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In the event-related potential (ERP) of scalp electroencephalography (EEG) studies,

the vertex reference (Cz), linked mastoids or ears (LM), and average reference (AVG)

are popular reference methods, and the reference electrode standardization technique

(REST) is increasingly applied. Because scalp EEG recordings are considered as spatially

degraded signals, independent component analysis (ICA) is a widely used data-driven

method for obtaining ERPs by decomposing EEG data. However, the accurate estimation

of the differences in ERP components extracted by ICA with different references remains

unclear. In this study, we first provided formal descriptions of the above reference

methods (Cz, LM, AVG, and REST) and ICA decomposition in ERP and then investigated

the influences of different reference techniques on simulation and real EEG datasets.

The results revealed that (1) the reference method did not change the peak amplitudes

and latencies of relative ERPs corresponding to some IC time courses; (2) there were

non-negligible effects of different reference methods on both temporal ERPs and spatial

topographies of some ICs; and (3) compared to Cz, LM, and AR, considering both

the performances of temporal ERPs and spatial topographies, the REST reference had

overall superiority. These findings provide a recommended choice of REST for ICA

analysis at the trial level and contribute to empirical investigations regarding the use of

reference methods in ERP domains with ICA analysis.

Keywords: EEG, event-related potential (ERP), independent component analysis (ICA), reference choices, REST

reference

INTRODUCTION

Since the first report in 1929 (Berger, 1929), scalp electroencephalography (EEG) has been a cost-
effective and non-invasive technique that directly quantifies the mean electrical activity of the
brain at scalp sites with excellent temporal resolution (∼milliseconds) (Cohen, 2017). In addition,
event-related potentials (ERPs) are one of the most widely used EEG measures to assess brain
activity in response to specific sensory, motor or cognitive events, and several ERP components
(e.g., N1, P2, and P3) can provide comprehensive information about low or high level cognitive
functions of the brain (Luck, 2014). Scalp ERP has remained one of most informative measures
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in clinical neurophysiology (Johnstone et al., 2013; Li et al., 2019a;
Qin et al., 2019) and human cognitive neuroscience (Enriquez-
Geppert et al., 2017; Tian et al., 2018; Li et al., 2019b) research for
several decades.

In the scalp EEG domain, because of the volume conduction
effect, there is no point on the body or head where the reference
potential is ideal zero or constant (Dien, 1998; Yao, 2001, 2017).
In the cognitive ERP domain, this physical phenomenon is
known as the “no-Switzerland principle” (Luck, 2014): there is
no electrically neutral site on the body or head, and Switzerland
is politically neutral. Obviously, for evaluating the characteristics
(e.g., connectivity, latency, and voltage amplitudes) of EEG
accurately at the trial level, it is necessary to use an appropriate
reference method to minimize the potential effects of the
reference on the results. Currently, a number of different
reference methods have been proposed, including the vertex
reference (Cz) (Lehmann et al., 1998), linked mastoids or
ears (LM) (Gevins and Smith, 2000), average reference (AVG)
(Offner, 1950) and reference electrode standardization technique
(REST) (Yao, 2001; Dong et al., 2017). Under their certain
assumptions, reference methods including Cz, LM, and AVG
have been commonly used while ignoring that they are not zero
references. As a novel method that approximately converts an
average or unipolar reference to a zero reference (Yao, 2001;
Dong et al., 2017), REST is increasingly acknowledged by EEG
research groups around the world and applied in various EEG
studies (Mumtaz et al., 2017a,b; Tian et al., 2017; Li et al., 2019a).
Moreover, the above different references have been investigated
in many comparative EEG studies, including EEG spectrum (Yao
et al., 2005; Chella et al., 2014, 2017), EEG coherence (Marzetti
et al., 2007), ERPs (Tian and Yao, 2013; Liu et al., 2015; Hu
et al., 2017; Mahajan et al., 2017; Qin et al., 2017; Yang et al.,
2017; Li et al., 2018) and brain network analyses (Qin et al.,
2010; Chella et al., 2016; Lei and Liao, 2017), and the merit of
the REST reference has been confirmed. However, at present,
the choice of appropriate EEG references in EEG studies across
the world remains an open issue, especially in the ERP domain
(Luck, 2014).

Due to volume conduction, scalp EEG/ERP recordings can be
considered spatially degraded signals, which reflect spatial and
temporal mixtures of the electrophysiological signals of multiple
independent sources/components that are generated from large-
scale synchronous field potentials (Onton and Makeig, 2006;
Winter et al., 2007). Because of the EEG mixing problem, blind
source separation via independent component analysis (ICA)
(Hyvarinen and Oja, 2000) has been one of the most popular
methods for decomposing EEG data. On the one hand, ICA
can be used to separate artifact components (such as eye blinks,
eye movement, facial muscles, and ballistocardiogram) from
raw separately or simultaneously recorded EEG data and then
reconstruct clean EEG signals (Srivastava et al., 2005; Hoffmann
and Falkenstein, 2008). On the other hand, ICA is also utilized
to demix EEG data to extract ERP components at the trial
level, thereby increasing the signal-to-noise ratio (SNR) of ERPs
(Delorme et al., 2012; Dong et al., 2014; Lee et al., 2016).
In addition, ICA was also used to derive filter coefficients in
re-referencing of intracranial EEG (Michelmann et al., 2018).

