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The dynamical systems view of movement generation in motor cortical areas has

emerged as an effective way to explain the firing properties of populations of

neurons recorded from these regions. Recently, many studies have focused on finding

low-dimensional representations of these dynamical systems during voluntary reaching

and grasping behaviors carried out by the forelimbs. One such model, the Poisson

linear-dynamical-system (PLDS) model, has been shown to extract dynamics which

can be used to decode reaching kinematics. However, few have investigated these

dynamics, especially in non-human primates, during behaviors such as locomotion,

which may involve motor cortex to a lesser degree. Here, we focused on unconstrained

quadrupedal locomotion, and investigated whether unsupervised latent state-space

models can extract low-dimensional dynamics while preserving information about

hind-limb kinematics. Spiking activity from the leg area of primary motor cortex of

rhesus macaques was recorded simultaneously with hind-limb joint positions during

ambulation across a corridor, ladder, and on a treadmill at various speeds. We found that

PLDS models can extract stereotyped low-dimensional neural trajectories from these

neurons phase-locked to the gait cycle, and that distinct trajectories emerge depending

on the speed and class of behavior. Additionally, it was possible to decode both the

hind-limb kinematics and the gait phase from these inferred trajectories just as well or

better than from the full neural population (18-80 neurons) with only 12 dimensions. Our

results demonstrate that kinematics and gait phase during various locomotion tasks

are well represented in low-dimensional latent dynamics inferred from motor cortex

population activity.

Keywords: low dimensional dynamics, locomotion, non-human primate (NHP), poisson linear dynamical system,

primary motor cortex (M1)
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1. INTRODUCTION

With the advent of large scale intracortical recordings allowing
for the simultaneous interrogation of dozens to hundreds of
neurons, the study of the role of motor cortex in the generation
of movement has been steadily moving toward investigation
of cortical dynamics in the brain on the population level.
Ensembles of cortical neurons are organized as recurrently
connected networks, introducing shared variability among the
constituent cells, in turn constraining firing activity to a lower-
dimensional space (Yu et al., 2009; Truccolo et al., 2010; Afshar
et al., 2011; Churchland et al., 2012; Cunningham and Yu,
2014; Sadtler et al., 2014; Gallego et al., 2017; Pandarinath
et al., 2018). Dimensionality reduction techniques can be used to
extract the coordinated neural activity of a population, and reveal
structures that may be hidden at the isolated single-neuron level.
Previous investigations have shown that for reaching movements
with the arm, semi-oscillatory dynamics, inferred using jPCA,
are a common feature underlying a variety of different reach
movements (Churchland et al., 2012). Additionally, a common
low-dimensional neural manifold underlying various wrist
movements have be found using demixed principle component
analysis, or dPCA (Gallego et al., 2018).

Besides dimensionality reduction, many of these techniques
also employ dynamical systems models. These models address
how the values at the current time step depend on the values at
previous time steps, usually in the form of a temporal transition
matrix. Poisson Linear-Dynamical-System (PLDS) is one such
technique which employs both unsupervised dimensionality
reduction as well as explicit temporal dynamics. PLDS maps
low-dimensional latent states to the measured high-dimensional
neural spiking activity through an observation point-process
model and explicitly estimates the dynamics of these latent states
as it evolves through time with a linear mapping (Truccolo
et al., 2005; Macke et al., 2011). Unlike PCA and dPCA,
PLDS models the low-dimensional space as a state-space in a
linear dynamical system, thereby explicitly accounting for the
temporal relationships in the population. Although these low-
dimensional dynamics are inferred through an unsupervised
process, they are able to retain relevant behavioral information.
In reaching behaviors, explicit state-space models similar to
PLDS have been shown to increase closed-loop BMI performance
in cursor-control tasks (Kao et al., 2015) and decoding
accuracy during forelimb reaching behaviors (Aghagolzadeh
and Truccolo, 2014, 2016), demonstrating that only a small
number of dimensions from the neural population space is
needed to capture the movement kinematics during voluntary
forelimb movements.

However, reaching actions with the arm are typically highly
precise and have a strong voluntary control component, whereas
locomotion movements have a higher degree of autonomy. For
example, in felines, injection of the neurotoxins or ablation of
the motor cortex does not affect the ability of the animal to walk
along a flat surface, although their ability to step over a ladder
and over obstacles is impaired (Beloozerova and Sirota, 1988;
Drew et al., 1996). These results suggest that motor cortex may
play a less active role in the control of limb movements during

basic, unobstructed locomotion compared to movements that
require top-down voluntary control. In non-human primates,
inducing corticalspinal tract lesions showed that although there is
some locomotion deficits post-lesion, these recover quickly, while
dexterous foot grasping remain severely impaired, even after 3
months post-lesion (Courtine, 2005).

