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Background: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive
neurodegenerative disorder. Diffusion magnetic resonance imagining (MRI) studies have
consistently showed widespread alterations in both motor and non-motor brain regions.
However, connectomics and graph theory based approaches have shown inconsistent
results. Hub-centered lesion patterns and their impact on local and large-scale brain
networks remain to be established. The objective of this work is to characterize
topological properties of structural brain connectivity in ALS using an array of local,
global and hub-based network metrics.

Materials and Methods: Magnetic resonance imagining data were acquired from 25
patients with ALS and 26 age-matched healthy controls. Structural network graphs were
constructed from diffusion tensor MRI. Network-based statistics (NBS) and graph theory
metrics were used to compare structural networks without a priori regions of interest.

Results: Patients with ALS exhibited global network alterations with decreased global
efficiency (Eglob) (p = 0.03) and a trend of reduced whole brain mean degree (p = 0.05)
compared to controls. Six nodes showed significantly decreased mean degree in ALS:
left postcentral gyrus, left interparietal and transverse parietal sulcus, left calcarine
sulcus, left occipital temporal medial and lingual sulcus, right precentral gyrus and
right frontal inferior sulcus (p < 0.01). Hub distribution was comparable between the
two groups. There was no selective hub vulnerability or topological reorganization
centered on these regions as the hub disruption index (k) was not significant for the
relevant metrics (degree, local efficiency and betweenness centrality). Using NBS, we
identified an impaired motor subnetwork of 11 nodes and 10 edges centered on the
precentral and the paracentral nodes (p < 0.01). Significant clinical correlations were
identified between degree in the frontal area and the disease progression rate of ALS
patients (p < 0.01).
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Conclusion: Our study provides evidence that alterations of structural connectivity in
ALS are primarily driven by node degree and white matter tract degeneration within
an extended network around the precentral and the paracentral areas without hub-

centered reorganization.

Keywords: ALS, MRI, connectivity, DTI, hub, graph theory

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative motor
neuron disorder characterized by progressive upper and lower
motor neuron degeneration, leading to severe motor disability
and death due to respiratory failure within few years (Kiernan
et al., 2011). While the etiology of ALS remains elusive, ALS is
now widely regarded as a multisystem disorder with considerable
extra-motor involvement (Al-Chalabi et al., 2016; Christidi et al.,
2018). Neuroimaging studies in ALS have consistently captured
clinico-radiological correlations in the central nervous system
(Cirillo et al., 2012; Bede and Hardiman, 2014).

Structural changes are relatively difficult to ascertain in
ALS with conventional, clinical magnetic resonance imagining
(MRI) sequences, therefore research studies rely on quantitative
techniques, such as diffusion tensor imaging (DTL; Grolez et al.,
2016), cortical thickness mapping (Schuster et al., 2017; Consonni
et al, 2019) or MRI spectroscopy (Kalra, 2019). DTI studies
have highlighted fractional anisotropy (FA) reductions in both
motor and extra-motor regions (Foerster et al., 2013) and FA
proved to be a sensitive DTI metric for both diagnostic (Tang
et al,, 2015; Bede et al., 2017) and progression modeling (Menke
et al., 2012; Miiller et al., 2016). Tractography studies in ALS
readily detect white matter tract degeneration principally in the
corticospinal tracts (Agosta et al, 2010). These studies have
described anatomical patterns of white matter degeneration,
but the impact of focal white matter changes on brain
network integrity has not been fully characterized to date
(Bede, 2017).

Structural connectivity studies based on graph theory offer a
valuable tool to analyze the topological organization of cerebral
networks and elucidate how different brain regions relate to
each other (Bullmore and Sporns, 2009). In connectomics,
cortical and subcortical brain regions can be parcellated in
nodes with white matter tracts between them representing the
edges of a mathematical graph. The human connectome has
been extensively studied with graph theory in physiological and
pathological contexts and it exhibits non-random features such as
the presence of highly connected regions, named hubs (Achard,
2006). Connectivity hubs of the human brain support integrative
processing and adaptive behaviors with high metabolic demands
and represent vulnerable foci of neurodegeneration (Buckner
et al., 2009; van den Heuvel et al., 2013; Proudfoot et al., 2019).

