 2.83 2.83 7 55 −26 −12 7.17 4.45 6.81 14

−57 −52 5 6.23 6.23 5.45 8

Inferior temporal gyrus −62 −41 −15 4.63 2.73 8.45 6 61 −47 −19 2.58 5.74 4.16 4

Parahippocampal gyrus −26 −12 −24 4.87 5.18 5.18 8 18 −7 −22 5.59 8.38 4.68 7

−14 −27 −10 9.1 5.93 6.54 5

Hippocampus −27 −49 14 3.46 7.02 5.26 4 25 −20 −7 7.08 5.43 9.17 9

Fusiform gyrus −43 −63 −18 3.5 3.5 5.85 6

−42 −47 −24 1.98 5.35 7.29 8

Precuneus −10 −53 71 11.35 6.72 7.95 5 6 −51 9 9.32 5.02 8.79 5

Cuneus 7 −92 24 4.73 5.26 8.06 4

Lingual gyrus 25 −98 −13 7.48 3.99 5.64 15

10 −76 −10 7.27 9.5 6.2 6

Superior occipital gyrus 27 −63 37 1.15 3.06 4.16 3

20 −103 5 3.58 2.76 4.84 6

Middle occipital gyrus −32 −73 34 6.36 7.01 9.91 10 38 −90 3 6.62 6.69 6.02 6

−25 −100 2 5.61 4.18 4.25 12

Inferior occipital gyrus −43 −79 −7 7.9 5.26 4.43 4

−30 −93 −11 5.95 5.06 4.75 14

−18 −102 −11 4.86 3.24 3.66 12

(Continued)
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TABLE 2 | Continued

Left hemisphere Right hemisphere

Anatomical label µx µy µz SDx SDy SDz N µx µy µz SDx SDy SDz N

Cerebellum −32 −80 −44 7.87 6.32 6.63 5 38 −60 −26 6.89 10.36 5.53 10

−13 −82 −41 5.97 4.9 3.42 4 30 −76 −45 9.59 4.54 4.13 8

29 −83 −25 5.13 4.43 4.43 7

8 −68 −45 4.62 1 6 4

2 −54 −31 5.51 2.83 7.72 4

Thalamus −3 −13 8 1.91 4.12 5.97 4

Putamen 30 5 −6 11.14 1.15 5.29 3

Pallidum −12 3 −7 2 8.08 4.16 3

No region −25 −39 38 4.16 12.22 5.29 3

−11 23 16 9 12.56 2.34 6

For each cluster, the mean centroid coordinates in MNI stereotaxic space, the standard deviation along the three axes and the cardinality (N) are reported.

TABLE 3 | Results of the random-effects second-level SPM analysis with a significance threshold set to p < 0.001, uncorrected.

Anatomical label (BA) Left hemisphere Right hemisphere

x y z k Z-score x y z k Z-score

Inferior frontal gyrus, pars triangularis (47) −44 34 0 1,198 4.19

−50 34 −8 3.89

−42 34 −10 3.89

Pre-central gyrus (6) −44 2 34 37 3.41

Middle temporal gyrus (21) −62 −50 6 279 3.83

−62 −30 0 3.79

−56 −44 8 3.63

Fusiform gyrus (37) −44 −56 −20 585 4.87

−44 −46 −26 4.16

Inferior occipital gyrus (18) −26 −98 −10 533 5.75 24 −100 −4 159 4.75

For each local maxima the coordinates in MNI stereotaxic space, the cluster extent (k, number of voxels) and the Z-score are reported.

FIGURE 7 | Pictorial representation of the procedure implied in the calculation of the performance measures. Graphical representation of the comparison between the

results of the “Gold Standard” (green) and the meta-analytic map (CluB, in blue). Inactive voxels (i.e., voxels not displaying a significant effect in the second-level SPM

fMRI results—the “Gold Standard”) are represented in cyan. The output of the comparison (i.e., intersection or subtraction) between the maps is represented in purple.

The same procedure was applied to compare the meta-analytic map generated by the GingerALE software with the “Gold Standard”.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2019 | Volume 13 | Article 1037

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Berlingeri et al. Clustering the Brain With “CluB”

TABLE 4 | Contingency table of the second-level SPM results (i.e., the

Gold-Standard) and the GingerALE map.