These findings suggest that the contribution of M1 to the
control of movements might be different during locomotion
compared to during reaching, although how exactly the role
of M1 is changing between these two behaviors is still not
well understood. It has been well known for several decades
that M1 is active during walking, and that cortical neurons are
phasically tuned to the gait cycle (Drew, 1988; Beloozerova and
Sirota, 1998; Drew et al., 2008). Yakovenko and Drew recorded
from corticospinal neurons during reaching and during walking
over an obstacle in cats and found that the firing onset phase
of certain neurons correlated with the onset phase of muscle
activation for both types of movements (Yakovenko and Drew,
2015), suggesting similar encoding of movements in M1 for
both types behaviors. However, a recently published study in
mice found that the population-level structure of M1 neurons
is disparate during reaching and lever pulling compared to
simple treadmill walking (Miri et al., 2017). These contrasting
conclusions demonstrate that there is still a lack of consensus
on the role of motor cortex during locomotion-related activities,
and it is still unclear whether M1 is contributing to the control of
the limbs in a similar manner during walking as during directed
reachingmovements. In particular, it has yet to be shownwhether
the latent state-space models that capture movement parameters
during precise arm reaching would also be able to capture hind-
limb movements during the potentially less engaging act of
locomotion. While previous studies have found low dimensional
representations of motor cortex activity in non-human primates
during simple treadmill walking (Foster et al., 2014; Yin et al.,
2014), they have not shown that movement kinematics are
preserved in these dynamics.

Here, we aim to determine whether the PLDS latent-state
model is able to extract low-dimensional dynamics which are
informative of the limb movements. We define informative as
having the ability to decode hind-limb joint kinematics as well
as gait phase, during various locomotion tasks such as treadmill,
corridor, and horizontal ladder walking (Figure 1A). To test
this, we used either firing rates of the full recorded population
of single neurons or the corresponding low dimensional
dynamics as input features into a Wiener filter decoder which
attempts to reconstruct the kinematics from these inputs. We
demonstrate that for PLDS inputs, only a small number of
dimensions are necessary to decode limb kinematics and gait
phase as accurately as the full neural population. As far as
we are aware, this is the first employment of explicit state-
space models during both basic locomotion along a treadmill
and corridor, as well as during directed locomotion along
evenly and unevenly spaced ladders in nonhuman primates.
Furthermore, it is also the first demonstration that cortical
ensemble dynamics robustly captures behavioral information
such as limb kinematics and gait phase during these different
ambulatory behaviors.
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FIGURE 1 | Locomotion behaviors and neural decoding with latent state models. (A) Animals were trained to perform different locomotion tasks in a freely moving,

untethered environment. The tasks include basic treadmill walking at various speeds, backwards treadmill walking, bipedal treadmill walking, corridor walking, and

ladder walking. (B) Construction of the neural decoders. For decoders implementing dimensionality reduction (PLDS, PCA, PSS), rasters of neural spike counts for

each gait cycle (left plot) undergo either an orthogonal linear transformation to extract principle components (center, top), a count-process filter based on a

state-space model to extract low-dimensional latent trajectories (center, middle) or a greedy search algorithm to obtain an optimal subsample of neurons (center,

bottom). These low-dimensional features are then used as inputs to a Wiener filter for reconstructing the estimate of a desired locomotion variable, such as the leg

extension distance (right). The Full Population decoder (bottom path) performs decoding directly on all recorded normalized neural spike counts, binned at 100 ms.

For decoding kinematics and gait, the trials of all tasks were combined and shuffled for each session.

2. METHODS

2.1. Surgery
Five male rhesus macaques between 5 and 8 years of age were
implanted with 96-channel microelectrode arrays (Blackrock
Microsystems, UT) in one hemisphere of the leg area of primary
motor cortex (M1), located medially along the precentral gyrus
(He et al., 1993). The details of the surgical implantation
procedures have been described previously (Yin et al., 2014).
Experiments complied with the European Union directive of
September 22, 2010 (2010/63/EU) on the protection of animals
used for scientific purposes in an AAALAC-accredited facility
following acceptance of study design by the Institute of Lab
Animal Science (Chinese Academy of Science, Beijing, China).
Experiments were approved by the Institutional Animal Care
and Use Committee of Bordeaux (CE50) under the license
number 50120102-A.

