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This paper exploits the unidirectional synchronization dynamics of two Hodgkin-Huxley

(HH) neurons under transcranial magneto-acoustical stimulation (TMAS). The major

purpose is to explore a control scheme tomake the spikingmodes of the neural potentials

stimulated by TMAS achieve synchronization states under the feedback input. For this

purpose, an adaptive neural controller, which makes the neurons satisfy the prescribed

master-slaver synchronization performance, is designed by introducing a tracking error

into Lyapunov analysis. Under the proposed control scheme, the slaver neuron can

not only overcome the model uncertainties and the difficulties brought by prescribed

performance, but also track the spiking patterns of the master neuron. Finally, the

simulations are implemented to demonstrate the effectiveness of the proposed controller,

that is, the TMAS induced synchronization states of the HH neuron system can achieve

the prescribed performance under the proposed controller.

Keywords: TMAS, Hodgkin-Huxley neuron, unidirectional synchronization, adaptive neural control, predefined

performance

INTRODUCTION

Transcranial magneto-acoustical stimulation (TMAS), as a new technology for brain stimulation,
hasmany advantages in space resolution and penetration depth. Previous studies demonstrated that
TMAS can alter neuronal firing rhythm, phase-locking and concentration of Ca2+ (Norton, 2003;
Yi et al., 2017). However, few studies investigate the synchronization control for neuronal activity
induced by TMAS. In recent decades, many scholars have made effort to lucubrate the biological
information processing in neuroscience (Gray et al., 1989; Meister et al., 1991). Experimental
reports indicate that the synchronization activities of neurons have a significant effect on thinking,
motion control, and diseases, such as Parkinson’s, Huntington’s, and epilepsy (Gray, 1994; Niebur
et al., 2002; Fries, 2005; Hammond et al., 2007), and so on.

From a neuroscientific viewpoint, there are two kinds of synchronization methods (Boccaletti
et al., 2002). One is the natural approach of diffusive coupling and intrinsic noise. This approach
is considered as the initiator of nervous activity to study the synchronization dynamics (Wang,
2002; Acker et al., 2003; Casado, 2003). The other is investigated from control engineering. There
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are two common ways used for synchronization of dissimilar
neurons. One is observer-based synchronization (Boccaletti
et al., 2002), which designs state observer to make the
nonlinear oscillators synchronize. The other is controller-based
synchronization (Deng et al., 2006; Wang et al., 2007a,b; Aguilar-
López and Martínez-Guerra, 2008; Sisi et al., 2009; Che et al.,
2011; Yu et al., 2013), which uses a control scheme to realize
the synchronization.

There are several challenges in synchronization control for
different neurons due to the characteristics of neuron systems,
such as the presence of disturbance, dynamic uncertainty,
and nonlinearity in neuronal models. These challenges enthuse
researchers to devote themselves to this research issue, and many
effective methods have been presented.

In order to overcome perturbations, sliding-mode control
laws were proposed between two coupled neurons (Aguilar-
López and Martínez-Guerra, 2008; Che et al., 2011; Yu et al.,
2013). Deng et al. introduced a backstepping control scheme
on account of Lyapunov analysis to achieve synchronization
in spite of external disturbances (Deng et al., 2006). Based
on feedback linearization theories, nonlinear controllers were
introduced to reach synchronization of coupled neurons in
spite of unmeasured states (Octavio Cornejo-Pérez, 2005;
Wang et al., 2007a,b). Le and Hong presented nonlinear and
linear parameter adaptation controllers to overcome system
uncertainties and achieve synchronization of two coupled
neurons (Le and Hong, 2013). Robust control schemes,
combining linear matrix inequality with parameter adaptation
to deal with system uncertainty and reach synchronization,
were proposed by Rehan and Hong (2011). Puebla et al.
designed a robust control scheme for two coupled neurons,
which has the uncertainty compensation and error tracking
functions (Puebla et al., 2010). Wang and Zhao introduced a
system dynamics inversion into nonlinear controller to ensure
the neuron synchronization under system uncertainty (Wang
and Zhao, 2010). Synchronization of two coupled direction-
dependent neurons with unknown and uncertain parameters
was discussed in Iqbal et al. (2014). Some conclusions for the
adaptive hybrid chaotic synchronization of the identical neuron
models, using Lyapunov stability theory, were proposed (Aqil
et al., 2012; Baladron et al., 2012; Vaidyanathan, 2015). More
recently, a novel robust synchronization approach based on the
master-slave configuration was introduced for neuronal systems
(Puebla et al., 2017), and an adaptive feedback control law was
designed for synchronization of the coupled neurons with a time
delay (Iqbal et al., 2018). Despite the synchronization control of
coupled neurons has been widely investigated, only the steady
state synchronization performance has been focused on. Scholars
have long recognized transient state control performance worth
in-depth study.

