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Sleep occupies a third of our life and is a primary need for all animal species studied so
far. Nonetheless, chronic sleep restriction is a growing source of morbidity and mortality
in both developed and developing countries. Sleep loss is associated with the subjective
feeling of sleepiness and with decreased performance, as well as with detrimental effects
on general health, cognition, and emotions. The ideas that small brain areas can be
asleep while the rest of the brain is awake and that local sleep may account for at
least some of the cognitive and behavioral manifestations of sleepiness are making
their way into the scientific community. We herein clarify the different ways sleep can
intrude into wakefulness, summarize recent scientific advances in the field, and offer
some hypotheses that help framing sleepiness as a local phenomenon.

Keywords: local sleep, sleepiness, microsleep, EEG slowing, sleep loss, prolonged wakefulness, OFF-periods,
performance

INTRODUCTION

Epidemiological data have shown that, over the last decades, we are seeing a concerning decrease
in both the duration and the quality of sleep in developed and developing countries (Dinges, 1995;
Broman et al., 1996; Dinges et al., 1997; Liu and Zhou, 2002; Krueger and Friedman, 2009; Maric
et al., 2017). The progressive shift toward “24-h societies” has been accompanied by an increase
in “sleepiness” and its associated detrimental effects on the individual’s performance, cognition,
emotions, and general health (Dinges et al., 1997; Van Dongen et al., 2003a; Chee and Choo, 2004;
Banks and Dinges, 2007; Bernert and Joiner, 2007; Knutson et al., 2007; Goel et al., 2009, 2014;
Couyoumdjian et al., 2010; Grandner et al., 2010; Krause et al., 2017). Thus, understanding the
regulatory mechanisms of sleepiness and their implications for human health is urgent and of
utmost importance (Garbarino et al., 2016).

Although the concept of sleepiness might sound intuitive, at a closer look its definition is
far from trivial, and neither is the answer to fundamental issues like what sleepiness is from
a neurobiological standpoint. Attempts to operationalize the subjective feeling of sleepiness for
clinical and research purposes have led to the development of a number of tools, some based
on subjective ratings (e.g., the Epworth Sleepiness Scale), others on objective measures like
cognitive performance (e.g., reaction time test, driving-simulators) and electroencephalography
[e.g., multiple sleep latency test (MSLT) or polysomnography (PSG)]. Despite the reliability of these
validated measures, their agreement remains poor as they capture different aspects of sleepiness,
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differentially influenced by endogenous, exogenous, and
situational factors. For tackling and overcoming the complex
phenomenon of sleepiness, previous studies have employed and
suggested a twofold approach of identifying “sleepy” patients
based on combined subjective and objective sleepiness and/or
physiological and biochemical biomarkers (Olson et al., 1998;
Kritikou et al., 2014); this approach may be more valuable than
any single measure of sleepiness (Fleming et al., 2016) but is
not yet exhaustive.

In the last few years, science has produced compelling
evidence supporting the idea that both sleep and wakefulness
are under local regulation (Siclari and Tononi, 2017; Krueger
et al., 2019). These ideas were influenced by studies performed
during the transition between wake and sleep, where it was found
that some brain areas may fall asleep, or awaken, before others
(Pigarev et al., 1997; Magnin et al., 2010; Marzano et al., 2013;
Sarasso et al., 2014a,b; Siclari et al., 2014). In further support of
this view, sleep homeostasis can be modulated on a local level by
active or passive tasks or via local synaptic potentiation (Kattler
et al., 1994; Miyamoto et al., 2003; Huber et al., 2004, 2006, 2007;
De Gennaro et al., 2008; Vyazovskiy and Tobler, 2008; Hanlon
et al., 2009; Lesku et al., 2011).

The presence of local sleep was also demonstrated through
the observation that slow waves and spindles, the two major
spontaneous electroencephalographic oscillations of sleep that
arise from complex re-entrant circuits in the thalamocortical
system, often occur out-of-phase in different brain regions
(Andrillon et al., 2011; Nir et al., 2011).