2.2. Kinematic Data Collection
To obtain kinematic data, white reflective markers were painted
over the shaved skin overlaying the right iliac crest (crest), greater
trochanter (hip), lateral condyle (knee), lateral malleolus (ankle),
5th metatarsophalangeal (metatarsal), and outside tip of the fifth
digit (toe tip). Marker locations were identified by feeling for
the bony projections of the above anatomic landmarks under the
skin; see Capogrosso et al. (2016) for a visualization of the marker
locations. Videos were captured at 100 Hz from four high-speed
cameras placed around the enclosures. Motion tracking software
(Simi motion systems, Germany) was used to determine the 3D

spatial coordinates of each marker, after calibrating the cameras
in 3D space using known calibration objects at the beginning and
end of each session. The origin of the coordinate system was set
to the iliac crest of the animal. The horizontal axis was set to the
direction of walking, while the vertical axis was set to the height
off the ground. Joint angle was set as the inner angle between
the two limb segments. The polar nature of the joint angles can
confound error calculations (for example, 0◦ is closer to 350◦

than 180◦, although 350–0 > 180–0), so instead of decoding the
joint angles directly, we decoded the sine and cosine of each
angle. Additionally, the total leg extension was calculated as the
distance between the iliac crest and the metatarsal joint. Neural
data, sampled at 30 kHz, was synchronized with the kinematic
data using a camera-start trigger signal at the start of each trial of
each recording session.

2.3. Tasks
Subjects carried out various behavioral motor tasks (Figure 1A).
Monkeys were trained to walk in an enclosed treadmill at
speeds of 1.1, 1.6, 2.4, 3.2, 4.0, 4.8, and 6.4 km/h (TRM trials).
The enclosure was approximately one and a half meters long
by one meter high by half a meter wide. It was constructed
from clear Plexiglas, which is both visually and RF transparent.
Spontaneously, they would switch to a bipedal gait, or start
walking backwards (BIP and BACK trials, respectively). In
addition, monkeys walked along a straight 3 m long corridor
over a flat surface (CORR trials) and over a horizontal ladder
with rungs either evenly spaced 35 cm apart or irregularly
spaced (LAD trials). These tasks were self paced, with the

Frontiers in Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 1046

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Xing et al. Low-Dimensional Neural Dynamics Preserve Kinematics

average corridor walking speed at 3.24 km/h (0.79 km/h standard
deviation) and the average ladder walking speed at 3.49 km/h
(0.79 m/s standard deviation). Monkeys were trained for at least
1 month to walk to the end of the corridor or ladder to receive a
food reward in response to an auditory beep and flash of light.

Recording was carried out over 1–2 days for each monkey.
Each day consisted of recording different randomly interleaved
sessions for each task. Each treadmill session consisted of
approximately 1 min of walking. These sessions were divided
into epochs which contained only those time periods where
the monkey was performing a single clear ambulatory behavior
(e.g., epochs consisted of only bipedal walking, or only forward
quadrupedal walking). Corridor and Ladder sessions consisted of
walking back and forth along the corridor or ladder for a total of
20–30 rounds. These rounds contained only the steps performed
at the middle of the corridor or ladder, to avoid the initiation and
termination phase of locomotion.

2.4. Data Preprocessing
Neural data was obtained using the Blackrock Cerebus system,
and saved onto a local computer through the Blackrock Central
Suite program. The data was transmitted through a custom
wireless headstage system (Yin et al., 2014), allowing for
freely-moving recordings. The neural signal was band-passed
at 500–5,000 Hz (second order Butterworth filter) and spikes
were extracted by manual sorting using custom Matlab scripts
(Laurens et al., 2013), which performed PCA on spike amplitudes
and peak velocities (although in practice, any commonly accepted
spike sorter can be used to obtain the firing rates). Neurons (the
total number ranging between 18 and 80 for each session) were
extracted from the multi-unit activity for each recording day
(Table 1) and the spike times (counts) were binned into 10 ms
intervals to match the 100 Hz kinematic data.

Each epoch was divided into trials consisting of a single gait
cycle by manually marking the time point of foot-strike and toe-
off. The stance phase of a single gait cycle was defined as the
time period between the foot-strike and toe-off and represents
0–60% of the gait cycle while the swing phase was defined as the
period between toe-off and the next foot-strike, and represents
60–100% of the gait cycle. The time-varying gait phase percentage
was linearly interpolated from the foot-strike and toe-off time
points (defined as the 0/100% and 60% mark, respectively).