Abbreviations: ALS: amyotrophic lateral sclerosis; ALSFRS-R: revised ALS
functional rating scale; BC: betweenness centrality; CSF: cerebrospinal fluid;
DTI: diffusion tensor imaging; Eglob: global efficiency; Eloc: local efficiency;
FA: fractional anisotropy; FTD: frontotemporal dementia; NBS: network-based
statistics; ROI: region of interest.

In ALS, few structural connectivity studies have reported
both motor (Verstraete et al, 2011) and extra-motor node
impairment (Verstraete et al, 2014; Buchanan et al, 2015;
Dimond et al., 2017) and corticobasal connectivity is seldom
evaluated specifically (Bede et al., 2018). However, due to
methodological differences, the findings of these studies are
inconsistent; some authors have described decreased (Dimond
et al., 2017), while others reported preserved global efficiency
(Buchanan et al., 2015). While many brain disorders, such as
Alzheimer disease (Buckner et al., 2009; Verstraete et al., 2011)
or schizophrenia (Rubinov and Bullmore, 2013) exhibit a hub-
centered pattern, this finding is not evident in ALS connectivity
studies (Crossley et al., 2014). It is still not clear if the clinical
manifestations of ALS are primarily driven by white matter
degeneration or by hub topology alterations.

Accordingly, the main objective of this prospective MRI study,
is the characterization of structural connectivity in ALS using
graph theory methods at different scales: global, local (nodal) and
network analysis using statistical methods such as the Network-
based Statistics (NBS; Zalesky et al., 2010) allowing us to analyze
both cortical and white matter integrity.

MATERIALS AND METHODS
Ethics

This prospective imaging study was approved by the regional
Ethics Committee (Sud Mediterranee I). All subjects provided
informed consent in accordance with the principles of the
Declaration of Helsinki.

Participants

Twenty-five consecutive patients with ALS, diagnosed according
to the revised El Escorial criteria (Brooks et al., 2000), were
recruited from the ALS Center of Marseille University Hospital,
France. Comorbid neurological conditions or coexisting
frontotemporal dementia (FTD; Rascovsky et al., 2011) were
considered as exclusion criteria. Twenty-six healthy volunteers
were also recruited as radiological controls. Healthy controls
had no history of prior head injuries, neurological or psychiatric
diagnoses and had a normal clinical examination.

Clinical Evaluation

All ALS patients underwent a standardized clinical examination
on the day of the MRI. The recorded demographic and
clinical parameters included: disease duration, site of onset,
revised ALS functional rating scale (ALSFRS-R) scores
(Cedarbaum et al., 1999) and disease progression rate defined as
(48-ALSFRS-R)/disease duration (months).
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FIGURE 1 | Pipeline of image processing and graph analysis. T1w and diffusion MRI sequences were acquired from all patients and controls (A). Following
automatic parcellation of the structural images into cortical and subcortical regions (B), the two set of images were non-linearly co-registered (C). White matter tracts
were reconstructed based on diffusion data using the probabilistic algorithm of MRtrix (D). Individual brain network maps were generated using nodes and white
matter connections resulting in a FA-weighted connectivity matrix for each subject. Graph analyses were performed on the FA-based connectivity matrix (E).

MRI Acquisition

Magnetic resonance imagining data were acquired on a 3T
MAGNETOM Verio system (Siemens, Erlangen, Germany)
using a 32-channel phased-array 'H head coil. The protocol
included a high-resolution 'H Tl-weighted (Tlw) 3D-
Magnetization-Prepared Rapid Acquisition ~Gradient-Echo
(MPRAGE) sequence (TE/TR/TI = 3/2300/0.9 ms, 160 slices,
resolution of 1 x 1 x 1 mm?3, acquisition time = 6 min), and
a single shot echo-planar imaging DTI sequence (64 encoding
directions, b = 1000 s/mm? and b0, TE = 95 ms, TR = 10700 ms,
slice thickness 2 mm, 60 contiguous slices, resolution of
2 x 2 mm?, acquisition time = 12 min). A T2-weighted
3D-Fluid-Attenuated Inversion Recovery (FLAIR) sequence
(TE/TR/TI = 395/5000/1800 ms, 160 slices, 1 x 1 x 1 mm’
spatial resolution, acquisition time = 6 min) was also performed
in both patients and controls and systematically reviewed to
ensure the absence of vasculopathic white matter abnormalities
which may affect focal diffusivity parameters.