The prescribed performance control (PPC) of synchronization
means that the tracking error should converge to a predefined
arbitrarily small residual set with convergence rate being no less
than a prescribed value, that is, exhibiting maximum overshoot is
less than a sufficiently small preassigned constant (Kelly, 1995).
In order to enhance the control effect, a great deal of researches
focusing on PPC have been developed in various control fields,

such as robotic systems (Bechlioulis and Rovithakis, 2009;
Bechlioulis et al., 2010), multi-agent systems (Karayiannidis and
Doulgeri, 2012), and teleoperation systems (Yang et al., 2015).
In unidirectional synchronization control for different neurons,
the trajectory of a slaver neuron must track, to some extent, the
trajectory of a master neuron even if the slaver andmaster system
is dissimilar (Octavio Cornejo-Pérez, 2005). Better transient-state
control performance means better tracking effect, and further,
better therapeutic effect in neuroscience. However, as far as
we know, the study of prescribed performance synchronization
control of neuron systems with TMAS has not been launched.

Mathematical modeling has had a great influence on
neuroscience (De Schutter and Ebrary, 2010). There are
three common models of neuron systems to study neuron
synchronization control (Fitzhugh, 1961; Hodgkin and Huxley,
1989; Girardi-Schappo et al., 2013). The most common model
in biology is the Hodgkin-Huxley (HH) neuron model, which
is used as a realistic neuron model in the synchronization
research of neural systems. The FitzHugh-Nagumo (FHN)
neuron model is another famous model, which can be seen as a
simplified approximation of the HH neuron model by reserving
main characteristics of its action potential. Another common
model is the Hindmarsh-Rose (HR) neuron model representing
physiological transmission of neural signal. The HR model can
be seen as a reduction type of the HH model in neurobiology.
Compared with these simplified neuron models, the HH model
shows us in detail how the neuron action potentials are excited,
and how the potentials approximately express the electric
properties of excitable cells. Thus, in the available literatures, few
researchers focused on the synchronization of the HH neurons as
its complexity.

In this study, we propose an adaptive neural synchronization
control scheme for two HH neurons under TMAS. The
designed control law is endowed with ensuring the prescribed
synchronization performance of the neuronal system. To restrict
the tracking error, a synchronization error transformation is
constructed to convert the restricted synchronization control
problem to an unrestricted one. Besides, the Radial Basic
Function neural network (RBF NN) is introduced to overcome
the system uncertainty. Finally, a stable synchronization
control scheme which ensures the prescribed neural tracking
performance is proposed.

The main contributions in this work are: (i) The PPC is
introduced into synchronization control of neuron system,
which can enhance the synchronization effect. (ii) The
neurons are exposed to external transcranial magneto-
acoustical stimuli. The TMAS, a novel brain stimulation
technology, has been applied for neurological and psychiatric
disease treatment and rehabilitation. (iii) The RBFNN is
applied to overcome the system uncertainty, and a filtered
synchronization error is constructed for designing the stable
neural control law.

The remainder of this work is organized as follows.
In section Methods, we introduce the problem formulation
and preliminaries. Prescribed performance control scheme is
introduced to guarantee the synchronization constraint and
stability of the closed-loop system. Themain results in simulation
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FIGURE 1 | The cell model and the diagram of equivalent circuit of the HH neuron model.

studies and its improved effects are shown in section Results.
Section Discussion concludes the obtained results and the
existing barriers, as well as looks for future research directions.

