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One of the biggest struggles while working with artificial neural networks is being able

to come up with models which closely match biological observations. Biological neural

networks seem to capable of creating and pruning dendritic spines, leading to synapses

being changed, which results in higher learning capability. The latter forms the basis of

the present study in which a new ionic model for reservoir-like networks, consisting of

spiking neurons, is introduced. High plasticity of this model makes learning possible with

a fewer number of neurons. In order to study the effect of the applied stimulus in an ionic

liquid space through time, a diffusion operator is used which somehow compensates

for the separation between spatial and temporal coding in spiking neural networks and

therefore, makes the mentioned model suitable for spatiotemporal patterns. Inspired by

partial structural changes in the human brain over the years, the proposed model evolves

during the learning process. The effect of topological evolution on the proposed model’s

performance for some classification problems is studied in this paper. Several datasets

have been used to evaluate the performance of the proposed model compared to the

original LSM. Classification results via separation and accuracy values have shown that

the proposed ionic liquid outperforms the original LSM.

Keywords: spiking neural network, ionic liquid space, genetic algorithm, evolutionary model, synaptic plasticity,

intrinsic plasticity, structural plasticity, liquid state machine

1. INTRODUCTION

Artificial Intelligence, also known as AI, is intelligence demonstrated by machines. Also an area
of computer science, AI is one of the most developed scientific fields which has brought so much
attention to itself over the past few years. Despite the remarkable development of AI systems over
the past few years, designing a system which holds the capabilities of the human brain seems rather
hard to achieve. Many AI-based computational systems have been developed so far; yet, none of
them can compare to the processing mechanism of the human brain. Designing intelligent systems
with the ability to carry out computations similar to the way the human brain does, is studied in
the fields of neural networks and fuzzy systems.

Since the most common data obtained from the brain’s response to external stimuli are
spatiotemporal data, the brain is considered to be a spatiotemporal-data-processing machine.
Despite the development of precise brain models (Markram, 2006; Toga et al., 2006; Izhikevich
and Edelman, 2008), the available models cannot be used for machine learning and or recognizing
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spatiotemporal patterns, since they are designed to model the
brain’s structure as well as its function and, therefore, are unable
to mine and learn from the brain data. Creating an integrated
computational structure in order to process spatiotemporal data
is therefore, one of the main challenges of brain simulation.

Spiking neural networks seem suitable for creating such
structures since they are designed to process spiking information
which creates spatiotemporal data. In other words, considering
the fact that there is information at the exact time a spike appears,
spiking neurons send out the information via spikes instead of
firing rates (Haykin, 1998). Research shows that temporal coding
is used to represent and process the information in brain cortex
(Ikegaya et al., 2004; Butts et al., 2007). Besides, spiking neurons
are more dynamic since they use time domain (Rolls and Tovee,
1995). Hence, in this paper, spiking neural networks are used to
create a computational structure for both comprehending and
learning spatiotemporal data.

A large amount of data is processed in the neocortex via
stereotypical neural micro circuitry. Therefore, the introduced
model is based on the idea of Dynamic Reservoir Networks
(DRN) (Schrauwen et al., 2007), i.e., Liquid State Machines
(LSM) and Echo State Networks (ESN) (Jaeger, 2001; Maass et al.,
2002; Natschläger et al., 2002), which are examples of recursive
neural networks with a random structure. The natural dynamic
of these networks makes them suitable for online processing of
time variant inputs. The mentioned reservoir networks receive
the input streams and transform them into non-linear patterns
in higher dimensions and show a fading memory of the recent
inputs. The reservoir acts as a filter. The state of the reservoir
or state vector is then used as inputs for the readout layer.
The readout layer of the mentioned networks is used for online
processing of the time series. This layer needs to be trained using
some simple algorithms such as linear regression methods. The
dynamic of the reservoirs directly affects the performance of
these networks.

A random generated liquid may not act as a useful filter.
Researchers are therefore forced to generate many random
liquids until a useful filter is found. On the other hand, there
are a lot of studies on improving the liquid in order to find a
more useful filter (Lazar et al., 2007; Norton and Ventura, 2010;
Rhéaume et al., 2011; Hazan and Manevitz, 2012; Notley and
Gruning, 2012; Wojcik, 2012; Hourdakis and Trahanias, 2013;
Ju et al., 2013; Sillin et al., 2013; Xue et al., 2013; Roy and Basu,
2016). These studies focus on enhancing the liquid performance
by applying different learning rules or neuron models to the
liquid. For example Norton and Ventura (2010), proposed a
learning rule for training the liquid of LSM in order to construct
a suitable liquid, Roy and Basu (2016) proposed an online
structural plasticity rule to generate better liquids, Hourdakis
and Trahanias (2013) used a measure in an evolutionary
framework to generate liquid with appropriate parameters and
Wojcik (2012) used Hodgkin and Huxley neurons instead of
LIF neurons.

This paper proposes an ionic model of reservoir-like networks
in which spiking neurons are located. Connections between
spiking neurons are provided by ionic density. One of the
exciting aspects of this model is that the link to ion fields

invokes an abstraction of biologically plausible processes which
may set a foundation for possible future research into neural
network dynamics, integrating both spiking and field-based
computation in biology. Since all neurons in the ionic liquid can
connect to each other, the introduced model can be considered
a recursive network. In an ionic space, ionic diffusion is one
of the most important factors which affects the connection
between neurons. Several algorithms have been developed based
on diffusion, including Active Learning Fuzzy Modeling Method
(ALM) (Shouraki and Honda, 1997, 1999; Murakami and Honda,
2007). In ALM, features are extracted using an operator known
as Ink Drop Spread (IDS) (Murakami and Honda, 2007) which is
mainly based on diffusion.

Both synaptic and non-synaptic plasticity make the brain
capable of learning. A synapse’s ability to change in strength
over time is known as synaptic plasticity while intrinsic plasticity
involves changes in the electrical properties within a single
neuron. The contribution between these two different types of
plasticity and how it results in the dynamic and the structure
of the cortical network, leads to the development of cortical
information processing and coding theory. Hebb’s rule (Hebb,
1949) is a learning method based on biological observations
which form the basis of “memory” and “learning.” So far, many
learning methods (Bienenstock et al., 1982; Oja, 1982; Song et al.,
2000; Bi and Poo, 2001; Panchev and Wermter, 2004; Ponulak,
2005; Ponulak and Kasiński, 2010; Mohemmed et al., 2012) have
been developed based on Hebb’s rule such as the well-known
Spike-timing-dependent plasticity (STDP).