Image Processing (Figure 1)

Anatomical Cortical and Subcortical Parcellation
Cortical and subcortical brain regions of each subject were
parcellated using the Freesurfer software' (v5.0) with the
Destrieux atlas, based on the Tlw MPRAGE images to obtain

Uhttp://surfer.nmr.mgh.harvard.edu

164 regions of interest (Destrieux et al, 2010). Subcortical
regions included the thalamus, caudate nucleus, putamen,
pallidum, hippocampus, amygdala, nucleus accumbens and
ventral diencephalon.

Co-registration Between T1w Images and Diffusion
Images

Tissues-type segmentation was performed based on Tlw and
b0 diffusion images using the Statistical Parameters Mapping
software* (SPM12) to extract cerebrospinal fluid (CSF) maps
(Figure 1B). T1lw and b0 CSF maps were used as source and
target images, respectively, to estimate geometric distortions with
a non-linear registration procedure (Syn Model of ANTs library
(Avants et al., 2008; Figure 1C). The resulting deformation map
obtained from this co-registration was applied on the parcellation
mask (Destrieux labels). Nearest neighbor interpolation was
applied on the mask to keep the integer values of the
original labels.

Diffusion Image Preprocessing

Each diffusion dataset was aligned to its b0 image using
affine registration to correct for head movement and Eddy-
currents using FSL® (version 5.0.8, FMRIB Software Library,
Destrieux et al., 2010).

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
3https://fsl.fmrib.ox.ac.uk
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TABLE 1 | Demographic and clinical parameters of ALS patients and controls.

Demographic and clinical variables ALS patients Healthy controls P-value
n (male/female) 25 (16/9) 26 (15/11) 0.64
Age mean =+ SD (years) 55+ 10 51 +10 0.17
Handedness (right/left) 23/2 21/5 0.24
Disease duration mean =+ SD; 18 £ 15; [5-61] N/A N/A
[range] (months)
Disease onset site Spinal n=19 (left LL: n =6, right LL: n = 7, left UL: N/A N/A
n=1,right UL: n =5)
Bulbar n==6 N/A N/A
Revised El-Escorial criteria Definite n=>5 N/A N/A
Probable n=10 N/A N/A
Probable n=>5 N/A N/A
Laboratory
Supported
Possible n=>5 N/A N/A
ALSFRS-R mean = SD; [range] 39 + 6; [23-47] N/A N/A
Disease progression rate mean + SD; [range] 0.9 £+ 0.9; [0.1-3.6] N/A N/A
ALSFRS-R, revised ALS functional rating scale; LL, lower limb; N/A, not applicable; UL, upper limb.
Tractography and Connectomes Construction TABLE 2 | Global network analyss.
White matter tracts were reconstructed adopting a whole-
brain probabilistic fibertracking approach using MRtrix* (Brain  Graph metrics ALS patients Healthy controls ~ P-value
Research ?nstitute, Melboux.‘ne, Au.stralia). The method has Eglob 0.3395 0.3507 0.0348
been pre.zV10uslyf pres.ented. in de.ztalled (Besson et al., 2014). Degroe mean + SD 10615 4 29.77 111,46 4 29.10 0.0523
A. combined bi-hemispheric whlte maFter mask was 1 mm Eloc mean < SD 0.3775 4 0.0249 0.3854 4 00244 012
dilated and defined as the region of interest (ROI) for the BC mean 4 SD 169.80 4 245,61 170.06 4 209.02 0.98

tracking algorithm (Figure 1D). One million fibers were then
generated from all voxels included in this ROI with a probabilistic
tracking algorithm [tckgen command, FOD model (Behrens
et al,, 2003)]. The algorithm generated one million fibers with a
minimum length of 20 mm. Default tracking parameters included
a minimum radius of curvature of 1 mm, a FOD cutoft of 0.1
and a step size of 0.2 mm. Finally, FA values were interpolated
at each point of the fibers and the FA-based connectivity matrix
(size 164 x 164) were generated from all streamlines and the
parcellation mask (164 labels) previously warped in the diffusion
dataset space (tck2connectome command, MRtrix) (Figure 1E).