METHODS

HH Neuron Model
The HH neuron model (Hodgkin and Huxley, 1989) is used in
this study. The cell model and the diagram of equivalent circuit
of the HH neuron model are shown in Figure 1. In the cell
model, the cell radius is R = 10µm, and the thickness of cell
membrane is d = 0.5 nm (Che et al., 2012). The HH neuron
model can be represented by the following nonlinear equations
(Che et al., 2012).

C dV
dt

= Iext − gKn
4 (V − VK) − gNam

3h (V − VNa)

−gL (V − VL)
dn
dt

= αn (V) (1− n) − βn (V) n
dm
dt

= αm (V) (1−m) − βm (V)m
dh
dt

= αh (V)
(

1− h
)

− βh (V) h

(1)

In Equation (1), V is the membrane potential of HH neuron.
n represents the activation of the K+ current. m and h are
the gating variables of the activation and inactivation of the
Na+ current, respectively. C is the membrane capacitance. VK ,
VNa, and VL are the equilibrium potentials of the sodium, the
potassium and the leak electric currents, respectively. gK , gNa,
and gL are the maximal conductance of the corresponding ionic
electric currents. The external stimulus term Iext can be modeled
by the external current generated by TMAS. The explicit forms of
the equations αj (V) and βj (V) (j = n,m, h) in Equation (1) are
given as follows.

αn (V) = 0.1 (100− V) /
[

exp ((100− V) /100) − 1
]

βn (V) = 0.15 exp (−V/100)
αm (V) = 0.1 (15− V) /

[

exp ((15− V) /5) − 1
]

βm (V) = 4 exp (−V/10)
αh (V) = 0.08 exp (−V/10)

βh (V) = 1/
[

exp ((−V + 30) /10) + 1
]

(2)

The master and slaver HH neuron system is redefined by
Equation (3) and Equation (4) to state the synchronization

TABLE 1 | Fixed parameters of the master-slaver HH neuronal system.

Parameters of the master neuron Parameters of the slaver neuron

CM = 1 µF/cm2 CS = 0.9 µF/cm2

gKM = 36 mS/cm2 gKS = 32.4 mS/cm2

gNaM = 120 mS/cm2 gNaS = 108 mS/cm2

gLM = 0.3mS/cm2 gLS = 0.27 mS/cm2

VKM = 12 mV VKS = 10.8 mV

VNaM = −115 mV VNaS = −103.5 mV

VLM = −10.613 mV VLM = −9.5517 mV

problem. xM,i and xS,i(i = 1, 2, 3, 4) represent the states V ,
n, m, and h in the master and slaver system. By considering
the essential characteristics of the synchronous behavior of two
neurons, the master HH neuron system is proposed as follows.

ẋM,1 =
1
CM

(

Iext_M − gKMx4M,2

(

xM,1 − VKM

)

−gNaMx3M,3xM,4

(

xM,1 − VNaM

)

− gLM
(

xM,1 − VLM

))

ẋM,2 = αn

(

xM,1

) (

1− xM,2

)

− βn

(

xM,1

)

xM,2

ẋM,3 = αm

(

xM,1

) (

1− xM,3

)

− βm

(

xM,1

)

xM,3

ẋM,4 = αh

(

xM,1

) (

1− xM,4

)

− βh

(

xM,1

)

xM,4

(3)

and the slaver HH neuron system is denoted by the
following equations:

ẋS,1 =
1
CM

(

Iext_S − gKSx
4
S,2

(

xS,1 − VKS

)

−gNaSx
3
S,3xS,4

(

xS,1 − VNaS

)

− gLS
(

xS,1 − VLS

))

+ u

ẋS,2 = αn

(

xS,1
) (

1− xS,2
)

− βn

(

xS,1
)

xS,2

ẋS,3 = αm

(

xS,1
) (

1− xS,3
)

− βm

(

xS,1
)

xS,3

ẋS,4 = αh

(

xS,1
) (

1− xS,4
)

− βh

(

xS,1
)

xS,4

(4)

where the item u is the feedback control input. Table 1 shows
the fixed parameters of the master-slaver HH neuronal system.
Under some parameters, both the two neurons cannot be
synchronous originally.