GingerALE Gold standard Total

Active Inactive

Active 16,136 39,550 55,686

1.16% 2.84% 4.01%

Inactive 6,087 1,328,491 1,334,578

0.44% 95.56% 95.99%

Total 22,223 1,368,041 1,390,264

1.60% 98.40% 100%

TABLE 5 | Contingency table of the second-level SPM results (i.e., the

Gold-Standard) and the CluB map.

CluB Gold standard Total

Active Inactive

Active 3,083 41,872 44,955

0.22% 3.01% 3.23%

Inactive 19,140 1,326,169 1,345,309

1.38% 95.39% 96.77%

Total 22,223 1,368,041 1,390,264

1.60% 98.40% 100%

in our gold-standard result) were identified by overlapping
the inactive map with the results of each single meta-analysis
(Figure 7). Finally, the false negatives (FN, i.e., the voxels that
were significantly activated in the gold-standard map, but not
detected by the meta-analysis) were obtained by subtracting the
results of the meta-analysis from the reference reading map
(Figure 7). As a result, we obtained the 2 × 2 contingency tables
reported in Tables 4, 5, respectively. These were used to compute
performance measures for the two meta-analytic procedures:
sensitivity, specificity and overall accuracy.

In particular, sensitivity expresses the proportion of actual
positives findings that are correctly identified. Thus, it represents
the true positive rate [TP/(TP + FN)]. Specificity corresponds to
the proportion of negatives that are correctly identified. Thus,
specificity expresses the proportion of “real” negative findings
[TN/(TN+ FP)]. Finally, accuracy is calculated as the proportion
of correct assessments (both positive and negative) over the entire
sample [(TN+ TP)/(TN+ TP+ FN+ FP)].

The performance measures described above, and the
corresponding confidence intervals (95%) were computed using
the “epi.tests” function available in the “epiR” library of R
(version 0.9-48, Stevenson et al., 2013).

The GingerALE method obtained the following performance
scores: (1) Sensitivity = 0.728 [0.722–0.734]; (2) Specificity =

0.971 [0.97–0.971]; (3) Accuracy = 0.967 [0.966–0.967]. The
CluB method obtained (1) Sensitivity= 0.139 [0.134–0.143],
(2) Specificity = 0.969 [0.969–0.97], (3) Accuracy = 0.956
[0.955–0.956].

To conclude this empirical assessment, the concordance
between the two meta-analytic methods was evaluated. The

TABLE 6 | Contingency table of the GingerALE and the CluB maps.

Ginger ALE Total

CluB Active Inactive

Active (a)

7,255

(b)

37,700

(B+)

44,955

0.52% 2.71% 3.23%

Inactive (c)

48,431

(d)

1,296,878

(B−)

1,345,309

3.48% 93.28% 96.77%

Total (A+)

55,686

(A−)

1,334,578

(n)

1,390,264

4.01% 95.99% 100%

two meta-analytic methods were treated as “two independent
classifiers.” Thus, in order to obtain a global measure of
concordance between the two meta-analytic methods, a 2 × 2
contingency table was created and, as a consequence, four classes
of events were considered:

1) Active voxels both in the GingerALE and in the CluB maps,
that were calculated as an intersection between the two
neurofunctional maps (Table 6);

2) Active voxels in the CluB map only, i.e., the result of
the subtraction between the CluB map and the GingerALE
map (Table 6);

3) Active voxels in the GingerALE map only, i.e., the result of
the subtraction between the GingerALE map and the CluB
map (Table 6);

4) Inactive voxels both in the GingerALE and in the CluB maps,
that were calculated as a difference between the total number
of voxels investigated and the number of voxels classified
according to the previous classes of events (Table 6).

This classification was performed by computing nine clustering
maps varying the user’s spatial criterion from 6 to 14mm
(with steps of 1mm)4. In order to overcome some of
the methodological limitations encountered with the classical
Cohen’s Kappa measure (it has been demonstrated that the
Cohen’s kappa is sensitive to trait prevalence and marginal
probabilities), the AC1 measure proposed by Gwet (2002) was
adopted here. With respect to table, the AC1 is calculated
as follows:

AC1 =
Pα − Pe(γ )

1− Pe(γ )
(6)

Pα =
a+ d

n
(7)

Pe (γ ) = 2 P+ (1− P+) (8)

P+ =

(

A+ + B+

2

)

/n (9)

Where Pα represents the observed concordance [see Equation
(7)], Pe(γ ), represents the modified chance correction [see

4Detailed information about the clustering solutions computed for the different

user’s criteria is reported in Tables S1–S8 in the Supplementary Materials.
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TABLE 7 | Concordance measures between the GingerALE map and the results

of CluB with the User’s Spatial Criterion set from 7 to 14mm.