Also, Lazar et al. (2007) shows how the computational
capability of LSM can be improved by combining STDP and
Intrinsic Plasticity (IP). Hence, in the introducedmodel, intrinsic
plasticity has been used to maintain the homeostasis of neuronal
performance (Desai et al., 1999; Daoudal and Debanne, 2003).
Homeostasis is in fact a biological term describing the stability of
the environment in which cells exist and is defined as the will to
create an almost-stable balance between dependent elements. A
lot of learning rules for training networks of spiking neurons are
proposed through various forms of synaptic plasticity (Ponulak
and Kasiński, 2010; Kuhlmann et al., 2013; Sporea and Grüning,
2013; Gardner et al., 2015). Most of them have explored weight
plasticity which refers to modifying the synaptic strengths. Diehl
and Cook (2016) have shown that inclusion of synaptic plasticity
within reservoirs can help in learning and inferring relationships
between inputs. Also, Panda and Roy (2017) have shown that
inclusion of Hebbian and non-Hebbian plasticity at the same
time helps in the learning of stable contextual dependencies
between temporal sequences. There is another form of plasticity,
known as structural plasticity, which is explored in a few works
(Roy et al., 2016; Roy and Basu, 2017). This form of plasticity
revolves around training a network through formation and
elimination of synapses. Recently, structural plasticity has been
used to train feed forward neural networks (George et al.,
2015b), recurrent neural networks (George et al., 2015a), and
reservoir networks (Roy and Basu, 2016). The proposed model
therefore uses synaptic plasticity caused by dendritic spines
(known as dendritic plasticity) to improve learning (Roberts
et al., 2010; Tschida and Mooney, 2012). Dendritic spines
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increase the learning ability in humans by creating and removing
synapses. The disability to learn in children suffering from Down
Syndrome and/or Fragile X Syndrome is in fact due to the
weakness of dendritic spines (Wang et al., 2012). The proposed
model therefore tries to create new synapses and removes the
pre-existing ones by considering the movement of dendrites,
which somehow leads to improving the ability to learn with
fewer neurons.

This paper, just like other works, focuses on improving the
liquid through structural plasticity (Roy and Basu, 2016) and
intrinsic plasticity (Lazar et al., 2007) but with a major difference.
Training in the proposed model is performed through ionic
liquid. Ionic liquid makes structural plasticity as well as weight
plasticity possible, using diffusion, which induces online learning
due to simple computations. Both of these types of plasticity are
motivated from biological observations.

The proposed model seems to be a better way to model
reservoirs because of the following two advantages: (1) The
proposed connectivity, which is provided by diffusion in the ionic
space, is one of the few dynamic connectivity models that does
not involve complex computations. (2) Since the connectivity
information is transmitted locally through the ion field, none of
the neurons require any knowledge of the global state to update
their connections.

The human brain has evolved over more than five million
years. Therefore, proposing precise models of the brain requires
modeling evolution basics in nature. Based on biological findings,
the human brain has evolved over time and therefore, we
have tried improving the efficiency of the introduced model
using evolutionary algorithms (Simon, 2013). Evolutionary
algorithms such as the Genetic Algorithm (GA) and Particle
Swarm Optimization (PSO) have several applications in machine
learning (Faraji et al., 2017; Iranmehr et al., 2017) and neural
networks (Gao et al., 2019). In this paper, the topology of the
introduced model is optimized using a genetic algorithm as well
as some experiments. For each problem, the topology of the
introduced model can be optimized so that it would have the best
performance. The term “optimizing the topology” in this paper
can refer to optimizing the total number of network’s neurons,
number of dendrites per neuron and the location of dendrites
and axons’ terminals. In other words, in this paper, in order to
solve a particular problem, we try to optimize the topology of
the introduced model so that the efficiency increases. Since the
proposed model is suitable for classifying spatiotemporal data,
its performance when classifying some time-varying datasets has
been analyzed.

Concisely, this paper proposes a new model of reservoir
networks where the neural dynamics are modeled by the ionic
diffusion formulae and also focuses on topologic optimization of
the introduced model using evolutionary algorithms in order to
improve its performance. The proposed model which is suitable
for processing spatiotemporal or time varying data has been
used in classifying different datasets such as N-MNIST (Orchard
et al., 2015), TIMIT (Garofolo et al., 1993), and FSDD (Jackson,
2016). In section 2, we discuss the introduced model and provide
information about the structure of the proposed model, the ionic
space in which the neurons are located, and ionic diffusion

which leads to neuronal connections being made. Section 3
studies the performance of the proposed model using different
metrics such as separation, approximation and generalization.
Section 4 focuses on optimizing the topology of the introduced
model. Section 5 includes the results obtained from evaluating
the classification performance of the proposed neural network
on the N-MNIST dataset. Moreover, the results obtained from
comparing our proposed model with some other works are
included in section 5. Finally, we conclude the paper in section 6.

2. THE PROPOSED SPIKING NEURAL
NETWORK IN IONIC LIQUID SPACE

Here, a computational model based on spiking neurons is
introduced, considering biological observations as well as
reservoir networks. Since the electrochemical transition of
neurons occurs via ions, it is assumed that the neurons are placed
in an ionic liquid space which we refer to as ILS. The density of
ions in the ionic liquid space strengthens some of the connections
between neurons and allows neurons to connect to each other via
the ionic liquid. In conventional neural networks, each synapse
is modeled by a coefficient. However, in the introduced model,
the synapses are modeled using ionic diffusion in ILS. Since the
main factor in diffusion is time delay, it can be said that in the
introduced model, synapses are somehow modeled dynamically.
In this section, after explaining the structure of the introduced
computational model, we describe the network, considering both
intrinsic and synaptic plasticity.

2.1. Structure of the Proposed
Computational Model
What leads neurons to respond to stimuli and transmit spikes
is the imbalanced distribution of ions in the intracellular and
extracellular space of nerve cell membranes. Therefore, in the
introduced model, it is assumed that spiking neurons are placed
in an ionic liquid space. The mentioned liquid space can be either
two-dimensional or three-dimensional based on the defined
problem. To simplify, the ionic liquid space is considered to be
two-dimensional in the present paper. The ion density gradient,
which is due to the presence of stimulus in this space, leads to
diffusion since ions move from a point with higher concentration
to a point with lower concentration. The difference in ion density
leads to voltage difference. Furthermore, ions diffuse through cell
membrane at a molecular level. Therefore, in order to model the
diffusion process, we first need to quantize the ILS to a particular
number of bins and then, assign a voltage level to the ion density
of each bin. Diffusion in the ILS causes the voltage level of
each bin to change over time. Figure 1 shows an example of
the computational model introduced in this paper. The 2D ionic
liquid space is quantized to 100× 100 bins. In this ILS, there are
25× 25 = 625 neurons which are depicted in blue. Each neuron
consists of two dendrites and one axon which are depicted in
magenta. The terminals of axons and dendrites are depicted with
red stars and green squares, respectively. The terminals of axons
and dendrites are each placed in a bin so that the dendrites can
receive the bin voltage, transmit it to the soma and also, to enter
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FIGURE 1 | An example of a spiking neural network in ionic liquid space. A total number of 25× 25 = 625 spiking neurons are placed in a 100× 100 ILS. In this

example, each neuron has two dendrites and one axon. In this figure, neurons are depicted by blue circles while the location of dendrites and the terminals of axons

are depicted by green squares and red stars, respectively. A small area of the ILS is zoomed in on and depicted in this figure. It can also be seen that in the proposed

model, the neurons are not directly connected and instead, are connected via ILS.

the output spike into a bin from the ionic liquid space via axons
at the time a neuron is fired. External stimulus can be applied
to each of the bins of ILS which leads to an increase in voltage
in that bin. The difference in voltage between the mentioned bin
and its neighbor leads to diffusion. In order tomodel the diffusion
process in this ionic liquid space, it is assumed that each bin
located in (x, y) in the time step t holds a voltage equal to V t

xy.
Considering all eight neighborhoods of the mentioned bin, we
can model the diffusion process by Equation (1) in which α is
a coefficient representing the transmitted current between bins
and β is another coefficient which keeps the ionic liquid space
from saturating.