Principle of TMAS
TMAS, as a novel brain stimulation technology, generates a safe
electric current to noninvasively stimulate the nervous tissue. The
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TABLE 2 | Fixed parameters for TMAS.

Parameters Value Unit

σ 0.5 Siemens/m

Bx 7 Teslas

Ŵ 100 Watt/cm2

ρ 1120 Kg/m3

c0 1540 m/s

f 200 Hz

main principle of TMAS is to integrate ultrasound waves with a
static magnetic field to produce the suitable stimulation current
(Norton, 2003; Yuan et al., 2016). In TMAS, an ultrasonic wave
spreads in electrolytic fluid and makes the ions move with it. In
a static magnetic field, the moving ions will produce a Lorentz
force. This force then generates an electric current that oscillates
with the fundamental and modulation frequency (Ammari et al.,
2015; Graslandmongrain et al., 2015). In (Yuan et al., 2016),
the relationship between the generated electric current and the
ultrasonic and magnetic field parameters has been deduced, and
it can be represented by

Jy = σBx

√

2Ŵ

ρc0
sin

(

2π ft
)

(5)

Jy is the electric current density that is equivalent to the External
stimulus current Iert . σ is the conductivity, and its typical value is
0.5 Siemens/m (Norton, 2003). Bx, Ŵ, ρ, c0, and f are magnetic
field intensity, ultrasonic intensity, tissue density, ultrasound
speed, and ultrasonic fundamental frequency, respectively. The
fixed parameters for Equation (5) are listed in Table 2. In this
work, the electrical current Iert , induced by ultrasound and
magnetic field in brain tissue, is used as the external current
to drive the cross membrane current and alter the membrane
potentials of neurons in Hodgkin-Huxley model.

In this study, a pulsed ultrasound, modulated by a sine wave
and a continuous wave, is applied (Figure 2). The modulation
ultrasound can be described by the following equation and the
modulation frequency (MF) is ranged from 100 to 120 Hz.

sin (2π (MF) t) ×
(

sin
(

2π ft
)

+ 1
)

(6)

Thus, the generated electric current Iert which is utilized to
stimulate the neurons, can be described by.

Iext = σBx

√

2Ŵ

ρc0

(

sin (2π (MF) t) ×
(

sin
(

2π ft
)

+ 1
))

(7)

Properties of RBF Neural Networks
The RBF neural network is used widely due to its linearly
parameterized structure, and can be described by:

hnn (Z) =

l
∑

i=1

ωisi (Z) = WTS (Z) (8)

FIGURE 2 | The schematic of the ultrasound frequency in TMAS.

where W ∈ Rq×l is weight vector, Z ∈ �z ⊂ Rq is input vector,
and l is theNNnode number. S (Z) = [s1 (Z) , s2 (Z) , . . . , sl (Z)]T

is a vector of Gaussian basis functions, of which the commonly
used expression is si (Z) = exp

[

−(Z − µi)
T (Z − µi) /η2i

]

, i =
1, 2, . . . , l, where µi are constant vectors called the center of
the receptive field and ηi is a real number called the width
of the basis function. The approximation property in Loría
and Panteley (2002) indicates that, for some sufficiently large
integer l, WTS (Z) can approximate any given function with the
approximation error restricted by δ∗, i.e.,

hnn (Z) = W∗TS (Z) + δ (Z) ,∀Z ∈ �z ⊂ Rq (9)

where W∗ is the ideal constant weight vector, and δ (Z) is the
approximate error restricted to |δ (Z)| < δ∗ with constant
δ∗ > 0 for all ∀Z ∈ �z . W

∗ is defined as the ideal value of
W that minimizes |δ (Z)| for all Z ∈ �z ⊂ Rq, i.e., W∗ =

argminW⊂Rl
{

supZ⊂�z
|hnn (Z) −WTS (Z)

}

. The desired weight
W∗ needs to be estimated in the process of controller design.

Before proposing our main conclusions, the following
assistant lemma should be firstly introduced.