User’s spatial criterion AC1

6mm 0.933

7mm 0.928

8mm 0.958

9mm 0.942

10mm 0.905

11mm 0.904

12mm 0.892

13mm 0.897

14mm 0.893

Equation (8)]; while A+and B+ represent the marginal frequency
of the contingency table represented in Table 6.

Accordingly, the between methods concordance when the
user’s spatial criterion was set to 6mm is AC1 = 0.933.
The neuroanatomical distribution of the overlap between the
GingerALE and the CluBmaps is reported in Figure 8; among the
75 clusters identified by the CluBmethod, 47 (i.e., the 62.67%) fell
outside the GingerALE map. The details about the concordance
measures computed for the remaining clustering solutions are
reported in Table 7.

DISCUSSION

In the past decade an increasing, perhaps overwhelming,
number of neuroimaging papers has been published on peer-
review journals. This large amount of data represents a rich
source of empirical evidence that can be used to test specific
cognitive models, to explore disease-related neurofunctional
and neuromorphometrical changes and to map, for example,
developmental trajectories in brain functions and structures.
To make the most from this source of data, a reasonable
solution is to pool them by means of meta-analytic procedures.
Moreover, by means of meta-analysis we can overcome, or at
least minimize, the well-known methodological limitations of
neuroimaging studies, such as: (1) the specific influence of the
selected experimental paradigm that makes the results of a single
study not necessarily bound to gain a general validity (with
the well-known problem associated with the subtraction logic;
Logothetis, 2008); (2) the problem of multiple comparisons and
of the balance between false positive and false negative rates
(Lieberman and Cunningham, 2009); (3) the typical small sample
sizes of neuroimaging studies (Murphy and Garavan, 2004).

To circumvent these problems, two different classes of
strategies are available: (i) to create open shared databases
of raw neuroimaging data (something that is currently in
the neuroimaging research agenda); (ii) to pool together the
positive findings reported in peer-review scientific literature.
This last option is better known as coordinate based meta-
analysis (CBMA).

Although CBMAs are now fully accepted in the international
literature, some methodological consideration needs to be made.
As we anticipated in the introduction, the first limitation is that

CBMAs are not able to reproduce exactly the results of pooled
image based meta-analyses (Salimi-Khorshidi et al., 2009).

This information loss is inevitably due to the relative spatial
sparseness of the stereotactic coordinates reported in the different
scientific reports. Moreover, one has to consider that there is not
a standard rule to report regional effects and their peaks in an
imaging paper. Different laboratories adopt different strategies
to report their results; some researchers can report just the
local maxima for each cluster of activation, while other may
decide to report more than one stereotactic coordinate for
each cluster. Finally, the stereotactic coordinates that emerge
from a study depend from a series of methodological choices
made by the researcher and in particular, by the choice of the
statistical threshold as well as by the dimension of the kernel
Gaussian filter adopted during the smoothing phase. Salimi-
Khorshidi et al. (2011) suggest that the adoption of a voxel-wise
comparison with an uncorrected p-value threshold is the better
methodological choice to pool together stereotactic coordinates
and to obtain a meta-analytic map similar to the one that we
would have obtained by directly pooling together several fMRI
(or MRI) data-sets.

CluB vs. GingerALE: Two Sides of the
Same Coin
The selection of an instrument/test, as well as the development of
a new tool, requires the assessment of its performance and of its
accuracy. Here we adopted the measures typically used in clinical
studies to assess the performance of our new toolbox, with respect
to the most popular toolbox for meta-analysis of neuroimaging
data: GingerALE.

From the results of our analyses a clear difference between the
two methodologies emerged. The GingerALE method obtained a
high level of accuracy (0.967) associated with a high sensitivity
(0.728) and specificity (0.971). The CluB method obtained a
similar level of accuracy (0.956), even though in the presence of
imbalanced data this overall measure has to be taken “cum grano
salis”; this was associated with similar level of specificity (0.969),
notwithstanding the low-level of sensitivity (0.14).