Occasionally, neural data would become lost or corrupt for
periods within a trial. Trials were manually inspected for data
corruption, and if a trial was missing neural data, it was excluded
from the analysis. All the trials shown in Table 1 had complete
neural data. Additionally, for two of the recording sessions, we
did not record kinematics, and for the other seven sessions
where kinematics were recorded, there were occasional trials
where we were unable to obtain the kinematics (for example, due
to video occlusion). Table 1 contains the number of trials that
contain usable kinematics for each task during each recording
day. However, despite having incomplete kinematics for some of
the trials, we were able to obtain gait phase data for all of the
trials shown in Table 1, including in the two sessions where we
were unable to obtain any kinematics. Therefore, our gait phase
decoding analysis has a sample size of 9 (Figure 3C) while the
kinematic decoding analysis has a sample size of 7 (Figure 3D).

2.5. Dimensionality Reduction Models
We used explicit state-space models to estimate the latent states
of full population neural activity during locomotion. A LDS
model assumes the neuronal ensemble activity as Gaussian linear
observations, and uses expectation maximization (EM) learning
to estimate the unknown model parameters and the latent states
given only the observations (Macke et al., 2011; Aghagolzadeh
and Truccolo, 2014). To account for the count process nature
of ensemble spiking activity, we used a PLDS model, adding
the assumption that the neural observations are conditionally
Poisson given latent states (Truccolo et al., 2005; Aghagolzadeh
and Truccolo, 2016). A Laplace approximation was used to
compute the posterior density of the latent states given the neural
observations. For decoding latent states from novel neural data,
we used the mean of the state posterior density under the Laplace
approximation as the estimate for the latent state (Figure 1B).
The algorithm details have been described in Macke et al. (2011)
and Aghagolzadeh and Truccolo (2016).

To compare PLDS with other dimensionality reduction
techniques, we also tested decoders using low-dimensional inputs
derived via principal component analysis (PCA), and also the
activity of an optimal subsample of neurons from the full
population, referred to as predictive subsampling (PSS). For
PCA, the trials were concatenated across time and z-scored.
The covariance matrix was computed, and the PCA projection
matrix was constructed by eigenvalue decomposition—stacking
the eigenvectors corresponding to the n largest eigenvalues,
where n is chosen as the number of dimensions. We note that
although PCA (and related methods) provide a low-dimensional
representation of the ensemble activity, unlike PLDS, they do not
explicitly account for any temporal dynamics in the latent states.
PSS selects a subset of n neurons from the full population that
optimize neural decoding through a greedy supervised learning
algorithm, hence the name predictive. Details of this method can
be found in a previous paper (Aghagolzadeh and Truccolo, 2016).

2.6. Comparison of Low-Dimensional
Trajectories
To generate the example neural trajectories shown in Figure 2,
we selected one recording session, Q1-day 1, which contained
examples of all the tasks and treadmill speeds. In order to
compute the average trajectories, the PLDS latent states were
time-normalized to 0–100% of the gait cycle in steps of 1% using
linear interpolation, with 0% representing the start of the trial
(start of the stance phase) and 100% representing the last time
point of the trial (end of the swing phase), while 60% was set
to the transition between stance and swing. This resulted in 100
time points for each trial, and the values were averaged at each
time point. The distance metric was calculated for each trial as
the Mahalanobis distance between the values of that trial and
the distribution of a selected reference trial type in the full 12
dimensional space. For the comparison across tasks, reference
task was treadmill walking and for the comparison across speeds,
the reference was the 6.4 km/h trials. The Mahalanobis distance
values were averaged across trials for each of the tasks/speeds.
The standard error of the mean (SEM) was also computed and
shown for each task/speed.
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TABLE 1 | Number of trials and neurons recorded for each recording day of each animal.