Lemma 1 (Yang et al., 2016). ∀
(

x, y
)

∈ R2, the following
inequality holds

xy ≤
ςp

p
|x|p +

1

qςq

∣

∣y
∣

∣

q
(10)

where ς > 0, p > 1, q > 1 and
(

p− 1
) (

q− 1
)

= 1.

General Model of Synchronized Potential
To transform the problem formulation into a synchronization
model, we consider a more common class of master-slaver
configuration of neurons connected with membrane potential
than the neuronal systems (3) and (4). According to Equation (3),
the dynamics of the master neuron can be reformulated by

ẋM,1 = fM,1 (xM)

ẋM,j = fM,j (xM)
(11)
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where xM,1 represents membrane potential of the master neuron,
xM,j, j = 2, 3, 4 are the remaining state variables of Equation (3)

and xM =
[

xM,1, xM,2, xM,3, xM,4

]T
.

According to Equation (4), the dynamics of the slaver neuron
can be reformulated by

ẋS,1 = fS,1 (xS) + u
ẋS,j = fS,j (xS)

(12)

where xS,1 represents membrane potential of the slaver neuron,
xS,j, j = 2, 3, 4 are the remaining state variables of Equation

(4) and xS =
[

xS,1, xS,2, xS,3, xS,4
]T
. u is an external input

applied to the slaver neuron, which represents a feedback
synchronization force.

The synchronization error system for the HH neuronal system
can be modeled as

ė = ẋM,1 − ẋS,1 = fS,1 (xS) − fM,1 (xM) + u = f (x) + u (13)

where e = xM,1 − xS,1 denotes the synchronization error, and
x = [xM , xS]

T .

Prescribed Performance Control
In this section, an adaptive neural controller, which guarantees
the prescribed transient and steady tracking performance for
the master-slaver neuron system, is designed by integrating
the prescribed performance function to the constructed
transformation error system.

The prescribed performance generally includes the minimum
convergence rate and the maximum steady state error. In
addition, allowable overshoot needs to be bounded by a
decaying function of time as a priori. Prescribed synchronization
performance is accomplished if all the elements of the tracking
error e evolve strictly within the arbitrarily small predefined
region. We can use the following mathematical expressions to
express the prescribed performance:

−Hβ (t) < e < β (t) , if e (0) ≥ 0 (14)

−β (t) < e < Hβ (t) , if e (0) ≤ 0 (15)

where 0 < H ≤1, β (t) is a performance function and can be
defined in our work as

β (t) = (β0 − β∞) e−κt + β∞ (16)

where β0, β∞, and κ are strictly positive constants. β0 = β (0)
and β∞ = limt→∞β (t). From (14) and (15), the constant κ

denotes the minimal convergence rate, the β∞ is the maximal
steady state error, and the maximum overshoot is less than Hβ0.

In order to constrain the tracking error to the prescribed
range, an error transformation is introduced to make an
equivalent unconstrained tracking error condition instead
of the constrained one. We then define the following
state transformation:

e (t) = β (t)R (ε) (17)

where ε (t) is the filtered tracking error and R (�) is a smooth and
strictly increasing function defining a bijective mapping

R : (−H, 1) → (−∞,+∞) , if e (0) ≥ 0 (18)

R : (−1,H) → (−∞,+∞) , if e (0) ≤ 0 (19)

We employ the following smooth and increasing function asR (ε)

R (ε) =
eε −H

1+ eε
, if e (0) ≥ 0 (20)

R (ε) =
Heε − 1

1+ eε
, if e (0) ≤ 0 (21)

Then the filtered tracking error ε can be represented by

ε = R−1 (e/β (t)) = ln [(H + e/β (t)) / (1− e/β (t))] ,

if e (0) ≥ 0 (22)

ε = R−1 (e/β (t)) = ln [(1+ e/β (t)) / (H − e/β (t))] ,

if e (0) ≤ 0 (23)

The derivative of the filtered error is

ε̇ = ϕ

(

ė−
β̇ (t)

β (t)
e

)

(24)

where ė = f (x) + u, and

ϕ =
1

Hβ (t) + e
−

1

e− β (t)
, if e (0) ≥ 0 (25)