V t+1
xy = (1− β)× V t

xy − α

1
∑

m=−1

1
∑

n=−1

(V t
xy − V t

(x+m)(y+n)) (1)

Due to the difference in ionic density in the ionic liquid space
which leads to voltage difference among different bins, ion
trajectories are created. These trajectories depend on the applied
stimuli and the diffusion process. In other words, each applied
stimulus creates a different ion trajectory in the ionic liquid
space. The created trajectories cause the neurons to activate and
therefore, lead to the creation of connections between neurons.
Ion trajectories can gradually crystalize or even fade. Once an
ion trajectory crystalizes, it strengthens. The fading of an ion
trajectory on the other hand, basically means that it gets weaker.
Therefore, the connection between neurons in the introduced
model is different from that of a conventional neural network.
In the introduced model, the connections are made via the

ionic space and the created trajectories. It could be understood
that every single neuron in the ionic liquid space is capable
of making connections with other neurons depending on the
created trajectory.

At first, there are no proper connections between neurons
in the ionic liquid space just like in regular neural networks
in which the weights are initialized randomly. As the diffusion
process begins, proper connections begin to develop between
neurons. The connection topology of neurons in this ionic liquid
space is similar to natural structures as well as brain structures
(Zuo et al., 2017). In this topology, neurons are more likely to
connect to neighboring neurons. So far, the general structure of
the proposed computational model based on spiking neurons
has been explained. The following discusses the model of spiking
neurons in the ionic liquid space.

The model provided for a spiking neuron represents the

creation of an action potential and the effect of neuron inputs

on its membrane potential. Several models have been introduced

for spiking neurons. The basic idea behind defining spiking
neurons is electrical conductance. One of the most well-

known electrical models for spiking neurons was introduced by
Hodgkin and Huxley (1952). In this model, the electrochemical
data transmitted between neurons has been modeled using an
electrical circuit consisting of resistors and capacitors (Hodgkin
and Huxley, 1952). This model has a high computational cost.
Another model which balances computational cost with how
close the model is to biological observations, is the Izhikevich
model (Izhikevich, 2003). The Leaky Integrate and Fire (LIF)
model (Stein, 1965; Abbott, 1999; Gerstner and Kistler, 2002) is
derived from Hodgkin-Huxley’s model and has, in comparison, a
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lower computational cost. In the LIFmodel, each spike represents
a uniform event which is defined at the time a spike is created.
Due to its simplicity and low computational cost, the LIF model
has been used in the structure of the proposed model.

2.2. Description of the Proposed
Computational Model
Learning capacity of a neural network depends on the plasticity
of synapses. In other words, synaptic plasticity is much more
important than the number of synapses and or the connections.
Due to the fact that the neurons are not directly connected in
the proposed model, the introduced network has high plasticity.
In fact, the high plasticity of the proposed model is due to the
possibility of recreation and or pruning of synapses.

Another effective factor in a network’s learning is the intrinsic
plasticity that keeps the performance of neurons in a relatively
stable equilibrium. While describing the proposed model the
intrinsic plasticity should be considered in a way that all neurons
can activate. To do so, the firing threshold of neurons in the ionic
liquid space should be changed in each time step.

Assuming that the number of spiking neurons in a network is
N, the activity of the ith neuron in the time step t is represented
by xi(t). If the ith neuron is fired, xi(t) = 1, while xi(t) = 0
for when it is not fired. Each neuron in the ionic liquid space
has a specific number of dendrites through which the inputs are
entered and an axon through which the output is transferred.
If the weighting factor of the jth dendrite of the ith neuron
is represented by wij and all connections are considered to be
excitatory, the pre-activation value of the ith neuron in t + 1
time step which is represented by pi(t+ 1), can be obtained from
Equation (2). It should be noted that in the proposed network,
excitatory connections mean having positive weights (wij ≥ 0).
In this equation, V t(i, j) represents the voltage of a bin in ILS
where the jth dendrite of the ith neuron is located in the time
step t. νi(t) represents the threshold applied to the ith neuron in

the time step t in order to maintain relatively stable equilibrium
of neuronal activity. After finding the pre-activation value of all
neurons in a specific time step, the first k neurons with the highest
pre-activation values are obtained using the k-winner-take-all
function (Maass, 2000). The activity status of these k neurons is
set to 1 while the activity of the other N − k neurons is set to 0.
The k-winner-take-all function is represented by kWTA and the
activity of neurons is given by Equation (3). In this equation, X is
a state vector representing the activities of all neurons while P is
a vector representing their pre-activation values. In this paper, νi
is adjusted using a simple model in Lazar et al. (2007). In this
simple model, νi is set in a way that the threshold applied to
an active neuron increases while it decreases for a deactivated
neuron. As a result, the active neuron will need more membrane
potential to re-activate while the deactivated neuron will need
less. Therefore, more neurons can be active in the proposed
model. This leads to higher dynamicity of the introduced model.
Equation (4) represents the simplemethod used to set the value of
νi. In the given equation, η is a coefficient representing intrinsic
plasticity rate.

pi(t + 1) =
∑

j

(wij × V t(i, j))− νi(t) (2)

X(t + 1) = kWTA(P(t + 1)) (3)

νi(t + 1) = νi(t)+ η(xi(t)−
k

N
) (4)

2.3. An Example to Show Diffusion in ILS
and the Activity of Its Neurons
A simple example, depicted in Figure 2, is employed to explain
the diffusion process as well as neuronal activities in the ionic
liquid space, based on the proposed model which we described
by considering the intrinsic plasticity. In this example, higher

FIGURE 2 | A simple example to show how the proposed model learns a sample of the N-MNIST dataset. Each sample with a duration of about 300 ms, is injected

into the ionic liquid space through time steps. Upper row: represents the diffusion effects on the voltage level of ionic liquid space at six different time steps. Lower

row: represents the activity of neurons inside ionic liquid space considering k = 10. Each sample activates different neurons at different time steps which leads to

better separation between samples of different classes.
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voltage levels are depicted in light colors while lower voltage
levels are shown in dark colors. The topology of the proposed
network’s model is similar to the one presented in Figure 1. The
term “topology” refers to the local structure of neurons in the
ionic liquid space as well as the number of bins on this plane,
the number of neurons and the number of dendrites per neuron.
In this example, the N-MNIST dataset is used. Every sample of
this dataset, which holds a duration of about 300 ms, has been
injected into the ionic liquid space over time. In the first row
of Figure 2, the voltage level of the ionic liquid space at six
different time steps is depicted. The second row represents the
activity of neurons in the ionic liquid space. Active neurons are
depicted in white while the deactivated neurons are shown in
black. Using the description provided for the network in section
2.2, k is set to 10 arbitrarily. As mentioned before, k represents
the number of active neurons of the network in each time step.
Having a close look at Figure 2, it can be understood that in
each time step, 10 of the neurons in the ILS are active while the
rest are deactivated.