This first result suggests that, while the two meta-analytic
methods are equally accurate in identifying the true negatives,
the CluB method is not as sensitive as the GingerALE method
in identifying the true positive. Among the 22,223 active voxels
in the expected results map, CluB correctly identified only 3,083
voxels (i.e., the 13.8%). However, with this regard a technical
consideration needs to be made. The GingerALE method is
based on the application of a three-dimensional Gaussian filter
to each single activation peak collected in the input data-set. The
final result is a continuously distributed anatomo-functional map
(similar to the one that we would obtain with standard analyses;
see the “gold-standard” map for an example). On the contrary,
the CluB method creates a discrete and spatially sparse map of
clusters, as one of the intrinsic aim of the hierarchical clustering
procedure is to obtain a map of distinct entities whose spatial
extension is limited by the choice of the “user’s spatial criterion.”
This is to say that with the GingerALE methods we are modeling
the input data to simulate a standard activation map, while with
the CluB method we are working on raw data (the stereotactic
coordinates reported in the peer-reviewed selected literature) and
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FIGURE 8 | Comparison between CluB and GingerALE. Axial view of the neuroanatomical distribution of the overlap between the CluB map (in blue) and the

GingerALE map (in red). These overlaps were used to compute the concordance measures between the two meta-analytic methods, as described in the main text.

we are focusing our attention to small and ad-hoc separated
portion of the brain.

In other words, while the final result of GingerALE is more
similar to an activation map devoided of information on local
maxima, the final result of CluB is more similar to the summary
table typically produced by a software like SPM.

While this may seem a drawback of the CluBmethod, from the
neuroanatomical point of view, it represents one of its strengths.
Indeed, the relative finer-grained and not smoothed spatial
resolution of the clustering maps, together with the maintenance
of the original distribution of the data, permits to explore
neurofunctional segregation with a robust statistical approach
(the one described in the CCA) based on non-parametric, exact
tests. This is something that can be hardly done with GingerALE,
which, at the most, can identify the commonalities and the
differences between two sets of data (see, for example, Fornara
et al., 2017), but no higher order effects like 2 × 2 interactions
in a data-driven manner, starting from meta-analyses containing
more than two classes of data (Paulesu et al., 2014; Devoto et al.,
2018)5. Such higher order effects are frequently what matters the
most in neuroscientific investigations.

One final consideration needs to be made on the spatial
distribution of the GingerALEmap: the smoothing applied to the
input data tends, somehow, to inflate the spatial distribution of

5To make a practical example, imagine a simple scenario where two different

experimental tasks (e.g., word vs. face processing) and two groups of subjects (e.g.,

dyslexic vs. control subjects) are taken into consideration. This scenario cannot be

afforded by GingerALE, whereas CluB can handle the 2× 2 design by testing the 2

× 2 interaction (e.g., task× group) with the appropriate test (Fisher’s exact test).

the native data beyond the expected anatomical boundaries (see
Figure 9 for an illustration). On the contrary CluB allows one
to test specific anatomically constrained hypotheses by imposing
anatomical masks on the analyses allowing one to keep separated
the inference on regions that are spatially close but functionally
distant or hardly equivalent; for example, the cerebellum and the
occipital lobe; the thalamus and the basal ganglia. This possibility
is offered by the peak segregation module of CluB.

As a last step of our comparative assessment, we evaluated
the between-methods concordance. In particular, to overcome
the problem associated with the unknown prevalence of
the phenomenon investigated, we adopted the AC1 measure
proposed by Gwet (2002). Using this measure, we found that
the two meta-analytic methods have a high level of agreement
(93.3%). This result is confirmed by the neuroanatomical
distribution of the neuroimaging findings (see Figure 8 for
more details).

To conclude, we wish to emphasize that the seemingly
contrasting meta-analytic approaches compared here are in fact
complementary in nature: one is based on the idea that each focus
of activation is better represented by a probability distribution
rather than in terms of a single data-point (i.e., the GingerALE
method); CluB takes a different stance, as each activation peak
is considered as a single data-point and it is not weighted
or modeled any further. In other words, these two methods
could be thought as two sides of the same coin, with the
GingerALE method being optimal for neurofunctional mapping
of pooled data, and the CluB method being the optimal choice
if one wants to test more specific neurocognitive hypotheses.
However, notwithstanding these two different basic ideas, from
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FIGURE 9 | Region of interest oriented comparison of CLuB and GingerALE.