Furthermore, for overcoming the limitations of ICA at the single
subject level (it is not naturally suited to match independent
components from each subject to allow group inferences),
group level ICA is further proposed to aggregate component
information across a group of subjects for decomposition
(Eichele et al., 2011) and is commonly used for event-related
separate or simultaneous EEG data (Lei et al., 2012; Huster et al.,
2015; Huster and Raud, 2018; Labounek et al., 2018). Notably, in
themost current EEG/ERP studies (Eichele et al., 2011; Labounek
et al., 2018), using average referenced data to perform ICA at the
trial level is suggested, while average referencing results in zero
total potential for all ICA topographies. However, the potential
reason for this issue and the potential effects of referencemethods
on ICA decomposition remain unclear. In addition, although
different reference methods, including Cz, LM, AVG, and REST,
have been investigated in many ERP studies (Tian and Yao, 2013;
Liu et al., 2015; Hu et al., 2017; Mahajan et al., 2017; Qin et al.,
2017; Yang et al., 2017; Li et al., 2018), most of them use EEG data
analysis without ICA decomposition, and the accurate estimation
of the differences in ERP components extracted by ICA with
different references remains unclear.

Given that there are no direct comparisons of the effects of
different reference methods on ERPs extracted by ICA, the aim of
this study was to directly evaluate the choice influence of Cz, LM,
AVG, and REST on ICA components at the trial level. The current
study not only provided formal descriptions of potential relations
or differences between re-referencing and ICA decomposition
but also investigated the effects of different reference techniques
on one simulation and one real EEG dataset. We assumed that
compared to Cz, LM, and AR, REST would be closer to the
true case and provide a superior choice for ICA analysis at the
trial level.

MATERIALS AND METHODS

Theory
Here, we introduce unified matrix representations of ICA
decomposition and various reference methods. Considering ideal
EEG recordings of ERPs VInf (true infinite reference) with N
channels, K sources,M trials, and T time points.

VInf =











v111 · · · v11T v121 · · · v12T · · · v1M1 · · · v1MT
v211 · · · v21T v221 · · · v22T · · · v2M1 · · · v2MT
...

. . .
...

vN11 · · · vN1T vN21 · · · vN2T · · · vNM1 · · · vNMT











(1)

= LN×KSK×K2PK2×MT + ε

where N is the channel number; K is the number of
sources/voxels; K2 is the number of ERPs; M is the number of
ERP trials; T is the number of time points for each trial; vkij, 1 ≤

k ≤ N, 1 ≤ i ≤ M, 1 ≤ j ≤ T is a sample at kth channel, ith trial
and jth sample point; L is the lead-field matrix; S is true spatial
sources; LS is the true spatial topographies; P is true temporal
potentials of ERPs; and ε is a noise item.
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For a unipolar reference with kth-channel (e.g., Cz) as a
reference, the referenced ERP signal can be

VCz = VInf −
[

0, · · · 0, 1Cz , 0, · · · 0N
]

VInf

= (I − T̃Cz)VInf (2)

= TCzVInf

= TCzLN×KSK×K2PK2×MT + TCz
ε

where I is a unit matrix with 1 in the diagonal, T̃Cz is a Cz
transform matrix, and TCz is the transform matrix from the ideal
ERPs to the actual ERP reference.

Similarly, for LM and average references, we have the formulas
for referenced ERP signals

VLM = VInf −
1

2

[

0 · · · 1j1 · · · 0 · · · 1j2 · · · 0N
]

VInf

= (I − T̃LM)VInf (3)

= TLMVInf

= TLMLN×KSK×K2PK2×MT + TLM
ε

VAVG = VInf −







1
N · · · 1

N
...

. . .
...

1
N · · · 1

N






VInf (4)

= (I − T̃AVG)VInf

= TAVGVInf

= TAVGLN×KSK×K2PK2×MT + TAVG
ε

where TLM and TAVG are the transform matrix from the ideal
recordingsVInf to the linked-mastoids/ears and average reference
VLM and VAVG, respectively.

As an example, considering the scalp EEG recordings of
ERPs with average reference, VAVG, the potential with the
REST reference (i.e., estimated infinite reference), VREST , can be
obtained as follows:

VREST = LN×KSK×K2PK2×MT + ε

≈ L
∼

(SP) = LL+AVGV
AVG (5)

= LL+AVG(T
AVGLSP + TAVG

ε)

= LL+AVGT
AVGLN×KSK×K2PK2×MT + LL+AVGT

AVG
ε

where
∼

SP is the estimate of reconstructed equivalent sources
with temporal potentials, L+AVG is the Moore-Penrose generalized
inverses of lead-field matrix L, VAVG is average referenced
ERP signals, and TAVG is the transform matrix from the ideal
recordings to the average reference.