The N-MNIST dataset (Orchard et al., 2015) is in fact the
neuromorphic version of theMNIST dataset (LeCun et al., 1998).
Each sample from this dataset represents a number between 0
and 9. The N-MNIST dataset uses a biological idea known as
saccades. Each sample from the MNIST dataset is displayed on
a monitor and then, recorded by a motor-driven DVS camera,
moving in three different directions in a triangular form. The
duration of each N-MNIST sample is about 300 ms. Since the
size of each N-MNIST picture is 34 × 34 pixels, the intensity
of each pixel is applied to a bin in an ionic liquid space with
a total number of 100 × 100 bins. The mentioned mapping
is one to one. In this paper, in order to map each pixel to
a bin in an ILS, the ILS is divided to regions overlaying one
another. The number of these regions is equal to the number
of pixels in the picture. Each pixel is randomly mapped to a
bin in the region associated with it in ionic liquid space. Once
the image is mapped to ionic liquid space in each time step,
the voltage level of bins in ionic liquid space changes. Diffusion
too leads to changes in the voltage level. The changes in voltage
lead to changes in the activity of neurons. For each sample,
different neurons in ionic liquid space are activated through
time steps which results in more separations between samples of
different classes.

3. EVALUATING THE PERFORMANCE OF
THE PROPOSED MODEL

In this section, the performance of the proposed model is studied
using popular metrics including separation, approximation,
and generalization. Separation is a metric used to determine
the effectiveness of the liquid which addresses the amount of
separation between state vectors that are caused by different
input streams. Approximation is the capability to distinguish
and transform different state vectors into the given target
outputs. This section also contains an example to show the
performance of the proposed model in classification problems
using a sound dataset.

3.1. Separation, Approximation, and
Generalization
One of the methods used for measuring separation is pairwise
separation considered in Maass et al. (2002) in which the
separation between two different spike trains is computed as
Equation (5). In this equation, the ILS internal states at the time t
are represented by Xu(t) and Xv(t) in which u(.) and v(.) are two
spike trains and ||.||k denotes the Lk norm.

Pairwise Separation =
∑

t

(||Xu(t)− Xv(t)||2) (5)

To show the separation capability of the proposed model in
comparison with a random generated liquid, an experiment was
designed. In this experiment, 200 different spike train pairs u(.)
and v(.) with the length of 500ms are generated and given as
input to both the random generated liquid and the proposed
liquid. Both of the liquids consist of N = 25 neurons for a fair
comparison. The internal state distance separation averaged over
200 trials for two different input distances d(u, v) = 0.1, 0.3 is
plotted in Figure 3. The proposed liquid and random generated
LSM specification are brought in Table 4. This figure clearly
shows the better separation capability of the proposed model in
comparison with the random generated liquid. It can also be seen
that more input distance causes more state distance in both of
these liquids. To define distance d(u, v) between the spike train
pairs u(.) and v(.), each spike in the spike trains was replaced by a
Gaussian kernel and d(u, v) was then determined by the distance
between the resulting continuous functions.

Another separation measure devised by Goodman and
Ventura (2006) is based on the mean distance between the state
vectors obtained from each of the classes in a problem. Norton
and Ventura (2010) revised Goodman’s definition of separation
by adding the variance between state vectors of the same class.
In Norton’s definition of separation, the separation is divided
into two parts: inter-class distance cd and intra-class variance
cv. Assuming that n is the total number of classes, a set of state
vectors X is divided into n subsets, Xl, one for each class. x
represents an individual state vector. Inter-class distance cd is
defined by Equation (6) in which µ(Xl) is the center of mass
for each class. It is calculated by Equation (7) where |.| denotes
the set cardinality. Also, the mean variance of state vectors of
every class cv is defined by Equation (8) in which ρ(Xl) is the
average variance of each state vector xm within the class l from
the center of mass for that classµ(Xl). It is calculated by Equation
(9). Then, the separation between n input classes can be defined
using Equation (10).

cd =

n
∑

l=1

n
∑

m=1

||µ(Xl)− µ(Xm)||2

n2
(6)

µ(Xl) =

∑

xm∈Xl
xm

|Xl|
(7)

cv =
1

n

n
∑

l=1

ρ(Xl) (8)
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FIGURE 3 | The average state distance as a function of time for two different input distances d(u, v) = 0.1, 0.3 and for both the random generated liquid and the

proposed liquid. It is clearly seen that the proposed liquid outperforms the random generated liquid.

ρ(Xl) =

∑

xm∈Xl
||µ(Xl)− xm||2

|Xl|
(9)

Sep(X) =
cd

cv + 1
(10)

A stronger measure (linear separation) was proposed by Maass
et al. (2005) in order to determine whether a readout would be
able to produce given target outputs for the input streams. To
evaluate the linear separation property of a liquid of N neurons
for m different input streams, the rank of the N × m matrix
M has to be computed. The column m of matrix M is the state
vector Xum (t) of the input stream um at the specific time (t). The
rank of the matrix (r) is a measure to show the computational
power of the liquid as well as the number of degrees of freedom
that a linear readout has in assigning target outputs to the
inputs. Higher r corresponds to more computational power or
kernel quality. The readout maps are drawn from a class of
functions satisfying the approximation property1. Besides the
separation and the approximation capabilities, the generalization
to non-seen or noisy inputs noticeably affects the performance
of the model. Maass et al. (2005) quantifies the generalization
capability in terms of VC-dimension of the class of hypothesis
(H) (input-output map). The lower the VC dimension than
the size of training set (Strain), the greater the generalization
capability. Maass et al. (2005) showed the difference of the kernel
quality and the VC-dimension (H) measures predicting overall
computational performance.

1A class of functions F has the approximation property if for any n ∈ N, any closed

set X ⊆ Rn, any continuous function h :X → R, and any given ρ > 0, there exist

some f ∈ F so that |h(x)− f (x)| ≤ ρ,∀x ∈ X.

To show the generalization capability of the proposed model,
the performance of the proposed model for spike pattern
classification is computed. In this experiment, we want to classify
the spike patterns into two classes using a linear readout. Eighty
spike patterns each consisting of 4 Poisson spike trains at 20Hz
over 200ms are considered as input data. The noisy variations of
these spike patterns built with Gaussian jitter with 10ms standard
deviation are used as test samples. The linear readout, trained
by linear regression with 500 training samples, is responsible
for classifying the test samples. The fraction of test samples
(200) which are correctly classified determines the correctness.
It should be noted that 20 target classification functions from 280

possible classification functions are selected randomly and their
correctness averaged. Classification of these spike patterns using
the proposed model results in a mean correctness of 0.71 which
is comparable with the correctness achieved by LSM in Maass
et al. (2005). It is concluded that the proposed model has both
the approximation and the generalization capabilities.