Neurons TRM trials BIP trials BACK trials LAD trials CORR trials Trials with kinematics

Q1 Day1 56 96 (52) 43 (0) 4 (0) 35 (0) 18 (7) 59

Q1 Day2 80 91 (78) 61 (31) 4 (0) 14 (14) 5 (5) 128

Q2 Day1 63 129 (43) 12 (0) 0 (0) 6 (3) 6 (5) 51

Q2 Day2 51 217 (193) 22 (22) 0 (0) 22 (13) 4 (2) 230

Q3 Day1 46 77 (77) 6 (4) 0 (0) 10 (1) 5 (4) 86

Q3 Day2 41 79 (0) 0 (0) 0 (0) 16 (0) 12 (0) 0

Q4 Day1 51 224 (139) 0 (0) 0 (0) 0 (0) 0 (0) 139

Q4 Day2 18 51 (0) 0 (0) 0 (0) 3 (0) 20 (0) 0

Q5 Day1 39 37 (37) 0 (0) 0 (0) 26 (8) 9 (7) 52

We were unable to obtain kinematics in some of the trials; the number of trials that did contain kinematics for each task are displayed in parenthesis, and the total number of trials that

contains kinematics across all tasks is displayed in the last column. All the trials shown here contain complete neural data and gait cycle data.

FIGURE 2 | Latent state space of neural population activity during locomotion. (A) Neural trajectories obtained from the PLDS model for the gait cycles of all tasks in

animal Q1 on recording day 1. The trajectories in the first three latent dimensions (L.D.) for each individual gait cycle are shown (left), as well as task-averaged

trajectories over the total gait cycle (right). (B) The Mahalanobis distance between the trajectories of each of the tasks and the trajectories of the treadmill task,

calculated on all 12 dimensions. Shaded region denotes stance phase (0–60% of the gait cycle), shaded bars denote 1 S.E.M. (C) PLDS state-space trajectories in 3

dimensions for all treadmill walking trials at different locomotion speeds in animal Q2, session 2. Darker colors represent slower speeds; all speed values displayed in

the legend are in km/h. As in (A), individual gait cycles (left) and gait cycles averaged for each speed (right) are shown. For the average trajectories in both (A,C), the

darker shade represents the stance phase while the lighter shade represents the swing phase. (D) The Mahalanobis distance between the trajectories of each of the

speeds and the trajectory of the fastest speed (6.4 km/h).

2.7. Frequency Analysis
To compare the smoothness of the decoder outputs, the power
spectral density (PSD) of the decoded kinematics was computed
for each of the four decoders, along with the real kinematics.
For each trial, we estimated the PSD using Thomson’s multitaper
method (pmtm() function in Matlab), and the values were

averaged across all the trials of all the sessions. This was done for
each of the decoded kinematic variables.

2.8. Cross-Validation
We constructed four different decoders (which we will refer
to as the Full Population, PSS, PCA and PLDS decoders) and
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determined the performance of each through a 10-fold cross-
validation paradigm (Figure 1B). The PSS, PCA and PLDS
decoders employed a two-stage method where binned spike
counts were projected onto a low-dimensional space, with
dimensionality varying from 1 to 20. The coordinates of the
neural data in this space were then utilized as input features for
the Wiener filter described below. The Full Population decoder
did not employ the dimensionality reduction stage and utilized
the z-score normalized spike counts of all recorded neurons
as input features (Figure 1A). The PLDS inputs assumes spike
counts, and utilized the 10 ms bins, while the PCA, PSS, and
full population utilized firing rates. The number of spikes is too
sparse to estimate the firing rate using only 10 ms counts, so to
estimate the firing rates at each 10 ms time step, the number
of spikes in the current time bin as well as the previous nine
time bins were summed and divided by 100 ms to get the rate in
spikes/s. For all decoders, the time steps of the inputs was 10 ms.

Cross validation was performed on each recording session of
each monkey. All of the trials of all five tasks were combined
and randomized. The trials of all the tasks were then divided
into 10 cross-validation blocks. Each block consisted of 5–24 (for
decoding kinematics) and 7–27 (for decoding gait) trials which
were used as the testing set while the remaining nine blocks were
used as the training set. Decoder coefficients were calculated from
the training sets using the least-squares regression algorithm
between the neural data (Full Population and PSS) or latent states
(PCA and PLDS) and the measured output signal (kinematics,
or gait phase). The decoder was then used to estimate the
output signals of the testing set, and the decoding accuracy was
calculated as the coefficient of determination (R2) between the
estimated and the true signal as defined by equation 1. n is the
number of points of the kinematic or gait variable in the trial, yi
is the actual variable value at point i, ŷi is the estimated value from
the decoder at point i, and ȳ is the average value of the kinematic
or gait variable for the trial.