Thus, for ICA decompositions of the true infinite, Cz, LM,
AVG, and REST references, we have the formulas

VInf = G
Inf
N×K1

P̂
Inf
K1×MT + ε

Inf
ICA

= (LN×KSK×K2)PK2×MT + ε (6)

VCz = GCz
N×K1

P̂CzK1×MT + ε
Cz
ICA

= TCzLN×KSK×MT + TCz
ε

= (TCzLN×KSK×K2 )PK2×MT + TCz
ε (7)

VLM = GLM
N×K1

P̂LMK1×MT + ε
LM
ICA

= TLMLN×KSK×MT + TLM
ε

= (TLMLN×KSK×K2)PK2×MT + TLM
ε (8)

VAVG = GAVG
N×K1

P̂AVGK1×MT + ε
AVG
ICA

= TAVGLN×KSK×MT + TAVG
ε (9)

= (TAVGLN×KSK×K2 )PK2×MT + TAVG
ε

VREST = LN×KSK×K2PK2×MT + ε ≈ GREST
N×K1

P̂RESTK1×MT + ε
REST
ICA

= LL+AVGT
AVGLN×KSK×K2PK2×MT + LL+AVGT

AVG
ε (10)

= (LL+AVGT
AVGLN×KSK×K2)PK2×MT + LL+AVGT

AVG
ε

where G is the N-by-K1 ICA mixing matrix (corresponding
to the spatial topographies), P̂ are the K1-by-MT independent
component time courses (corresponding to the ERPs), P is true
ERPs and ε is ICA error or a recording noise item. Notably, ICA
mixingmatrix G does not have to equal the final transformmatrix
from true potentials P to scalp recordings V (e.g., K1 does not
have to equal to K2 in some cases). In this work, the potential
effects of different EEG reference choices for ERPs extracted by
ICA are investigated.

Simulation
To illustrate the previous questions, we employed a disc (one
slice) with 2,452 dipoles to generate the simulation EEG data,
and “white matter” regions were represented by two holes in the
disc. For the basic ERP setup, a concentric three-sphere head
model with 129 electrodes was used, and the analytic solution
sphere radii were set as [0.87 0.89 1]. The orientations of the
ERP sources (dipoles) were fixed as +z axis, and the lead-field
matrix was calculated analytically (Yao et al., 2004). The temporal
sampling rate of the EEG was typically 1 kHz. As an example, a
total of 100 target stimuli (trials) were assumed to be collected
from EEG data. The epoch of the ERPs was 1,000ms, which
consisted of 200 time points after downsampling to 200Hz. Three
sources were implemented and drawn with white color on the
disc: “anterior cingulate area,” “precuneus area,” and “auditory
cortex” (abbreviated as S1–S3). More details regarding the setups
can be seen in Figure 1.

Different Gaussian noise with independent and identical
distributions (IID) was added to EEG data in the
abovementioned simulations, and a conservative signal-to-
noise ratio was set at 1. Then, the infinite (Inf) EEG data of
all trials (129 channels × 20,000 points) were re-referenced
to Cz, LM, AVG, and REST references, and Infomax ICA was
used to decompose the re-referenced EEG data (the number
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FIGURE 1 | The basic simulation of the head model and sources. On the left, the simplified concentric three-sphere head model; on the right, the source spatial

distributions (S1–S3) and corresponding ERPs (ERP1-ERP3).

of ICs was fixed at 3, i.e., K1 = K2 = 3). Next, independent
component time courses (i.e., ERPs) were averaged across trials
and standard z-scored across time points. These settings and
processes were consistent with typical experimental EEG data
and analysis (Lei et al., 2010; Dong et al., 2014). Performances of
ICA time courses were quantified using root mean square error
(RMSE) between the true noiseless ERPs (i.e., P in Equation
1) and ICA-extracted ERPs (i.e., P̂ in Equations 6–10) with a
reference (Cz, LM, AVG, REST, or Inf). Performances of ICA
spatial topographies were quantified using Pearson’s correlation
between the true topographies (i.e., LS in Equation 1) and
ICA-extracted topographies (G in Equations 6–10) with a
reference (Cz, LM, AVG, REST, or Inf). The whole simulation
process was repeated 100 times to obtain mean results, and the
effects of different EEG references for ERPs and topographies
extracted by ICA were analyzed using one-way analysis of
variance (ANOVA, p< 0.001) and a post-hoc test (Tukey’s honest
significant difference criterion, p < 0.001). In addition, a range
of SNRs from 0.1 to 20 (0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 2.5, 5, 10,
and 20) was investigated.