Network Construction and Graph Theory
Based Analysis

We modeled the structural undirected brain network of each
participant using the reconstructed white matter tracts and
the parcellated brain regions obtained in the previous steps
(Bullmore and Sporns, 2009). Each region was used to define
a node of a network graph. Edges were determined by
tractography streamlines connecting any pair of nodes. An edge
was considered present between two nodes if a streamline was
generated with start and end points in each region. Network
metrics were computed using the Brain Connectivity Toolbox
(Rubinov and Bullmore, 2013). We investigated measures
of global network architecture of each subject with global
efficiency and mean degree. Local structural alterations were

“http://www.brain.org.au/software/

Statistical significance was set at p < 0.05. Eglob, global efficiency; Eloc, local
efficiency; BC, betweenness centrality.

evaluated based on local efficiency, degree and betweenness
centrality of each region.

As defined by Rubinov and Sporns (2010), global efficiency
(Eglob) is the average inverse shortest path length in a network
and is inversely related to the characteristic path length. It is a
metric of functional integration that reflects on the brain’s ability
for specialized processing across distributed brain areas. Node
degree is defined as the number of edges connected to the node
and is a fundamental basic network measure to assess the central
role of a brain region among a network.

Mean degree of the whole network was also computed and
defined for one subject as the mean of each node degree of
this subject. Betweenness centrality (BC) is the fraction of all
shortest paths in the network that pass-through a given node.
The local efficiency (Eloc) is the global efficiency computed on
the neighborhood of the nodes.

Hub Analysis

In connectomics, hubs are described as highly connected nodes
with topological centrality and a critical role in integrative
processes and adaptive behaviors. Hubs are typically defined
as nodes with the highest degree, i.e., a degree one standard
deviation higher than the average degree of all nodes in
the studied population (van den Heuvel and Sporns, 2011;
Llufriu et al., 2017).
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FIGURE 2 | Hubs in ALS patients and controls. Panels (A,B) represent coronal and axial views illustrating the hubs in patients (A, red) and controls (B, blue). The size

of the nodes is proportional to their degree values. Panel (C) shows the 6 nodes with significantly reduced mean degree in patients at the Bonferroni corrected
threshold (red, p < 0.0003) and at the 1/n exploratory threshold (yellow, p < 0.006).

To assess if the topologic reorganization was more prevalent
in hubs, we also calculated the hub disruption index, k, as
defined by Achard (Achard, 2006). k index is the gradient of
a straight line, plotting the mean value at each node in the

healthy controls group (x-axis) versus the difference between
patient and control groups at each node, for any given metric
(y-axis). For example, a negative k index, crossing the zero
line on the y-axis, reveals a trend for high-value regions in
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controls to decrease in the studied subject, and low-value
nodes to increase.

Network Based Statistics

Considering a 164-node network, 26732 network connections
can theoretically be generated. As a result, standard statistical
tests for nodal analyses may be underpowered after correcting
for multiple comparisons. Accordingly, we used the NBS
approach to identify impaired subnetworks in patients
compared to controls. The NBS methodology improves the
statistical power by controlling for type I error (Zalesky
et al, 2010). The NBS network was computed using the
parameters detailed in a previous ALS study (Verstraete et al.,
2011) permitting the identification of an altered network
derived from the FA-based connectome. The mean FA of
each tract of this isolated subnetwork was calculated for each
subject and the total FA sum (NBS FA sum) was compared
between the two groups.