R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

(1)

2.9. Decoder
A linear Wiener filter of order 10 (the filter order that gave the
best decoding results under cross validation) was used to decode
the kinematics and gait cycle phase from the neural data. The
decoded signals included the horizontal and vertical positions of
the hip, knee, ankle, metatarsal, and toe tip joint markers, the
joint angles, the leg extension, and the percentage of the gait cycle
phase. The decoder is described by the equation:

y[t] =

9∑

n=0

An ∗ X[t − n] (2)

where y[t] is the output signal being decoded at time t, and
X[t − n] is a vector of the decoder inputs at lagged times t − n,
for n = 0, . . . , 9. An is the corresponding vector of regression
coefficients computed from the training set.

Statistical tests comparing the R2 values were carried out in
Matlab (signrank() function).

3. RESULTS

3.1. Structure of Population Dynamics
Varies Across Different Locomotion Tasks
and Speeds
Using the PLDS model, we extracted cyclic, low-dimensional
neural trajectories during locomotion. Visualizing in three
dimensions, the trajectories follow similar, saddle-like rotations
across different tasks, and across different walking speeds
(Figure 2A). The Mahalanobis distance between all of the
task trajectories against just the treadmill walking trajectories
demonstrates that the corridor walking trajectories are the most
similar to treadmill walking (mean distance = 5.0392), followed
by bipedal, backwards, and ladder walking in various orders
depending on the phase of the gait (mean distance= 9.12, 10.66,
and 11.97, respectively, Figure 2B). However, any interpretation
of the neural trajectories for backwards walking should be treated
with caution due to the low number of trials available (Table 1).
When training the PLDS model only on treadmill walking
trials, there is a similar rotational structure across all walking
speeds, however trajectories appear to separate along the third
latent dimension (Figure 2C). The change in state-space position
along this dimension is reflected in the increase in Mahalanobis
distance between trials of different speeds as the difference in
speed increases (Figure 2D). In general, the PLDS model was
able to infer latent state trajectories that are closely phase-locked
to the locomotor rhythm, and distinguishes relevant behavioral
parameters such as task type and walking speed.We next describe
how well kinematic and gait parameters could be decoded from
these low-dimensional dynamics.

3.2. PLDS Latent State Trajectories
Capture Limb Kinematics and Gait Phase
We used several neural features (full population firing rates,
PLDS or PCA latent variables, or a predictive sub-sample (PSS)
of the population firing rates) as inputs to a Wiener filter
decoder and measured how well each input feature could decode
various kinematic variables under cross-validation. To determine
the total number of dimensions to use in our decoders, we
measured the PLDS decoder performance for all the kinematic
variables while varying the input dimensionality from 1 to 20.
We found that the performance plateaued at approximately 12
dimensions (Figure 3B); we used this number of dimensions
for the remainder of the analyses, as well as for calculating the
Mahalanobis distances in Figure 2.

First, we investigated whether using PLDS as a feature
extractor would improve or deteriorate decoding of hind-limb
kinematics. An example trace of the decoded leg extension
for one trial is shown in Figure 3A. For this example, the
estimate from the PLDS decoder approximates the true signal
more faithfully than the estimate from the Full Population
decoder (R2 = 0.8294 vs. R2 = 0.5461), as well as compared
to the PCA and PSS decoders (R2 = 0.5355 and R2 = 0.4980,
respectively). We then compared the cross-validation results for
the various decoders across all monkeys and recording sessions
that have kinematics (n = 7) for each of the kinematic variables,
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FIGURE 3 | Decoding of leg kinematics and gait phase. (A) A representative example of the limb extension kinematic variable during one gait cycle along with the

decoded estimation for the four decoders. Gray background represents the swing period of the gait cycle, white background represents the stance period. In this

example, the PLDS decoded signal was the most successful at reconstructing the true signal, with an R2 of 0.8294, followed by decoding without any dimensionality

reduction (Full Population: FP) with an R2 of 0.5461. PCA and PSS decoding performed the worst, with R2 of 0.5355 and 0.4980, respectively. The R2 values for all of

the animals and sessions are shown in (D). (B) Dimensionality analysis for PLDS reveals a plateau in decoding performance (blue) at approximately 12 dimensions for

the latent states (plateau defined as when the increase in R2 <0.001), error bars 1 SEM. Log-likelihood (purple) also plateaus at around 12 dimensions.