Real Data
Participants and Experiment
In this work, a total of 12 healthy right-handed participants with
no history of psychiatric or neurological disorders participated
in the experiment after providing written informed consent (10
men and 2 women, mean age: 24.0 years, age range: 20–27 years).
An experimental go/no-go task of auditory stimuli was utilized,
and sounds were generated by SONAR 6 Producer Edition.
The stimulus was presented in 8 blocks (120 trials each) in a
random order, and all stimuli were matched for duration and
pitch by using Adobe Audition 3.0. All subjects were exposed
to a stimulus tone (375ms in duration, C6/1,046Hz, 80ms rise
and fall time, American notation) and a loud or soft (58 or

55 dB) timbre piano or violin and were instructed to make a
left or right hand (piano or violin) response to a loud violin
(go trials, probability 67%) and no response to a soft violin
(no-go trials, probability 33%). The higher probability for go
trials was chosen to encourage participants to initiate response
preparation (Low and Miller, 1999). For each trial, a cross
was first presented to instruct the subject to concentrate their
attention on the middle of the screen, and a flashing cross was
subsequently presented for 500ms to remind the subject of the
upcoming tone (lasting 375ms). The subject was instructed to
respond quickly and accurately in the go trials by pressing a
sequence of three keys (the comma, period and slash keys for
the right hand, and the C, X, and Z keys for the left hand) with
the index, middle and ring fingers. For no-go trials, subjects
were instructed to avoid any response. More details of the
experimental task can be found in the relevant article (Gong
et al., 2012). The study was also approved by the local Ethics
Committee of University of Electronic Science and Technology
of China (UESTC) in accordance with the standards of the
Declaration of Helsinki.

EEG Recording
EEG data were recorded using a 64-channel EEG system (Brain
Products GmbH, Gilching, Germany). The sampling rate was
set at 500Hz, the FCz served as the recording reference, and
the AFz served as the ground electrode. Sixty-one electrodes
according to the 10–20 cap system were used to record EEG
data (Figure 2), and two channels were utilized to record vertical
and horizontal EOG data. The impedance for all channels was
maintained below 5 K�, and EEG data were bandpass filtered
between 0.01 and 100Hz. During stimulus presentation and
response, subjects were asked to remain relaxed and avoid
eye blinking.
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FIGURE 2 | The position of channels according to the 10–20 cap system in

real EEG data.

EEG Data Processing
In this work, only the go trials with the loud violin are reported.
A pipeline tool (WB_EEG_CalcERP) in WeBrain (a cloud
computing platform, http://webrain.uestc.edu.cn/) was used to
obtain go trials with the loud violin from raw EEG data,
and EEGIFT (v2.5, http://trendscenter.org/software/eegift/#) was
used to extract ERPs by group ICA. In brief, EEG channels
were visually inspected first, and no bad channels were detected
for all subjects. Then, EEG data were preprocessed using the
WeBrain pipeline, which includes 1–30Hz bandpass filtering,
data segmentation (−200 to 800ms), baseline correction (−200
to 0ms), and the exclusion of artifact-containing trials (exceeding
amplitude of ±100 µV, exceeding voltage step/sampling point
of 50 µV or exceeding absolute difference of 150 µV in
the epoch) and wrong-reaction trials. Then, the preprocessed
EEG trials were re-referenced to Cz, LM, AVG, and REST
references using REST (Yao, 2001; Dong et al., 2017) (EEGLAB
Plugin version v1.0, http://www.neuro.uestc.edu.cn/rest/) and
NIT (Dong et al., 2018) (v1.3, http://www.neuro.uestc.edu.cn/
NIT.html) tools. Next, ERPs according to each reference were
obtained by group Infomax ICA (repeated 20 times using
ICASSO). The number of ICs was estimated as 4 using the
minimum description length criteria, and the ICA time course
was standard z-scored across time points.

Considering that true noiseless ERPs in real scalp EEG data
were inaccessible and that REST approximately realizes the
physical zero reference at infinity (Yao, 2001, 2017; Yao et al.,
2019), the performances of ICA time courses were quantified
using RMSE between the ERPs with a reference (Cz/LM/AVG)
and with the REST reference. Performances of ICA spatial

topographies were quantified using Pearson’s correlation between
the topographies with a reference (Cz/LM/AVG) and with the
REST reference. The effects of different EEG references for ERPs
and topographies were also investigated using one-way repeated
ANOVA (p < 0.05) and post hoc paired t-test (p < 0.05).