The region of interest (in green, the “Gold Standard”) was taken from the SPM

data analysis on 24 readers. The peaks composing the left inferior occipital

cluster (X = −30, Y = −93, Z = −11) in the HC map (user’s spatial criterion =

6mm) are shown as 2 × 2 × 2mm white cubic voxels. The cluster obtained in

the HC map (user’s spatial criterion = 6mm) is depicted in blue. The ALE map

obtained by GingerALE is depicted in red. It can be seen that while the

clustering solution (in blue) is contained within the SPM “Gold Standard” map,

GingerALE somewhat overestimated the activation effect as a consequence of

the Gaussianization of the raw data implied. From slice in top left: Z = −20 to

Z = +3 in the right bottom corner.

the neurofunctional point of view they reach a good level
of concordance.

Finally, for those interested in a hierarchical clustering meta-
analysis, the congruence between the HC solutions and those of
an ALE map, corrected for multiple comparison, may permit
to decide on which set of clusters to proceed with further
assessments of the data using a CCA (see, for example, Paulesu
et al., 2014) with the trust that the cluster considered is
“spatially significant”.

Future Directions
While creating a new toolbox, many issues may rise, and many
others can emerge when reviewing the existing instruments.
Among these, the first issue that we want to report as a stimulus
for further development is the fact that the meta-analytic
approaches considered in this paper just rely on the reported
activation peaks in the peer-review literature and just consider
the spatial distribution of these peaks without taking into account
the magnitude of the effect of interest. Usually, the magnitude of
the effect is expressed as either a t-value or as a Z-score. Thus,
it may be desirable to develop new algorithms capable of taking
into account also one of these measures (arguably the Z-scores
as they do not depend on the degrees of freedom of the test)
to obtain a better fitting of the data to the expected results.
Moreover, by introducing the t-value or the Z-score associated
with each activation peak, the lack of between-studies uniformity
in reporting the coordinates may be reduced, as usually the
papers that report the higher number of activation peaks are also
those that adopted a less conservative statistic threshold (David
et al., 2013). This problem has been recently addressed in the

GingerALE algorithm by introducing also the study as one of the
level in the analysis and hence taking into account also within-
study variability. By doing this, the probability that one study
with many foci drives a meta-analytic result has been mitigated
(Turkeltaub et al., 2012). A similar approach has been now
incorporated in the Multikernel Density Approach (MKDA).

On the contrary, at the moment this issue remains
unaddressed by the CluB method. One can only recommend,
as a form of best practice, to reduce the amount of data per
study, when these are exceedingly redundant, by taking only the
local maximum for each region of by calculating a preliminary
high-resolution CluB clustering solution on the redundant study.
Admittedly, this approach requires some a-priori decision on
what would be a redundant style of data description.

Another important issue is the one related with the problem
of inactive areas. As imaging papers only report positive findings
in the form of stereotactic coordinates, the inactive voxels are
just represented, both in GingerALE and CluB, by zeros. As a
consequence, measurements of non-active areas are lost and this,
in turn, makes impossible to evaluate whether the outcome in
that particular brain region would have become significant by
pooling data from different studies. This means that CBMAs
methods, in general, cannot aggregate power across studies,
unless the effect of every single voxel is taken into account
(Costafreda, 2009).

The last methodological consideration is about the adoption
of hierarchical clustering and of the Ward’s method. This
clustering procedure maximizes the between-cluster difference
and minimizes the within cluster variability; this procedure,
in turn, creates localized blobs, such as those represented in
Figure 6B. The result is the emergence of localized sets of
activations that, however, do not seem to fully represent the
complexity of brain functioning and connection. It may be the
case that the adoption of a different clustering procedure, capable
of representing distributed clusters rather than localized blobs,
may turn into a more adequate model of the neurofunctional
effect of interest. A possible candidate for this problem may
be the adoption of minimum spanning tree (Jain et al., 1999),
a clustering method that is typically used, and had been fully
developed, to design networks, such as computer or electrical
networks (Graham and Hell, 1985). Recently, this clustering
method has been adopted to identify the neural network
underlying specific cognitive function in the context of functional
connectivity studies (Baumgartner et al., 2001; Firat et al., 2013).
The authors started from the simple assumption that brain
regions that show the same type of activation may constitute
spatially sparse brain networks (Carpenter and Just, 1999).
Therefore, in this case the similarity measure would not be based
on spatial proximity, but rather on temporal co-occurrence of
brain activity. Further studies are needed to better address this
issue and to develop this possibility.
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