3.2. An Example to Show the Performance
of the Proposed Model
To show the proposed liquid’s separation property for between
more than two classes of input streams, we use Norton’s
definition of separation for identifying free spoken digit dataset
(FSDD) (Jackson, 2016) as a second test. This dataset consists
of 2000 recordings of digits 0 through 9 (10 classes) obtained
from 4 speakers, sampled at 8 kHz. To transform the digit WAV
files into spike trains, first, each digit WAV file is converted
into its 49 Mel frequency cepstral coefficients (MFCCs) which
are then converted into spike trains. For generating spike trains,
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FIGURE 4 | (A) Mean separation of the proposed model in comparison with that of the random generated LSM for spoken digit problem using FSDD dataset.

Separation considering different number of classes are shown. It is clearly seen that the separation capability of the proposed liquid is better than that of the random

generated LSM. (B) Mean accuracy of the proposed model in comparison with that of the random generated LSM for spoken digit classification using FSDD dataset.

we use a method brought in Goodman and Ventura (2006).
The spike trains are then injected into the random generated
LSM and the proposed liquid for which the specifications
are brought in Table 4 and their separations are obtained. A
comparison of mean separation between the proposed liquid
and random generated liquid is shown in Figure 4A. Better
separation capability of the proposed liquid compared to the
random generated liquid can be clearly seen from Figure 4A.

In this experiment, 80% of data which are selected randomly,
are used as the training set and the remaining data are used
for computing the accuracy. To compute the accuracy, a
simple universal approximators consisting of a single layer of
perceptrons is considered as the readout layer such as Maass
et al. (2002). The readout layer has several modules equal to the
number of classes intended. For training the readout layer, the p-
delta rule (Auer et al., 2008) is used. The mean accuracy shown
in Figure 4B depicts the outperformance of the proposed model
compared to the random generated LSM. It is worth mentioning
that the results are achieved by considering the problems for
50 liquids either generated randomly for LSM or the proposed
model. Since the accuracy was computed using test (unseen) data,
the generalization capability of the proposedmodel was somehow
shown by this example.

4. OPTIMIZING THE NETWORK
TOPOLOGY IN IONIC LIQUID SPACE

In this section, the topological parameters of the proposed neural
network in ionic liquid space are optimized using an evolutionary
algorithm in a way that higher classification accuracy is achieved.
To do so, some parameters need to be fixed first. Assuming that
the number of neurons in ionic liquid space and also the number
of ILS bins are fixed, the optimized number of dendrites per
neuron can be obtained by doing some trials each of which is
performed for a specific number of dendrites for each neuron in
ILS. After optimizing the number of dendrites for each neuron,
the location of dendrites and axon terminals are optimized using
genetic algorithm (GA).

In genetic algorithm, first, a population of individuals is
generated based on some presumptions. This population of
individuals (generation) starts to evolve toward a better solution.
Figure 5A shows the overall process of finding the best solution
using the proposed genetic algorithm. In each generation, the
individuals have to be evaluated using a fitness function. The
best individual of each generation is obtained based on the
fitness values computed using the fitness function. The next
generation of individuals is generated using the best individual

Frontiers in Neuroscience | www.frontiersin.org 8 November 2019 | Volume 13 | Article 1085

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iranmehr et al. Bio-Inspired Evolutionary Model of SNNs in ILS

FIGURE 5 | (A) The overall process of finding the best solution. (B) A topology of a neural network in ILS, represented by an individual of a generation. The terminal

locations of axons and dendrites of all the neurons in ILS which are shown by red and green circles respectively, are used to define each individual. Considering that

this individual is the best in its generation, the terminal coordinates of axons and dendrites in the next generation of individuals are updated by randomly moving the

red and green circles to the neighboring locations.

Algorithm 1: Proposed Genetic Algorithm

Initialization: randomly generate a population of individuals (first generation);
while termination criterion is not met do

for every individual in the current generation do

Evaluate each individual using a fitness function;
Find the individual with the highest fitness value as the best individual;

end

Generate the next generation based on the best individual by applying small random changes to the terminal locations of
axons and dendrites;

end

of each generation. The best individual in all generations is
then considered as the best solution. In order to optimize the
topology of the neural network in ILS, the individuals need to
be represented first and then, a fitness function must be defined
to evaluate each individual.

In this paper, some presumptions, including the number of
dendrites per neuron as well as the length range of dendrites and
axons, are obtained through trial and error. By applying these
presumptions, we can reduce the number of parameters to be
optimized in the proposed model. By changing these parameters,
a population of individuals can be generated. In this paper,
changing the location of dendrites and axons in ILS results in the
creation of an individual. An individual which is a topology of
a neural network in ILS, is depicted in Figure 5B. In this figure,
the ILS consists of 16 × 16 bins and 16 neurons. Each neuron
consists of 2 dendrites and 1 axon. The neurons are fixed at the
specified locations. Each individual is specified by the locations

of the terminals of axons and dendrites which are represented by
red and green circles, respectively. Considering the fact that each
individual has its own unique chromosome, each individual can
be represented by its chromosome. In theN-MNIST classification
problem in which we have 25 × 25 neurons in ionic liquid,
considering that each neuron consists of 2 dendrites and 1 axon,
an individual or a chromosome owns a total number of (2 +

1) × 25 × 25 = 1875 genes. In this problem, the first generation
consisting of 10 individuals is generated randomly. It should
be noted that a simple version of the genetic algorithm shown
in Algorithm 1 has been employed for this problem. In this
algorithm, in order to generate a new population of individuals,
the best individual of the current generation has to be chosen.
The best individual in a generation is the one with the highest
fitness value. In this paper, the best individual is a topology
of the proposed neural network in ILS which leads to higher
classification accuracy. Using the best individual, a population of
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Algorithm 2: The Algorithm for Evaluating an Individual

Result: fitness value of each individual which is a number between 0 and 1. (Better fitness is represented by numbers closer to 1)
Presumption: adding a readout layer consisting of 10 neurons (each neuron is associated with a specific class);

Training Stage: using 70% of the training data;
for every class do

1. Calculate the activity rate of every neuron in ILS for all the data samples associated with this class using Eq. 12;
2. Sort the neurons in ILS based on their activity rate in descending order;
3. Choose the specific number of neurons with higher activity rate;
4. Connect the chosen neurons to a readout neuron associated with this class with a weight proportional to its activity rate
using Eq. 13;

end

Evaluation Stage: using the remaining 30% of the training data;
for every data sample do

1. Calculate the total activity rate of the neurons (α) in ILS;
2. Calculate the membrane potential of readout neurons using the weights (w) obtained in training stage;
3. Choosing a readout neuron with the highest membrane potential as the class for input data sample;
4. Comparing the actual class with the obtained class: if the answer is wrong, increase the number of errors by 1;

end

Calculating the fitness value of the individual considering the number of errors using Eq. 14;

10 individuals for the next generation is then generated. Since
each individual is represented by terminal locations of axons
and dendrites of all the neurons in ILS as shown in Figure 5B,
the next generation of individuals is generated once the red and
green circles move to their neighboring locations. This makes
the individuals of the next generation only slightly different
from those of the current generation. By considering this simple
model, we no longer need to define crossover and or mutation.