Statistical Analyses

Statistical analyses were performed using JMP 9.0.1, SAS Institute
Inc (JMP®, Version 9. SAS Institute Inc., Cary, NC, 1989-2019).
Group characteristics were compared using the non-parametric
Kruskal-Wallis test for age and Chi-squared test for gender and
handedness. Differences in global connectivity between patient
and control groups were assessed using pairwise non-parametric
Wilcoxon signed-rank tests for multiple comparisons with
uncorrected p < 0.05 being considered statistically significant.
For each node, group differences in the mean degree, Eloc,
and Eglob were also explored with non-parametric Wilcoxon
tests (p < 0.05).

At the nodal scale, we used two thresholds to study differences
between patients and controls: a first p = 0.05/164 = 0.0003
threshold corresponding to Bonferroni corrections applied with
164 brain regions, and a p exploratory threshold 1/n (p < 0.006)
(Ridley et al., 2015).

The connectivity metrics with significant differences between
patients and controls were then correlated with clinical
parameters including ALSFRS-R score and disease progression
rate, using a Spearman Rank test with multiple corrections.
A p < 0.0125 for global metrics (Eglob and mean degree)
and a p < 0.004 for local metrics (6 nodes with significant
connectivity differences between patients and controls) were
considered statistically significant.

RESULTS

Demographic and Clinical Parameters

The demographic and clinical profile of the participants
is presented in Table 1. Twenty-five patients with ALS
(mean age 55; SD 10 years; 16 males and 9 females, 2
left-handed) and 26 healthy controls (mean age 51; SD
10 years; 15 males and 11 females, 5 left-handed) were
included. There was no statistical difference in age (p = 0.17),
gender (p = 0.64) and handedness (p = 0.24) between

the study groups. The mean ALSFRS-R score in the ALS
cohort was 39 + 6.

Global Metrics

Global network analyses are presented in Table 2. Compared
to controls, ALS patients showed a significant decrease in
Eglob (0.3395 vs. 0.3507, p = 0.0348). A trend of reduced
mean degree of the whole brain was found in ALS patients
(106.15 vs. 111.46, p = 0.0523).

Nodal Analysis

Using the Bonferroni corrected threshold, we found a significant
decrease in ALS patients for the left postcentral gyrus
(p < 0.0001) and for the left interparietal and transverse parietal
sulcus (p < 0.0001) mean degree. No significant differences
were identified in Eloc or BC in any nodes at this threshold.
Furthermore, using the exploratory threshold, we found a
significant decrease in the mean degree of the left calcarine sulcus
(p =0.0021), the left occipital temporal medial and lingual sulcus
(p = 0.0009), the right precentral gyrus (p = 0.0021) and the right
frontal inferior sulcus (p = 0.0009) (Figure 2C and Table 3).

Hub Analysis

Seventeen regions among 164 were defined as hubs both
in patients and controls. The results are illustrated in
Figure 2. Three hubs in controls were not identified
as hubs in ALS patients: the left precuneus, the left
parietal inferior angular gyrus and the left postcentral
gyrus (Figure 3), but regarding the hub disruption
index, no  significant differences were found in
k-Eloc (p = 0.1270), k-BC (p = 0.6511) or k-degree
(p =0.6647) (Figure 4).

Network-Based Statistics

Network-based statistics highlighted a subnetwork (11 nodes, 10
edges) of impaired connectivity in the ALS group (p = 0.015)
(Figure 5). This network included the left precentral gyrus,
the left paracentral gyrus, the left caudate nucleus, the left
suborbital sulcus, the left inferior temporal sulcus, the left

TABLE 3 | Significant mean degree nodes differences between ALS
patients and controls.