(C) Cross-validated decoding performance of dimensionality reduction techniques for decoding gait phase percentage. Bars represent the increase in R2 over the Full

Population decoder, with the inset number representing the average R2 of the Full Population decoder. The full distribution of change in R2 are displayed as dots over

each bar. The PLDS decoder had the highest average R2 for all the variables. Error bars: 1 S.E.M. Black stars denote significant difference from Full Population

decoding R2 (Wilcoxon Sign Rank Test; Benjamini-Hochberg false discovery rate correction for multiple comparisons, with FDR = 10%). (D) Same as in (C), except for

all analyzed kinematic variables rather than gait phase. Each dot represents a animal/recording session, and the bar plots show the average R2 with error bars

representing 1 S.E.M.

including the horizontal and vertical position of the joints, the
joint angles (taking the sine and cosine to ensure valid R2

values), and leg extension (two-tailed Wilcoxon signed-rank test,
Benjamini-Hochberg false discovery rate correction for multiple
comparisons, with FDR= 10%). The PLDS decoder performance
was not significantly different from the full-population decoder
for any of the tested kinematic variables despite having only 12
input features, and indeed for all variables, the average PLDS
decoder R2 was higher than the full population, although none
of them reached significance when corrected for multiple testing
(Figure 3D). However, the PCA decoder performed worse than
the full population for many of the kinematic variables, as did the
PSS decoder (see Table S1 for p-values), leading us to conclude
that PCA and PSS features, at the same number of dimensions,
do not preserve the kinematic information as completely as
those obtained with the PLDS model. From the sample trial in
Figure 3A, the PLDS decoded signal appears much smoother
than the other three estimations, which may account for the

higher R2. The power spectrum of the decoder outputs verifies
that the PLDS decoder and the real kinematics have less power at
high frequencies compared to the full population, PCA, and PSS
decoders (Figure S1). Although the Wiener filter does provide
some degree of smoothing by taking into account the previous 10
time bins in the decoding, the PLDS model smooths the intrinsic
trajectories based on the activity of the whole ensemble, which
may provide a more accurate estimation of the dynamics.

In addition to the above kinematic variables, we also
investigated how well gait information, such as the phase of
the gait cycle, could be estimated using each decoder. Trials
consisted of a single gait cycle, and the phase of each cycle
were standardized to a range of 0–100%. The phase was then
estimated by each of the decoders, and the change in R2 from
the full population decoder is shown in Figure 3C for each of
the recording sessions (n = 9). The decoding performance was
similar to the decoding of kinematics; there was no significant
difference in R2 between the PLDS decoder and full population
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decoder, and the PCA and PSS decoder performed worse than
the full population decoder (see Table S1 for p-values).

4. DISCUSSION

While the PLDS and PCA models are both dimensionality
reduction techniques, a key difference of PLDS is it explicitly
models the temporal dynamics using a linear dynamical system.
Other techniques have been developed which also models these
dynamics such as jPCA (Churchland et al., 2012), or Hypothesis-
guided dimensionality reduction (HDR) (Lara et al., 2018). These
other techniques introduces some constraints to the form of
the dynamical system in order to test specific hypotheses about
the structure of cortical dynamics. For example, jPCA limits
the temporal transition matrix to the set of skew-symmetric
matrices in order to extract rotational dynamics, while in Lara
et al. (2018), HDR was used to divide the projected dimensions
into linear dynamical systems states and dimensions orthogonal
to those states that are condition-invariant (in order to find
similarities between two different brain regions). We did not
wish to impose any additional constraints about the form the
dynamical systems so we used the general form PLDS model for
this analysis.

Both the PCA and the PLDS model extracted neural
trajectories that were oscillatory in low-dimensional space. PLDS
explicitly models temporal dynamics of the latent states with
a state transition matrix, resulting in smoother single-trial
cyclical trajectories (Figure 1B, Figure S1). The structure of
the trajectories for treadmill walking at different speeds are in
agreement with previous studies, where the neural latent-states
separated along one dimension as walking speeds increased while
still conserving the rotational structure (Foster et al., 2014). We
were also able to obtain qualitatively distinct neural trajectories
during different tasks (Figure 2A), although again, rotational
structure is preserved across all tasks.

The dimensionality of neural data required to represent
hind-limb kinematics was approximately 12 dimensions, when
empirically determined as the plateau in kinematic decoding
performance (Figure 3B). Previous studies have estimated the
intrinsic dimensionality in forelimb motor cortex during center
out tasks to be around 10–20 dimensions (Yu et al., 2009;
Sadtler et al., 2014; Vargas-Irwin et al., 2015). Despite the more
constrained movements of the hind-limb during locomotion, the
dimensionality between leg and arm area of M1 and between
reaching and walking are surprisingly similar. Such similarity
could suggest comparable levels of cortical involvement during
these different behaviors (although the actual structure of the
cortical activity could be different). In 1989, Georgopoulos and
Grillner proposed the hypothesis that reaching movements in
primates may have evolved out of precise gait adjustments
during locomotion (Georgopoulos and Grillner, 1989), and
others have suggested that similarities in neural and muscle
activation onsets between those two types of movements support
this hypothesis (Yakovenko and Drew, 2015). The similarities in
neural dimensionality between voluntary reaching and walking
would also be consistent with this view. However, due to the low

sample size and the use of only one dimensionality reduction
technique in this study, further experiments exploring additional
models may be necessary before any definitive conclusions can
be drawn on the dimensionality of leg-M1 population activity
during locomotion.