In order to obtain the best individual for a classification
problem, a fitness function is defined by which the performance
of each individual is evaluated. Algorithm 2 represents the
evaluation method applied to compute the fitness values of
individuals. In order to evaluate each individual, a layer called
the readout layer needs to be added to the proposed model. For
example, in N-MNIST classification problem, this layer consists
of 10 neurons each of which represents a class. The neurons
of ionic liquid layer are fully connected to the neurons of the
readout layer. N and C represent the number of neurons in ionic
liquid space and the neurons of readout layer, respectively.

In order to set the weight values of this layer, 70% of the

training data is used. In this training algorithm, after injecting
the data of each class into the ILS, the activity rate of the

neurons inside ILS are obtained. The activity rate of the ith

neuron inside ILS for a given data sample is computed using
Equation (11) in which T represents the total number of time

steps and the activity status of the ith neuron in t time step
is represented by xti . By applying all the data samples of each
class, the total activity rate of the ith neuron (αi) is computed
using Equation (12) in which asi represents the activity rate

of the ith neuron for the sth data sample of a class. The
specific number of neurons which are more active compared
to other neurons in ILS are connected to the readout neuron
associated with that class with a weight value proportional to

their activity. The weight value of less active neurons is set to
0. By assuming Ac as the set of the most active neurons for
the cth class, the weight between the cth readout neuron and
the ith neuron inside ILS is computed using Equation (13). If
the ith neuron inside ILS (Ni) is a subset of Ac, the weight
is computed based on αc

i while it is set to 0 if Ni is not a
subset of Ac.

ai =
1

T

T
∑

t=1

xti (11)

αi =
1

S

S
∑

s=1

asi (12)

wic =

{

αc
i −

1
C−1

∑C
j=1, j 6=c α

c
i Ni ⊂ Ac

0 Ni 6⊂ Ac (13)

In evaluation stage, using the weight values obtained in
training stage, the remaining 30% of the training data
is classified. The neuron in the readout layer with the
highest membrane potential represents the class of input
data. Next, the number of total errors which occurred
while classifying this remaining 30% of training data is
computed. Using Equation (14), a fitness value is calculated
for each individual. In this equation, Ds and Es indicate
the desired and estimated class of the sth data sample of
the remaining 30% of the training data, respectively. Also,
in this equation, S represents the number of data samples
in the remaining 30% of the training data. Higher fitness
values represent better individuals. In summary, this section
provided an explanation on how to obtain the best topology
of a neural network in ILS for classification problem using
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optimization algorithm.

Fitness = 1−
1

S

S
∑

s=1

(Ds 6= Es) (14)

5. EXPERIMENTAL RESULTS

In this section, we first show the classification results on N-
MNIST dataset using the optimized ionic liquid. Then, optimized
ionic liquid is compared to the original LSM via separation and
classification accuracy considering the same readout learning
rule. Also, the performance of the proposedmodel in comparison
with some reservoir models is studied via classification problems
derived from the well-known TIMIT dataset (Garofolo et al.,
1993). Finally, the scalability, stability and robustness to noisy
input of the proposed ionic liquid are discussed.

5.1. Classification Results on N-MNIST
Dataset by Optimizing the Topology of the
Proposed Reservoir
Based on what was discussed in sections 2 and 3, it could
be understood that the proposed model is appropriate for
classifying neuromorphic and time variant data since diffusion
plays a key role in this model. Hence, the N-MNIST dataset
(Orchard et al., 2015)—which is the neuromorphic version of
the MNIST dataset—has been used for classification. By applying
time variant inputs to the ILS it could be said that the state
of ILS is also time variant. The state of the ILS depends on
whether the neurons of ILS are active or not. One of the biggest
challenges of classification problem using the proposed model is
being able to provide a constant output for a time-varying ILS.
To do so, similar to all other reservoir networks, we need to add
a readout layer to the proposed model. Here, a two-layered fully-
connected readout layer similar to the one depicted in Figure 6

is used. In order to train this network, scaled conjugate gradient
backpropagation method (SCG) has been used (Møller, 1993).

In this section, the effect of the proposed model’s topology
evolution on its performance using genetic algorithm is shown.
In fact, we would like to show that as the topology of
the proposed model evolves, better classification results will
be obtained. To do so, we optimize the parameters of the
proposed model using a proposed genetic algorithm as well
as different experiments in order to realize its effect on the
classification accuracy.

The following includes an explanation on the optimization
method used to optimize the topological parameters of the
proposed model. In order to optimize the parameters a
group of tests are designed. The parameters of each test
are shown in Table 1. These parameters include the number
of dendrites per neuron as well as the length of dendrites
and axons. In the first test, 20 different topologies of the
proposed model are built considering the parameters of
Table 1. In the first test, 4 dendrites are considered per
neuron and the length of dendrites and axons is a random
number in a specific range. The results obtained from the
classification of the N-MNIST test dataset are depicted in

Figure 7A. Since our purpose was to study the topological
parameters of the proposed model and not the readout
layer, in order to eliminate the effects of the readout layer
on classification accuracy, it is trained 10 times for each
topology. The classification accuracy obtained in each training
is different from the others. Therefore, the diagram has been
depicted around the mean values of classification accuracy with
confidence intervals.

The second test is designed to evaluate the effect of the number
of dendrites on ionic liquid’s performance. Therefore, the length
of dendrites and axons are set to a constant value and the number
of dendrites varies throughout the test. In this test, different
topologies are generated by considering a different number of
dendrites for each neuron. Similar to first test, the readout layer
of the proposed neural network is trained 10 times for each
topology. Figure 7B shows the effect of the number of each
neuron’s dendrites on classification performance. As shown in
this figure, better classification accuracy is obtained when the
number of dendrites per neuron is set to 2. Hence, in the next
test, the number of dendrites per neuron is considered to be
2 as well.

In the third test, each neuron is considered to have 2 dendrites
while the length of dendrites and axons is chosen randomly from
the ranges given in Table 1. In this test, 10 different topologies
of the proposed model are generated. Figure 7C shows the
classification results of the third test for different topologies. The
best obtained mean value of classification accuracy is 97.70%
which is obtained by using the 2nd topology while the maximum
value of classification accuracy is 98.14% which associates with
the 3rd topology.