Nodes ALS patients Healthy controls  P-value 2
Left postcentral gyrus 133.64 +£ 9.30 142.35 + 8.16 0.00012
Left interparietal and 126.68 + 12.93 138.81 £ 7.93 0.00012
transverse parietal sulcus

Right precentral gyrus 139.52 +£9.88 147.31 £ 6.83 0.0021°
Right frontal inferior 98.04 + 15.00 110.69 + 11.94 0.0009°
sulcus

Left calcarine sulcus 76.52 £ 19.76 96.69 + 21.03 0.0021°
Left occipital temporal 97.36 £ 12.13 109.11 £ 13.15 0.0009°

medial and lingual sulcus

Values are reported as mean + SD. @Statistical significance was set using
Bonferroni corrections based on 164 brain regions (p < 0.0003). b Statistical
significance was set using an exploratory threshold 1/n (o < 0.006).
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cingulate marginal gyrus, the right middle frontal gyrus, the
right pallidum, the right accumbens area, the right anterior
cingulate gyrus and sulcus and the right inferior superior parietal
gyrus. The total FA sum of the edges in this subnetwork
(NBS FA sum) was significantly reduced in ALS compared to
controls (p < 0.0001).

Correlation Between Connectivity

Metrics and Clinical Parameters

Among the six nodes identified in the Nodal Analysis results
section, degree in the right frontal inferior sulcus was correlated
with the disease progression rate (p = 0.0089, rho = —0.5396) and
a trend of association was also identified with ALSFRS-R scores
(p = 0.0456, rho = 0.4033).

No significant correlations were found between the other
nodes and ALSFRS-R score or disease progression rate. There
were no significant associations between Eglob and ALSFRS-R
score or disease progression rate.

DISCUSSION

This study provides evidence of disease-specific structural
connectivity changes in ALS. We report global efficiency
reductions in structural networks in ALS characterized by a
significant decrease in Eglob and a trend of mean degree

reduction. The use of the graph theory enables a topological study
of the entire cerebral network, without targeting a priori regions
of interest. Our results are in line with the reports of decreased of
Eglob in previous studies (Zhang et al., 2019). Our findings also
support the notion of widespread, multisystem, multi-network
degeneration in ALS which has been conceived based on other
structural (Keil et al., 2012; Menke et al., 2012; Bede et al.,
2016; Miiller et al., 2016) and functional methods (Agosta et al.,
2011; Douaud et al., 2011; Geevasinga et al., 2017; Dukic et al.,
2019; Nasseroleslami et al., 2019). Reduced global connectivity
underpins the impaired integration of multiple cerebral circuits
in ALS, which may be driven by long-range connectivity changes
(He et al., 2009). Previous structural connectivity studies did not
capture significant reductions in global parameters (Verstraete
et al,, 2011; Buchanan et al,, 2015) which may be explained
by differences in post processing pipelines which were used to
generate structural connectomes (deterministic fiber tracking
algorithm, number of tracts or different parcellation atlas).

At a local scale, we evaluated parcellated brain regions with
multiple metrics (Eloc, degree and betweenness centrality) to
determine if the global disturbances were due to the alteration
of specific nodes. Nodal analysis demonstrated a significant
reduction of degree in 6 out of 164 regions in ALS patients.
These six nodes are located in pathognomonic brain regions
closely associated with ALS. Precentral and frontal structural
degeneration is a hallmark feature of ALS confirmed by a
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Controls

multitude of cortical gray and subcortical white matter studies
(Kasper et al., 2014; Schuster et al., 2016; Mazén et al., 2018).
The intraparietal sulcus is part of the supplementary motor areas
which is also affected in ALS based on both functional and
structural studies (Abidi et al., 2019). The involvement of the
temporal lingual sulcus may be the substrate of the spectrum
of cognitive changes observed in ALS (Abrahams et al., 2004;
Phukan et al.,, 2007). Intrahemispheric connectivity alterations
and the degeneration of the sensorimotor network have also been
previously reported in ALS by studies demonstrating widespread
pre- and postcentral FA reductions (Rose et al., 2012).

To explore internodal interactions, we used NBS (Zalesky
et al, 2010). This tool permits the integrated analysis of a
subgroup of nodes that belongs to a single altered network.
In our study, we identified an impaired subnetwork centered
on motor nodes: precentral, paracentral and frontal gyri.
This subnetwork is comparable to the ones described in
previous studies (Verstraete et al., 2011; Buchanan et al., 2015).
Our finding of parietal and temporal lobe involvement is
in line with recently proposed pathological staging systems
(Brettschneider et al, 2013), and longitudinal connectivity
studies (Verstraete et al., 2014).