ϕ =
1

β (t) + e
−

1

e−Hβ (t)
, if e (0) ≤ 0 (26)

From (14) and (15), we know φ > 0. The derivative of the filtered
error (24) can be rewritten as

ε̇ = ϕ

(

ė−
β̇ (t)

β (t)
e

)

= ϕ
(

f (x) + u
)

+ γ (e, t) (27)

where

γ = ϕ
β̇ (t)

β (t)
e (28)

Since f (x) in (27) is smooth and unknown, a RBFNN WTS (Z)

is used to approach f (x). With the above definitions, the neural
controller is designed by

u = −k (t) ε − ŴTS (Z) − γ /ϕ (29)

where Ŵ is the estimation of the unknown ideal weight vector,
and the control gain k (t) satisfies k (t) = k1 + k2 − ϕ̇/2ϕ2 with
k1 and k2 being positive constants.

The adaptive updating law of Ŵ is given by

˙̂W = P
[

S (x) ε − ξŴ
]

(30)

where P = PT > 0 and ξ > 0 is designed parameter.
Remark 1. The initial synchronization error e (0) should

satisfy e (0) < β (0), which is confined by the prescribed
performance condition (14) and (15). With this restriction, the
restricted synchronization control of the neuron system (4) is
equivalently converted to the stability problem.
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Analysis of Performance
The main conclusions of our study are exhibited in this
section. Furthermore, the stability and the membrane potential
synchronization performance are proven by Lyapunov method.

Theorem 1. Considering the master-slaver HH neuron system
being composed of themaster reference system (3) and the slaver-
controlled system (4), under the adaptive neural controller (29)
with the filter tracking error (22) and (23) and the NN weight
updated laws (30), the master-slaver HH neuron system can be
achieved the synchronization configuration constrained by the
prescribed performance (14) and (15).

Proof : We construct the following Lyapunov function

V =
1

2

ε2

ϕ
+

1

2
W̃TQ−1W̃ (31)

where W̃ = Ŵ −W∗ is the estimation error vector.
Based on the definition in section Prescribed Performance

Control, one has

ε̇ = ϕ

(

W∗TS (x) + δ (x) + u+
γ

ϕ

)

(32)

Substituting (29) into (32), one yields

ε̇ = ϕ
(

−k (t) ε − W̃TS (x) + δ (x)
)

(33)

From (30) and (33), we can get the time derivative of V as

V̇ = ε
(

−k (t) ε − W̃TS (x) + δ (x)
)

−
ϕ̇

2ϕ2 ε
2 + W̃TQ−1 ˙̂W

= −k (t) ε2 −
ϕ̇

2ϕ2 ε
2 + εδ (x) − W̃TQ−1

(

˙̂W − PS (x) ε
) (34)

Substituting (30) into (34), one has

V̇ = −k (t) ε2 −
ϕ̇

2ϕ2
ε2 + εδ (x) − W̃TξŴ (35)

According to Lemma 1, one can obtain

εδ (x) ≤
δ∗2

4k1
+ k1ε

2 (36)

and

− W̃TξŴ ≤
W̃TξW̃

2
+

ξ‖W∗‖2

2
(37)

Then, one can further get

V̇ ≤ −k2ε
2 −

W̃TξŴ

2
+ b ≤ −aV + b (38)

where a = min
{

2k2ϕ,
2ξ

λmax(Q−1)

}

, and b =
ξ‖W∗‖2

2 + δ∗2

4k1
.

Let θ = b/a, it can be further deduced that

V̇ ≤ (V (0) − θ) exp (−at) + θ (39)

which stands for

|ε| ≤
√

2ϕθ (40)

as t → ∞. From (31), (39), and (40), the filter error ε and the
weight error W̃ are proven to be bounded. It is then obvious
that Ŵ is bounded since W̃ = Ŵ − W∗ and W∗ is the desired
constant. According to the error transformation Equation (17),
the neuron synchronization error e converges to the predefined
small neighborhood of the zero, and the convergence rate and
overshoot likewise satisfy the prescribed performance, which is
represented by performance function β (t) and the parameter H.
The proof is completed.