RESULTS

Simulation Results
Figure 3 depicts the mean trials, ERPs and topographic maps
of ICA components for Inf, REST, AVG, LM, and Cz references
separately, while the SNR= 1. ERP1 and ERP2 could be detected
by ICA with different choices of references, and the spatial
distribution patterns of the spatial components were similar for
different references to some degree. ERP3 could be detected
by ICA with Inf, REST, and AVG references and could not be
well-detected with LM and Cz references. Furthermore, one-
way ANOVA and a post-hoc test were performed to quantify
the performances of ICA time courses (RMSEs between true
noiseless ERPs and ICA-extracted ERPs with a reference) and
topographies (spatial correlations between true topographies
and ICA-extracted topographies with a reference). There were
significant differences [Simu-IC1: F(4, 495) = 1.77 × 105, p <

0.001; Simu-IC2: F(4, 495) = 4.97 × 105, p < 0.001; Simu-IC3:
F(4, 495) = 2.19 × 103, p < 0.001] of RMSEs with different
references (Figure 4, first row). For RMSEs of Simu-IC1 and
Simu-IC2 (corresponding to ERP1 and ERP2), Tukey’s tests
revealed significant differences (p< 0.001) for almost all pairwise
comparisons among these references (except for the comparison
between LM and Cz). For Simu-IC3 (corresponding to ERP3),
the RMSEs of the LM reference were significantly higher than
those of the Inf, REST, AVG, and Cz references, and the RMSEs
of the Cz reference were higher than those of the Inf, REST, and
AVG references. Significant differences between ICA-extracted
topographies [Simu-IC1: F(4, 495) = 8.93 × 104, p < 0.001;
Simu-IC2: F(4, 495) = 3.14 × 104, p < 0.001; Simu-IC3: F(4,
495) = 337.38, p < 0.001] with different references were also
detected (Figure 4, second row). For the spatial distribution
patterns of Simu-IC1 and Simu-IC2 (corresponding to S1 and
S2), Tukey’s tests revealed significant differences (p < 0.001) for
almost all pairwise comparisons among these references (except
for the comparison between LM and Cz). For spatial distribution
patterns of Simu-IC3 (corresponding to S3, p< 0.001), the spatial
correlations of Inf and REST references were significantly higher
than those of AVG, LM, and Cz references, and the correlations
of the AVG reference were also lower than those of LM and
Cz references.

In addition, to assess the effects of noise on the performance
of the ICA time course and spatial topographies, we considered
different SNRs for each reference; the results are shown in
Figure 5 (details of ERPs and topographic maps of each ICA
component can be seen in Figures S1–S11). For ERPs of Simu-
ICs corresponding to ERP1-3, the RMSEs of Inf, REST, and
AVG generally decreased as the SNR increased, and the RMSEs
of LM and Cz suddenly decreased (cliff-like) with increases
in SNR. For the spatial topographies of Simu-IC1, the spatial
correlations of REST converged to Inf with increases in SNR,
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FIGURE 3 | Results of simulation (SNR = 1). The mean trials, ERPs and topographic maps of each ICA component (Simulation IC1–IC3) for the Inf, REST, AVG, LM,

and Cz references are shown separately. The gray region in ERPs represents standard deviations across 100 repeats.

and the correlations of AVG, LM, and Cz decreased. For the
spatial topographies of Simu-IC2, the spatial correlations of REST
and Inf increased with increases in SNR, and the correlations of
LM and Cz increased first and then decreased. For the spatial
topographies of Simu-IC3, the correlations of Inf, REST and
AVG were constant to some degree, and the correlations of LM
and Cz also increased first and then decreased. Considering the
amplitudes may be independent across trials, a supplementary
simulation of ERP trials with independent amplitudes (uniform
distribution from 0.5 to 1.5) were also conducted, and similar
results were obtained (Figures S14, S15).

Real Data Results
Figure 6 and Table 1 depict the mean ERPs and topographic
maps of ICA components of real EEG data for REST, AVG, LM,
and Cz references. N1, P2 (indices of sensory processing), and

P3 components were detected for all references. Using one-way
repeated ANOVA, there were no significant differences among
these references for peak and latency values of ICA components
(p > 0.05). However, there were significant differences [IC2: F(3,
10) = 117.63, p = 1.11 × 10−16; and IC4: F(3, 10) = 40.07, p
= 1.29 × 10−10] for pairwise comparisons of the mean values
of topographies (mean values of all channels) among these
references. For all topographies of ICs, the mean values of the
LM reference were the highest, the mean values of REST were
second, the mean values of AVG were approximately 0, and
the mean values of Cz were negative. Furthermore, one-way
repeated ANOVA and post-hoc paired t-test were performed to
quantify the performances of ICA time courses (RMSEs between
ICA-extracted ERPs with AVG/LM/Cz and REST references)
and topographies (spatial correlations between ICA-extracted
topographies with AVG/LM/Cz and REST references). There
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FIGURE 4 | Results of one-way ANOVA (p < 0.001) and a post-hoc test (black line means p < 0.001) for simulation of SNR = 1. Vertical axis of the first row is the

mean RMSE (with standard deviation) between true noiseless ERPs and ICA-extracted ERPs with a reference, while the vertical axis of the second row is the mean

spatial correlation (with standard deviation) between true topographies and ICA-extracted topographies with a reference. Columns from left to right correspond to the

ICA components (Simulation IC1–IC3).