Interestingly, no major topological reorganization of hubs
was evidenced in ALS in the present study. The human
connectome is known to follow characteristic topological
patterns based on hubs, defined by a subnetwork of highly
connected nodes with a high number of tracts playing a

central role in the brain’s structural architecture. Due to
their anatomical position and their high metabolic demands,
these regions are considered particularly vulnerable in many
neurological and psychiatric disorders (Buckner et al., 2009;
Sharma et al., 2011; Rubinov and Bullmore, 2013; Gollo et al,,
2018). Previous studies have shown that the selective hub
degeneration occurs in a disease-specific pattern in several
neurological and psychiatric conditions such as Alzheimer’s
disease or schizophrenia (Crossley et al., 2014). Hub pathology
in ALS, however, has not been specifically investigated to
date and no graph theory based structural studies have been
performed to evaluate the distribution of hubs and the extent
to which they are reorganized in ALS patients relative to
controls. We showed here that both the number and the
distribution of hubs are similar between patients and controls.
To our knowledge, this first use of the hub disruption index in
ALS demonstrating the absence of hub reorganization, suggests
that disease propagation in ALS does not follow hub-based
patterns. Despite motor network changes evidenced by the
NBS analysis, the precentral nodes kept their hub properties.
Impairment of the global efficiency seems to be related to local
structural abnormalities rather than a complex compensatory
hub reorganization as reported in other disorders such as
multiple sclerosis and epilepsy (Ridley et al., 2015; Faivre et al.,
2016; Tur et al., 2018).

Noteworthy, we found associations between structural
connectivity metrics and clinical parameters, such as disease
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progression rate and ALSFRS-R score. Correlations between
brain imaging metrics and clinical parameters are often difficult
to establish in ALS (Chipika et al., 2019) because motor disability
is not merely due to upper but also lower motor neuron
degeneration and the considerable clinical heterogeneity of
the disease precludes direct clinico-radiological associations
(Verstraete et al., 2015). It is therefore not surprising that no
direct correlations were identified between clinical parameters
and global connectivity measures. Node degree and their white
matter integrity indexes seem to better explain the clinical deficits
observed in ALS.

This study is not without limitations. The sample size
of our ALS cohort is relatively limited which did not allow
the phenotypic stratification of ALS patients into subgroups.
Nonetheless, our study presents compelling evidence that
graph-analyses and connectomics provide meaningful non-
invasive insights into the degenerative changes of ALS.
Furthermore, genetic information was not available for all
patients which is a limitation as certain ALS genotypes may
be associated with specific white matter alterations and more
extensive network impairment (Menke et al., 2016; Floeter
and Gendron, 2018). The lack of standardized cognitive
evaluation is another limitation given the evidence of phenotype-
specific morphometric changes along the ALS-FTD continuum
(Omer et al., 2017). Future studies should therefore include

ALS-FTD patients and ALS patients with behavioral and
executive dysfunction to characterize the connectivity signature
of these cognitive phenotypes. An additional limitation is
the significantly higher proportion of male ALS patients in
the present study. Given the evidence of gender-associated
developmental and radiological features in ALS and healthy
populations (Menzler et al., 2011; Vivekananda et al., 2011; Bede
et al,, 2014), future connectivity studies should seek to recruit
gender-balanced cohorts.

CONCLUSION

In conclusion, our structural connectivity study highlights
a diffuse, non-focal network impairment in ALS without
selective  hubs  vulnerability —or topological network
reorganization. These results suggest that  clinical
manifestations in ALS could be more driven by tract
degeneration than by hub topology alterations. Based on
these observations, a prospective longitudinal study is
required to characterize dynamic progressive connectivity
changes. Recent imaging studies have shown evidence
of considerable presymptomatic structural changes in
ALS-associated mutation carriers (Schuster et al., 2015;
Querin et al,, 2019). A connectomic analysis of such cohorts
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could identify early network alterations in the most vulnerable
circuits and provide invaluable insights on disease propagation.
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