Remark 2. It should be noticed that the different choices
of the controller parameters have different influences on the
synchronization performance. From (38)–(40), we can find that
the convergence region of the filter error ε can be reduced by
choosing a large k1, a big Q or k2 and a small ξ . Besides, if the
approximation error δ of the RBFNN is small enough, the same
effect can be achieved.

RESULTS

The simulations are performed on the master-slaver HH neuron
system as Equation (3) and Equation (4), where xM =
[

xM,1, xM,2, xM,3, xM,4

]T
is the system states of the master neuron

with the initial conditions xM (0) = [0.1, 0.2, 0, 0.2]T , and xS =
[

xS,1, xS,2, xS,3, xS,4
]T

is the system states of the master neuron

with the initial conditions xS (0) = [0.3, 0.1, 0.2, 0]T . The specific
parameters of the HH neuron models have been listed in Table 1.
For the external stimulus current Iext_M and Iext_S, the fixed
parameters are listed in Table 2. The modulation frequencies
of Iext_M and Iext_S are 100 and 104Hz, respectively. Without
external control, the original membrane potential curves of the
master and the slaver HH neurons are shown in Figure 3. It
is evident that the two HH neurons have different membrane
potentials without external control.

The synchronization performance is predefined as follows.
For the membrane potential synchronization error e of the two
HH neurons, we expect that the minimum of convergence speed
is greater than 0.6 s, the maximal steady-state error is <0.02,
and the maximum of overshoot is <0.27%. Since the original
condition e (0) = xS,1 − xM,1 = 0.2 > 0, the neural tracking
error can be bounded by

−Hβ (t) < e < β (t) (41)

where H = 0.9, and

β (t) = (0.3− 0.02) e−0.6t + 0.02 (42)

According to Theorem 1, we design the synchronization
controller and the adaptive tuning law of NN weight as (28),
(29), and (30). Under the initial condition e (0) = 0.2 > 0,
the filter tracking error ε and ϕ are defined in (22) and (25),
respectively. In addition, we choice 441 nodes to structure the
RBFNN ŴTS (Z), where the center µ is evenly distributed in
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FIGURE 3 | The original membrane potential curves of the master and the

slaver HH neurons.

FIGURE 4 | The synchronized membrane potential of the master and the

slaver HH neurons.

[−2.5, 2.5], the width η = 0.25 and the initial weight Ŵ(0) =

0. The controller parameters are set as k (t) = 4 − ϕ̇/2ϕ2 ,
Q = 1, and ξ = 0.001. The simulation results under the
synchronization controller, which are satisfied the prescribed
performance requirements, are shown in Figures 4–7.

The neuron state synchronization results are shown in
Figures 4, 5. We can see that the slaver HH neuron quickly
follows the master HH neuron, as shown in Figure 4. From
Figure 5, it is obvious that the maximum overshoot of the
synchronization error is <0.27% and the convergence rate
is faster than the prescribed bound β (t) in (42) at the
transient process. Furthermore, the results from Figure 5

also indicate that the synchronization error converges to
zero exponentially, and the steady state error is <0.02.

FIGURE 5 | The synchronization error of the HH neuron system.

FIGURE 6 | Curve of the filter error ε.

These results mean that the desired predefined performance
synchronization is well accomplished. Figure 6 shows that the
filter error ε is bounded. The control input u is presented
in Figure 7.

Compared with the control laws in Octavio Cornejo-Pérez
(2005) and Puebla et al. (2017), the superior synchronization
performance of our adaptive neural controller is obviously
revealed. For the sake of fairness, the same master-slaver
HH neuron system with the same initial conditions is
considered. Also, the same synchronization control performance
is required. In Octavio Cornejo-Pérez (2005), an adaptive robust
synchronization scheme to achieve robust synchronization is
realized by introducing a feedback control law as follows:

u = η̂ + kẑ1 (43)
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FIGURE 7 | Control input with predefined performance.

FIGURE 8 | The synchronized membrane potential of the HH neurons with

control law.

and a high-gain observer is used to solve the problem of
estimation (z1, η).