In order to gain better results while using genetic algorithm
we use the topology with the maximum classification accuracy.
Therefore, the 3rd topology of the third test is considered
as the initial individual. Now, based on the locations of
neurons, dendrites, and axons in this topology, the next
generation of individuals will be generated. Each individual
is evaluated using the fitness function represented in section
4 and in each generation, the individual with the highest
fitness value is used to generate the next population of
individuals. The best classification accuracy (best individual) of
each generation is depicted in Figure 8. As can be seen, 30
different populations of individuals are generated. As mentioned
above, the first population of individuals is generated from
the 3rd topology of the third test. It also can be seen
that the best solution is obtained in the 26th generation
which holds the maximum value of classification accuracy
which is 98.38%.

The results obtained from comparing the proposed model
with other state-of-the-art spiking neural networks, while
classifying the N-MNIST dataset are shown in Table 2. As
can be seen, all the networks used to classify this dataset
are in the form of multi-layer perceptron (MLP) and or
convolutional neural network (CNN). Different methods are
used for training these networks. The highest accuracy of
classifying this dataset obtained so far is 98.78% (Wu et al.,
2018) in which MLP structure is trained with spatiotemporal
backpropagation algorithm (STBP). Network structures are also
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FIGURE 6 | The architecture of the proposed neural network based on the ILS model used to classify the N-MNIST dataset. Each sample consists of 34× 34 = 1156

pixels. Each pixel is represented by a 300ms event stream injected into an ILS bin. To show the states of the ILS, 25× 25 = 625 neurons were considered in a

100× 100 ILS. In this network the readout layer is a two-layered fully-connected structure consisting of hidden layer neurons and output prediction neurons. There are

10 neurons for predicting the class of each sample from the dataset. Each neuron represents a specific class. In this paper, the number of hidden layer neurons is

considered to be 120.

TABLE 1 | Setting parameter values of the proposed model for different tests.

Test number Number of dendrites Dendrite length Axon length Number of topologies

First 4 Rand ∈ [0.5, 2] Rand ∈ [3, 5] 20

Second 1 to 10 1.5 4 10

Third 2 Rand ∈ [0.5, 2.5] Rand ∈ [3, 6] 10

presented in Table 2. It can be seen that the number of neurons
of the proposed model is less than that of other available
networks. In other words, using ionic liquid structure leads
to obtaining a reasonable classification accuracy with a lesser
number of neurons. Without applying the genetic algorithm
for optimizing the structure of neurons in the ILS and only
by applying the SCG training method in order to train the
readout layer of the proposed model, a classification accuracy of
97.69% is obtained. Optimizing the structure of neurons using
the genetic algorithm, however, leads to obtaining a classification
accuracy of 98.38%.

5.2. Comparison With Other Reservoir
Models
In order to show the performance of the proposed model
in the N-MNIST classification problem compared to the
original LSM architecture, we used CSIM (Natschläger
et al., 2003) to implement a spike-based reservoir. We
used the StaticSpikingSynapse model for synapses, and the
SpikingInputNeuron and LifNeuron for the input and reservoir
neurons, respectively. Table 4 contains more details about
the LSM parameters in this experiment. The mean separation

of the proposed liquid in comparison with the original LSM
is then computed. Our model with and without topological
optimization provides 18% and 11% increase in liquid
separabilities, respectively compared to the original LSM with
static synapses. Table 3 contains the mean separation of the
original LSM and the proposed model on N-MNIST dataset.
Since the number of neurons affects the separation value, the
same number of neurons (25 × 25) for both the original LSM
and the proposed model is considered in this experiment. To
obtain the accuracy of classification, the readout layer consisting
of multiple perceptrons each for a class, is considered and
then trained using p-delta-rule. Table 3 also contains the mean
classification accuracy of the original LSM and the proposed
model on N-MNIST test dataset. It is clearly seen that the
proposed liquid outperforms the original LSM. Moreover, using
a genetic algorithm to optimize the network topology in ionic
liquid not only leads to increasing the accuracy, but also increases
the separation capability.

As it is mentioned in the introduction, there are a lot of studies
that focus on improving the liquid performance. In this section,
we tend to compare the performance of our proposed model
with that of other works including the random generated liquid
(traditional LSM) and the improved liquid using separation

Frontiers in Neuroscience | www.frontiersin.org 12 November 2019 | Volume 13 | Article 1085

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iranmehr et al. Bio-Inspired Evolutionary Model of SNNs in ILS

FIGURE 7 | (A) Classification results for 20 different topologies generated using the parameters of the first test mentioned in Table 1. In this test, each neuron in the

ILS has 4 dendrites. The lengths of dendrites and axons vary for different topologies. The mean and the maximum value of classification accuracy of the topology with

the best results are 97.52 and 98.04%, respectively. (B) Classification results of the second test considering different number of dendrites for each neuron in the ILS.

The best classification results are obtained by considering 2 dendrites per neuron. The mean and the maximum value of classification accuracy by assuming 2

dendrites for each neuron inside ILS are 97.51 and 97.98%, respectively. (C) Classification results for ten different topologies generated using the parameters of the

third test mentioned in Table 1 and considering two dendrites per neuron. The best mean value for classification accuracy is 97.70% which is obtained by using the

second topology and the maximum value of classification accuracy is 98.14% which is associated with the 3rd topology. The structure of the proposed ionic liquid

space in the 3rd topology of this test is considered as the initial individual of the genetic algorithm.
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FIGURE 8 | Classification results associated with the best individual in each generation for the N-MNIST test dataset. 30 different generations, each consisting of 10

individuals are generated. The maximum value of classification accuracy is obtained for the 26th generation and is equal to 98.38%.

TABLE 2 | Comparing the proposed model with other state-of-the-art spiking neural networks while classifying the N-MNIST dataset.

Model Network structure Learning-rule CA (%)

MLP (Wu et al., 2018) 34× 34× 2 − 800 − 10 STBP 98.78

MLP (Lee et al., 2016) 34× 34× 2 − 800 − 10 BackProp 98.66

CNN (Stromatias et al., 2017) 18× 22× 22− 2178− 10 SGD 97.77

CNN (Neil and Liu, 2016) − − 95.72

MLP (Cohen et al., 2016) 34× 34× 2− 10000− 10 OPIUM (van Schaik and

Tapson, 2015)

92.87

The proposed model 25× 25 − 120 − 10 SCG 97.69

The proposed model 25× 25 − 120 − 10 SCG & GA 98.38

TABLE 3 | The N-MNIST classification results of proposed liquid compared to the LSM.