FIGURE 5 | Performances of ICA time courses and topographies with different references (Inf, REST, AVG, LM, and Cz) using a range of SNRs from 0.1 to 20. The

vertical axis of the first row is the mean RMSE (with standard deviation) between true noiseless ERPs and ICA-extracted ERPs with a reference, and the vertical axis of

the second row is the mean spatial correlation (with standard deviation) between true topographies and ICA-extracted topographies with a reference. Columns from

left to right correspond to the ICA components (Simu-IC1, Simu-IC2, and Simu-IC3), and the horizontal axis is the SNR.

were significant differences [IC1: F(2, 10) = 9.43, p = 0.0013;
IC2: F(2, 10) = 16.36, p = 6.17 × 10−5; IC4: F(2, 10) = 3.90, p
= 0.037] of RMSEs with different references (Figure 7, first row).

For the ERPs of IC1, IC2 (N1, P3a), and IC4 (P2), the RMSEs
of the LM reference were significantly lower than those of the
AVG and Cz references. Significant differences [IC1: F(2, 10) =
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FIGURE 6 | Results of real data. The mean ERPs and topographic maps of each ICA component (IC1–IC4) for REST, AVG, LM, and Cz references are shown

separately. The gray region in ERPs represents standard deviation across subjects.

12.45, p = 3.08 × 10−4; IC2: F(2, 10) = 17.5, p = 4.04 × 10−5] of
spatial correlations with different references were also detected
(Figure 7, second row). For the spatial distribution patterns of
IC1 (p < 0.05), the spatial correlations of AVG and Cz references
were significantly lower than those of the LM reference, and the
correlations of the AVG reference were lower than those of the
Cz reference. For the spatial distribution patterns of IC2 (p <

0.05), the spatial correlations of AVG and Cz references were
also significantly lower than those of the LM reference, and the
correlations of the AVG reference were higher than those of the
Cz reference.

DISCUSSION

In the present study, four commonly used references, Cz, LM,
AVG, and REST, were comparatively investigated via the standard
ICA analysis of EEG data to reveal the potential effects of different

references on ERPs extracted by ICA analysis. The simulation
results revealed that the reference approach influenced the IC
time courses and corresponding topographic maps, while the
SNR = 1. As the SNR increased, the IC time courses of Cz,
LM, AVG, and REST converged to Inf; however, only the
spatial topographies of REST converged to Inf. Furthermore, we
compared the effects of reference methods on the ICs in real
EEG data. The results demonstrated that the reference method
influenced the most IC time courses but did not change the peak
amplitudes and latencies of ERPs corresponding to some IC time
courses. In addition, the mean values and distributions of some
topographic maps were influenced by reference methods.

Reference Effects on ICA Performance in
Simulations
In this work, conventional simulations were utilized to verify
the reference effects on ICA analysis. ICA could well reveal
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TABLE 1 | Details of ERPs and topographic maps extracted by ICA components of real EEG data for REST, AVG, LM, and Cz references (mean ± standard deviation).

IC1 IC2 (N1) IC2 (P3a) IC3 (P3b) IC4 (P2)

ERP Peak (z-score) REST 1.20 ± 1.96 −3.08 ± 2.19 1.46 ± 0.74 2.85 ± 0.36 2.05 ± 0.95

AVG 1.47 ± 1.92 −2.99 ± 2.18 1.63 ± 0.74 2.96 ± 0.41 1.02 ± 1.78

LM 1.35 ± 1.90 −2.94 ± 2.14 1.52 ± 0.74 3.05 ± 0.48 1.52 ± 1.59

Cz 0.79 ± 2.14 −2.61 ± 2.05 1.47 ± 0.59 2.76 ± 0.49 1.57 ± 1.82

Latency (ms) REST 291.6 ± 66.3 130.9 ± 24.8 379.8 ± 60.9 404.2 ± 55.0 201.6 ± 39.3

AVG 265.3 ± 57.9 134.7 ± 25.9 365.8 ± 34.4 392.4 ± 47.2 184.2 ± 44.1

LM 271.6 ± 58.6 131.8 ± 24.2 387.6 ± 70.7 397.8 ± 55.6 196.0 ± 42.6

Cz 292.5 ± 72.1 132.7 ± 23.8 371.3 ± 61.5 390.0 ± 58.8 189.8 ± 46.2

Topo Mean value of all

channels

REST 0.20 ± 0.45 0.77 ± 0.32* – 0.27 ± 0.45 0.21 ± 0.30*

AVG −7.1 × 10−8 ± 4.6 × 10−8
−9.2 × 10−8

± 3.2 × 10−8* – −4.2 × 10−9 ± 4.6 × 10−8
−1.4 × 10−7

± 3.2 × 10−8*

LM 0.63 ± 1.23 1.99 ± 0.67* – 1.49 ± 1.15 0.93 ± 0.64*

Cz −0.31 ± 0.54 −1.60 ± 0.58* – −0.30 ± 0.68 −1.17 ± 0.55*

*There are significant differences for pairwise comparisons among references using one-way repeated ANOVA and post-hoc paired t-test (p < 0.05).