ẑ1 = η̂ − u+ L0k
∗
1

(

z1 − ẑ1
)

(44)

η̂ = L20k
∗
2

(

z1 − ẑ1
)

(45)

The more parameters of (44) and (45) can be acquired in Octavio
Cornejo-Pérez (2005).

The results in Figures 8, 9 show that the adaptive scheme
can make the HH neuron system reach robust synchronization
of dynamical states. However, the synchronization error has
higher amplitude than that under the proposed controller in
this work (the dotted line represents the predefined bound of
synchronization error).

FIGURE 9 | Synchronization error of the HH neuron system without

predefined performance.

FIGURE 10 | The synchronized membrane potential of the master and slaver

HH neurons with control law.

In recent work (Puebla et al., 2017), a simple robust
synchronization scheme for HH neural systems was represented
by (46) and (47), based on a master-slaver configuration. The
detailed parameters can be acquired in Puebla et al. (2017).

u (t) = −τ−1
c e (t) + η (t) (46)

η̇ (t) = −τ−1
e (η (t) − η̄ (t)) (47)

where τc and τe are the observer and synchronizer design
parameters, respectively.

Figure 10 shows that the master and the slaver HH
neurons arrive at synchronizing state quickly. However,
the synchronization effect cannot be guaranteed as shown
in Figure 11.
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FIGURE 11 | Synchronization error of the HH neuron system without

predefined performance.

All of the above results demonstrate that the proposed
adaptive neural controller can make the unidirectional coupled
HH neurons under TMAS achieve state synchronization
with superior synchronization effect, which satisfies the
predefined performance.

DISCUSSION

In this paper, under TMAS, an adaptive neural controller is
investigated for the prescribed performance synchronization of
two dissimilar HH neurons connected through the medium
of bidirectional coupling. A new transformation is introduced
to make the equivalent unconstrained stabilization control
problem instead of the constrained tracking problem. A stable
synchronization controller is then designed by introducing
a filter error into Lyapunov analysis. The proposed control
laws overcome the uncertainties of the neuronal model and
ensures the synchronization status of all the signals, as well
as the prescribed synchronization performance in the closed-
loop neuron system. Simulation results illustrate and verify the
effectiveness of the proposed control mechanism.

In this work, we perform the simulation with single
geometrical parameters of the cell. As we know, under the
same stimulation conditions, there are different levels discharge

of neurons with different cell geometrical parameters (Plant,
1976; Wang et al., 2003). Therefore, the discharge of neurons
induced by TMASmay be changed when we alter the geometrical
parameters of the cell.

TMAS has the advantages of noninvasive, high spatial
resolution and high penetration depth. There are some
limitations and disadvantages that need to be solved for TMAS in
neuromodulation in vivo. (1) How the low-intensity ultrasound
focus aims at the lesion location of the brain tissue. (2) How the
static magnetic field distribution in the brain tissue needs to be
further clarified. (3) Whether the current generated by TMAS in
the brain tissue damages the neurons. Recently, Wang et al. used
TMAS to modulate Parkinson’s disease model mice (Wang et al.,
2019). Their studies indicate that TMAS treatment improves
the levels of brain-derived neurotrophic factor (BDNF), cAMP
response element-binding protein (CREB), and protein kinase B
(p-Akt) in the PD model mouse hippocampus. It demonstrates
that TMAS can improve neuroplasticity in the hippocampus of
Parkinson’s disease model mice. Combined with the advantages
and neuromodulation effects of TMAS, it has the potential to
be used in the treatment and rehabilitation of neurological and
psychiatric disorders.

Our study seeks to enhance the understanding of the
processes that influence synchronization status of coupled
neurons under TMAS in neuroses or psychoses. In biological
neural network, thousands of neurons are interconnected
under all kinds of intricate coupling phenomena. Thus,
a large scale neural network has more complex dynamic
characteristics and more difficult behavior to control than
two connected neurons. The results in this study lay the
basis for further synchronization research of Hodgkin-Huxley
neuron network under TMAS. It can also provide theoretical
guidance for practical applications of transcranial magneto-
acoustical stimulation.
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