It is well understood that neurons in motor cortex are
correlated to muscle activity and kinematics during locomotion
in cats (Beloozerova and Sirota, 1998; Drew et al., 2002; Drew
and Marigold, 2015), rodents (Song et al., 2009; Rigosa et al.,
2015; DiGiovanna et al., 2016; Miri et al., 2017), and non-
human primates (Fitzsimmons et al., 2009; Foster et al., 2014;
Yin et al., 2014). Here, we showed whether the extracted
low dimensional dynamics from PLDS preserve the kinematic
information that is present in the neural activity. In terms
of the decoding performance, PLDS with only 12 dimensions
was able to reconstruct all the kinematic variables in addition
to the gait phase just as well as the full population decoder
that contains 18–80 dimensions. There is some variance in
the distribution of PLDS decoder improvements across animals
and sessions (Figure 3). This could be due to the different
populations of neurons that are recorded from in different
subjects. These populations are not homogeneous and may
represent the true underlying cortical dynamics by varying
degrees. Other dimensionality reduction techniques such as PCA
or PSS were unable to achieve the same decoding performance
at the same number of dimensions, indicating that an explicit
model of temporal dynamics of the low-dimensional states,
such as PLDS, is crucial for decoding the kinematics accurately.
These results reflect the improved decoding performance using
linear dynamical systems models during cursor control from
arm area (Yu et al., 2009; Kao et al., 2015) and during reaching
and grasping behaviors (Aghagolzadeh and Truccolo, 2016),
suggesting that low-dimensional dynamics play an important
role in both types of movements. Our findings differ in that
we did not see a statistically significant increase in performance
when using latent state input features, whereas the arm decoding
studies did see an improvement. However, given that the R2

of every single kinematic variable was on average higher with
the PLDS decoder compared to the full population decoder, this
may be due to our low sample size and lack of statistical power.
Additionally, the power is lowered by the use of parametric tests
and the large number of kinematic variables tested.

We should also mention that our decoders utilized firing
rate inputs, and thus carries the assumption of rate coding
rather than temporal coding. Recent findings have suggested
that temporal coding may play a larger role in motor control
than previously thought (Srivastava et al., 2017). One future
extension of this study would be to include models that utilize
precise spike timings. Additionally, the Wiener filter decoder
we employed is a linear decoder, and although it was able
to reconstruct the kinematics fairly accurately, other non-
linear models could be used to further improve decoding
performance. Finally, we should mention that this study was
limited to higher-level control areas such as the motor cortex,
though lower-level structures such as brain-stem or spinal
cord have been shown to also exhibit intrinsic population
dynamics (Bruno et al., 2017).
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In conclusion, our study investigates whether unsupervised
dimensionality reduction can infer latent neural states reflecting
ensemble dynamics, while preserving information about the
kinematics and gait phase of the hind-limb during various
locomotion tasks. We show that dynamical systems models,
which have been shown to decode forelimb reaching kinematics,
were able to extract robust, stereotyped low-dimensional state-
space trajectories, and that these trajectories capture hind-limb
movements during directed locomotion (e.g., ladder walking),
as well as autonomous locomotion (e.g., basic treadmill and
corridor walking). As far as we are aware, this is the first
demonstration of explicit state-space models of neural dynamics
robustly decoding kinematic and gait information during
primate locomotion. These results also points to the potential
of using PLDS in hind-limb BMIs, although direct testing in a
closed-loop system would be required before any determination
of the usefulness of PLDS as a feature extraction step can be
made. Recently, newer techniques have been developed to extract
neural dynamics using recurrent neural networks (Pandarinath
et al., 2018) which enable extraction of non-linear dynamics
and have been employed in arm reaching tasks. Such models
may extract the underlying neural dynamics more accurately and
may outperform PLDS in terms of decoding of kinematics. One
potential extension to this study in the future would be to apply
these non-linear models to hind-limb locomotion behaviors
as well.
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