FIGURE 7 | Results of one-way repeated ANOVA (p < 0.05) and post hoc paired t-test (*p < 0.05) for real data. The vertical axis of the first row is the mean RMSE

(with standard deviation) between the ICA-extracted ERPs with the AVG/LM/Cz reference and with the REST reference, while the vertical axis of the second row is the

mean spatial correlation (with standard deviation) between the ICA-extracted topographies with the AVG/LM/Cz reference and with the REST reference. Columns from

left to right correspond to the ICA components (IC1-IC4).

simulation ERP1 and ERP2 with all references and simulation
ERP3 with Inf, REST and AVG references. Moreover, for the
ERPs of Simu-IC1 and Simu-IC2, Inf obviously introduced the
smallest error, and AVG and REST introduced intermediate
errors, while LM and Cz references had the largest errors.
For the ERPs of Simu-IC3, Inf, REST, and AVG introduced
similar errors, and their errors were smaller than those of LM
and Cz. These results demonstrated that ICA decomposition
could obtain similar event-related potentials from scalp EEG
with different references to some degree, and REST and AVG
exhibited a performance similar to that of Inf (Figures 2, 3,
first row). According to Equations (2)–(5), various reference
methods, including Cz, LM, AVG, and REST, could theoretically
be presented as unified mathematics (Yao et al., 2019). For
Cz, LM, and AVG, the transform matrix (TCz , TLM , or TAVG)
from the ideal ERPs (i.e., Inf) to the corresponding reference

(Cz, LM, or AVG) is just a mathematical operation, with
its specific assumption, a vertex point of the scalp (e.g., Cz)
(Lehmann et al., 1998), the average of the linked mastoids
or ears (e.g., LM) (Gevins and Smith, 2000), and the average
of all EEG channels (e.g., AVG) (Offner, 1950), which are all
non-physical principle-based hypotheses (Yao, 2017). For REST,
which is based on the equivalent sources model, head model
and electrode montage, the transform matrix LL+ from the
actual ERPs to the REST reference is physically based and
reasonable (Yao, 2001, 2017; Yao et al., 2019), and the final
transform matrix LL+TAVG from Inf ERPs to REST ERPs also
has physical meanings. Therefore, all these reference methods
can be expressed as unified transform matrix T∗∗ (i.e., T∗∗P =

T∗ LSP) from the ideal temporal potentials of ERPs, P, to the
corresponding reference recordings, V, while LS represents the
true spatial topographies. As a popular blind source separation
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method, ICA assumes that signals are Gaussian mixtures
containing statistically independent non-Gaussian source time
courses (Hyvarinen and Oja, 2000), and the ICA model in ERP
decomposition of a single subject can be generally expressed
as V = GP̂, where V represents EEG/ERP signal mixtures
corresponding to the reference recordings, G is the linearly
mixing matrix corresponding to topographies and P̂ represents
temporal independent components corresponding to ERPs.
Noting that ICA decomposition does not have unique solutions,
IC time courses are relative changes in ERPs and always are
transformed to z-scores (Eichele et al., 2011). Therefore, ideally,
for some independent event-related potentials in sources, ICA
time courses can be relative changes in ERPs, P̂, and may
proportionally converge (or approximate) to true ERPs (i.e.,
P) in some situations (e.g., for some ERPs with a reference).
However, due to the complexity of EEG (e.g., temporal variability
across trials, non-stationary, non-linear noise) (Huster et al.,
2015; Cohen, 2017) and limitations of ICA (e.g., not suitable
for potential non-linear situations, algorithm adaptability, the
number of ICs preset may not be appropriate) (Hyvarinen and
Oja, 2000; Eichele et al., 2011; Huster et al., 2015), the reference
method may have potential influences on the performance of
ICA for temporal time courses. Noting that even the number of
independent components was set as the true number of ERPs,
there were still non-negligible effects of the reference method on
ICA time courses.

For spatial topographies of simulation ICs, AVG had the
lowest spatial correlations, LM and Cz had intermediate
correlations, and Inf had the largest spatial correlations, while
REST exhibited a similar performance. These results provide
evidence that spatial topographies (i.e., mixing matrix G in the
ICA model) could be distinctly influenced by different reference
methods, and REST performed similarly to Inf (Figures 2, 3,
second row). In the ICA model, the spatial topographies are
weights that specify the relative contribution of each channel to
IC time courses (Hyvarinen and Oja, 2000), and the standard
deviation of topographies are usually fixed at 1 (Eichele et al.,
2011). The spatial components (e.g., topographies),G, may reflect
the relative contribution of each channel to ERP waves and
relate to the transform matrix T∗∗ = T∗LS corresponding to
reference methods in some cases (e.g., Figures S12, S13 show
that spatial distributions detected by ICA with REST reference,
G, were appropriate to transform matrix T∗∗ of REST). Because
the REST reference is physically based and reasonable (Yao,
2001, 2017; Yao et al., 2019), topographies could be well-
detected by ICA with the REST reference. However, because
Cz, LM, and AVG are non-zero reference approaches (Yao,
2017) and their transformations of Cz, LM, and AVG (TCz ,
TLM , or TAVG) are all seriously singular (Yao et al., 2019), they
may influence the mixing matrix of ICA so that the spatial
components of ICA have the risk of diverging from the true
spatial topographies. Therefore, the effects of reference methods
on the topographies of ICs may result in misleading explanations
of ERP source generations.