Model Liquid structure Learning rule of readout Learning rule of liquid Mean separation Mean accuracy (%)

LSM

25× 25 p-delta-rule

– 0.55 90.87

Ionic liquid – 0.62 91.48

Ionic liquid GA 0.67 92.56

driven synaptic modification (SDSM) (Norton and Ventura,
2010) for two classification problems derived fromTIMIT dataset
(Garofolo et al., 1993). To compare our results, the total number
of neurons in the proposed model is considered the same as
the number of neurons in Table 2 of Norton and Ventura
(2010). Also, we use perceptron for training the readout layer
similar to Norton and Ventura (2010). The mean accuracy and
mean separation of the proposed model when using TIMIT
dataset (Garofolo et al., 1993) are shown in Figure 9. TIMIT
dataset consists of 6300 spoken sentences, sampled at 16 kHz.
This dataset consists of 52 phonemes which makes it difficult
to correctly identify all of them. Hence, Norton and Ventura
(2010) reduces the problem to two simpler problems: The first
is identifying phonemes as either “vowels” or “consonants,” and
the other is identifying one of four “vowel” phonemes. In this
experiment, we use the same method for converting phoneme
WAV to spike trains as used in Norton and Ventura (2010). It

is clearly seen that the proposed liquid performs better than the
initial LSM in cases of either mean separation or mean accuracy
for the testing patterns. Also, it is clearly seen that the separation
and the accuracy of the proposed model optimized by genetic
algorithm are better than that of without topologic optimization.
Moreover, it can be seen that the performance of the optimized
proposed model and the LSM trained with SDSM learning rule
are very close.

5.3. Discussion
So far, the efficiency of the proposed model through separation,
approximation, and generalization properties were studied. Also,
the mean separation and mean accuracy for several classification
problems confirmed the better performance of the proposed
liquid compared to the random generated LSM. This subsection
discusses some of the other capabilities of the proposed model

Frontiers in Neuroscience | www.frontiersin.org 14 November 2019 | Volume 13 | Article 1085

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Iranmehr et al. Bio-Inspired Evolutionary Model of SNNs in ILS

such as scalability, stability and robustness to noisy input.
Scalability of a neural networkmodel is an attribute that describes
its ability to grow and manage other demands. Hence, in order to
show the scalability of the model, the proposed model was used
to classify different types of datasets consisting of FSDD, TIMIT,
and N-MNIST. To classify each dataset, different numbers of
neurons in liquid were considered depending on the difficulty of
the problem. It is also clear from the results that the proposed
model can function properly with its liquid growth depending on
the difficulty of the problem.

TABLE 4 | The specifications of the LSM and the proposed liquid.

LSM specification parameters

Neuron type LIF neurona (lifNeuron)

Number of neurons Different for each problem

(N = L× L)

Synaptic type Static Synapses

(StaticSpikingSynapses)

Percentage of excitatory neurons 80

Percentage of inhibitory neuron 20

Internal connectivity (λ) 2.5

Proposed liquid specification parameters

Neuron type Adaptive-threshold LIF neuron

Number of neurons Different for each problem

(N = L× L)

Size of liquid space (4L× 4L)

Intrinsic plasticity rate (η) About 0.2

Transmitted flow coefficient α 0.1

Leakage coefficient (β) 0.05

Fraction of active neurons at any time ( k
N
)b Small about 0.05

aThe parameters of LIF neuron are set to the values similar to those in Table 1 of Roy and

Basu (2016).
bTypically we choose k≪Nwhich ensures population sparseness, i.e., only a small fraction

of neurons are active in the liquid at any given time.

In order to explain how the inclusion of intrinsic plasticity
helps in stabilizing the learning in ILS, the separation property
of the proposed model should be carefully studied. As can
be seen in Equation (10), separation is directly proportional
to inter-class distance (cd) while it is inversely proportional
to intra-class variance (cv). High separation results in better
effectiveness of the model. Therefore, high inter-class distance
and low intra-class variance are desirable. With low inter-class
distance, the liquid behaves in a particular way regardless of
the input class. That is because particular ionic trajectories are
formed and crystalized in ILS which may result in activating
particular neurons. The crystalized ionic trajectories act like
strong synapses, leading to the liquid behaving in a particular way
without considering the input class. It is such like that the input
does not affect the liquid anymore. To rectify, it is necessary to
increase the chaotic characteristic of the liquid. Intrinsic plasticity
adjusts the neurons’ thresholds to ensure homeostasis of their
activity. Neurons which receive high levels of input driving
them to activation, are more likely to raise their thresholds
while neurons receiving lower levels of input lower theirs. This
results in the increase of the chaotic level of the proposed
model. As a result, the power to distinguish between different
classes grows. Also, it makes the intra-class variance increase.
Therefore, in order to achieve high inter-class distance and low
intra-class variance, a trade-off between diffusion and IP has to
be established.

In addition, robustness against noisy or shifted input is one
of the advantages of the proposed model due to the effect
of diffusion in ionic liquid. What influences the performance
of the proposed model is the overall effect of the input data
over time. Although the current input data causes the ionic
density of the liquid to change which results in changing the
internal liquid state, the preceding inputs have affected the
ionic density. It means ionic density of ILS depends on both
the current and the preceding inputs. This property works

FIGURE 9 | The separation and accuracy of the proposed model in comparison with traditional LSM and SDSM across two problems derived from TIMIT dataset.

The mean value of separation and accuracy are obtained for 50 liquids.
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like low pass filter which results in less sensitivity to noisy
input. For example, assuming the spike train as the input, if
the spike occurs sooner than the predefined time, this spike
affects ionic density. However, the effect of this spike diminishes.
Conversely, if the spike occurs later, its effect on the ionic
density increases. Robustness against noisy or shifted input
was shown in section 3 while talking about generalizability of
the model.

6. CONCLUSION

In this paper, a new model of reservoir networks has been
introduced. The synaptic plasticity of this model leads to
better learning capability. In this model, neurons are located
in an ionic liquid space in which the changes of ionic density
result in the neurons being fired. What makes this model
different from traditional neural networks is the connection of
neurons in ionic liquid space. In fact, the natural diffusion in
ionic liquid space results in the creation of ionic trajectories
which represent the connection of neurons. In this paper, we
first showed the separation, approximation and generalization
capabilities of the proposed ionic liquid by performing some
experiments consisting of classifying free-spoken-digit-dataset
which shows better performance of the proposed model than
that of the randomly generated LSM. Then we put our
focus on optimizing the topology of the proposed model
or the structure of a spiking neural network in ILS. For
a specific problem, the topology of the proposed model
should be optimized in a way that the performance of the
network improves. Since the proposed model is suitable for
classifying neuromorphic and or spatiotemporal data, it has
been applied for classification of the N-MNIST dataset. In
order to optimize the topology of the proposed model for
classifying this dataset, first, several tests have been conducted
to fix some of the parameters. Then, considering these

parameters and by applying the genetic algorithm, the best
possible topology has been obtained. Without optimizing the
topology of the proposed model and only by applying a
training algorithm to the readout layer, the maximum value of
classification accuracy (97.69%) for N-MNIST dataset has been
obtained. However, optimizing the topology of the proposed
model has remarkably increased the classification accuracy on
this dataset to 98.38%. Based on the results obtained from
topological optimization, it can be concluded that optimizing
the structure of neurons in ionic liquid space results in better
classification. In addition, the comparison results via classifying
the two problems derived from the TIMIT dataset showed
that the optimized proposed model outperforms the original
LSM and it is comparable with LSM trained with some
learning rules.
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