In addition, as the SNR increased, all IC time courses of Cz,
LM, AVG, and REST references converged to Inf, and only the

spatial topographies of REST converged to Inf (Figure 5 and
Figures S1–S11). Meanwhile, considering the amplitudes may be
independent across trials, a supplementary simulation of ERP
trials with independent amplitudes were conducted, and similar
results were obtained (Figures S14, S15). These results provided
further evidence that overall, the REST reference had superior
performance, which was also consistent with the conclusions of
previous simulation studies (Yao, 2001, 2017; Yao et al., 2005;
Liu et al., 2015; Chella et al., 2017). Furthermore, for group-
level ICA by concatenating subjects (Eichele et al., 2011; Huster
and Raud, 2018), REST has a similar unified expression as






V1
...

VNs






= G


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, while the reference methods can also be

expressed as
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...
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




, where Ns is the number of

subjects. Therefore, similar effects of the reference method on
ICA performance may be obtained in this case.

Reference Effects on ICA in Real Data
To further investigate the potential effects of the reference
method on ICA performance, we used real EEG data from an
auditory stimulus go/no-go task in this work. A visual inspection
of the EEG data showed typical N1, P2, and P3 components
corresponding to IC2, IC4, and IC3 in Figure 6 using the Cz,
LM, AVG, and REST reference methods, which is also consistent
with previous studies (Debener et al., 2005; Eichele et al., 2008;
Gong et al., 2012, 2013). Using one-way repeated ANOVA, there
were no significant differences among these references for peak
and latency values of z-scored ICA components (p > 0.05).
Considering that true noiseless ERPs in real scalp EEG data
were inaccessible and REST approximately realizes the physical
zero reference at infinity (Yao, 2001, 2017; Yao et al., 2019),
the ERPs of ICA time courses with Cz/LM/AVG and the REST
reference were further compared. Additionally, the RMSEs of
the LM (LM vs. REST) reference were lower than those of
the AVG and Cz references (Figure 7, first row). These results
demonstrated that the referencemethod influenced some IC time
courses to some degree but did not change the peak amplitudes
and latencies of relative changes of ERPs corresponding to IC
time courses.

Because ICA is a data-drivenmethod ofmatrix decomposition
and the mixing matrix specifies the relative contribution of
each spatial dimension to IC time courses (Hyvarinen and Oja,
2000), the spatial distributions of topographies may reflect the
contribution of each channel to the ERPs of ICs. Because the
LM reference is non-zero and the amplitudes of the linked
mastoids or ears are contaminated by brain activity (Yao, 2001;
Yao et al., 2019), the amplitudes at the active electrodes with
LM reference may be increased or decreased by the recorded
potentials at the mastoids or ears. Thus, the topographies of
some ICs may be influenced by the LM reference, and the Cz
reference may lead to similar impacts. Since the potentials of
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AVG are the average signal of all EEG channels (Offner, 1950),
the AVG reference could make all the ICA topographies have
zero total potential. Moreover, REST is an approximate zero
reference at infinity, which has been proposed as a standard
reference method (Yao, 2001, 2017; Yao et al., 2019). In the
current study, we compared the mean values of topographies
among these references. We found that for IC2 and IC4, the
mean values of the LM reference were highest, the mean values
of REST were second, the mean values of AVG were ∼0, and
the mean values of Cz were negative. In addition, even though
the topographical distribution revealed similar patterns with all
reference methods for most ICs, the topographies of the LM
reference were closer to the REST reference for IC1 and IC2
than to the AVG and Cz references (Figure 7, second row).
Overall, these results demonstrated that both time courses and
spatial distributions of some ICs could be influenced by different
reference methods. These findings are consistent with the results
of previous ERP comparative studies highlighting the superiority
of the REST reference approach (Tian and Yao, 2013; Hu et al.,
2017; Mahajan et al., 2017; Qin et al., 2017; Yang et al., 2017; Li
et al., 2018; Tian et al., 2018).

CONCLUSIONS

To the best of our knowledge, the present manuscript is
the first to investigate the effects of different reference
methods on ERPs extracted by ICA analysis over simulation
and real EEG datasets. The results of the current study
indicated that different EEG reference choices altered both
the temporal ERPs and spatial topographies of some ICs.
Additionally, compared to Cz, LM, and AR references, the
REST reference had overall superiority considering both the
performances of temporal ERPs and spatial topographies and
could provide a recommended choice for ICA analysis at the
trial level. These findings contribute to empirical investigations
regarding the use of reference methods in ERP domains with
ICA analysis.
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