This case is particularly compelling as both sleep spindles and
slow waves are dependent on the hyperpolarization of thalamic
relay and cortical neurons, respectively. This occurs during
NREM sleep due to the progressive decrease of noradrenergic,
serotonergic, and cholinergic neuromodulation from brainstem
activating systems. As such, being under the influence of
diffuse neuromodulatory systems, their occurrence, particularly
for slow waves, has been long assumed to be an ubiquitous
feature of virtually every neural cell of the sleeping brain
(Steriade et al., 1993) occurring in a remarkably synchronous way
(Volgushev et al., 2006).

Even more dramatically, during non-rapid eye movement
(NREM) sleep, slow waves may coexist with transient local wake-
like activity (Rector et al., 2005, 2009; Nobili et al., 2011; Peter-
Derex et al., 2015). Similarly, local isles of sleep may intrude upon
wakefulness (Rector et al., 2005, 2009; Vyazovskiy et al., 2011a;
Hung et al., 2013; Quercia et al., 2018).

We herein clarify the different ways sleep can physiologically
intrude into wakefulness, summarize the main findings on this
topic, and offer a global framework to interpret sleepiness as a
local phenomenon.

THE INTRUSION OF SLEEP INTO
WAKEFULNESS

From a neuro-physiological standpoint, sleep may intrude upon
wakefulness in the form of local sleep, electroencephalogram
(EEG) slowing, and microsleep.

Local Sleep During Wakefulness
Local sleep is a complex physiological phenomenon occurring
within anatomically discrete brain locations (Krueger et al.,
2019). Experiments in isolated cortical slabs (Kristiansen and
Courtois, 1949), as well as in slice preparations (Steriade et al.,
1993) and cell cultures (Corner et al., 2008; Hinard et al.,
2012), confirmed that slow waves—a key electrophysiological
graphoelement characterizing the sleep state—is essentially an
intrinsic property of cortical cells ensembles. Rector et al. (2005)
provided the first indirect evidence of local sleep in living intact
animals using surface evoked potentials (SEP) in rats. They
showed that, while on average, wakefulness is characterized by
low SEP amplitude and NREM sleep by high SEP amplitude (Hall
and Borbely, 1970), SEP amplitude fluctuates over time during
both states and is frequently different between hemispheres and
nearby cortical columns. Moreover, the longer a cortical column
produces low-amplitude wake-like SEP the more it will begin to
produce large-amplitude sleep-like SEP (Rector et al., 2005).

Further indirect evidence in favor of local sleep emerged from
cortical multiunit recordings in rats during sleep deprivation
(SD): firing rates increased continuously for the first 3 h of SD
and showed no further significant change in the last hour. This
“ceiling-effect” was interpreted as the consequence of the increase
in the number of local neuronal silent periods (or OFF-periods)
(Vyazovskiy et al., 2009).

Local sleep had been observed more directly in rats in
2011 (Vyazovskiy et al., 2011a,b). After a period of prolonged
wakefulness, cortical neurons tended to fall silent for brief
periods, as they do during NREM sleep. These OFF-periods
were associated with slow oscillations in the slow/theta range
in local field potential (LFP) recordings, as also confirmed
by a study applying micro-stimulation during prolonged
wakefulness (Vyazovskiy et al., 2013). Local OFF-periods
occurred asynchronously across brain regions and increased with
time spent awake. Most strikingly, they occurred in behaviorally
awake animals, and their presence over motor areas negatively
affected motor performance during a sugar pellet reaching task.

More recently, use-dependent, local sleep-like EEG theta
events have been found to occur during prolonged wakefulness
in humans (Hung et al., 2013). As in the former studies on
rodents, also in humans the occurrence of these events over
frontal or posterior scalp regions was selectively associated
with negative behavioral outcomes on executive functions or
visuomotor control tasks, respectively (Bernardi et al., 2015;
Quercia et al., 2018).

These findings lead to the intriguing hypothesis that deficits
in sensory, psychomotor, and cognitive aspects of behavior after
SD may arise as a result of altered neuronal responsiveness to
incoming stimuli due to these OFF-periods.

Global and Local EEG Slowing
Under SD conditions, which are similar to what occurs during
NREM sleep, the firing rates of neurons in ON-periods, as well
as the number and duration of OFF-periods, the number of
neurons participating synchronously in OFF-periods and the
low-frequency content (particularly in the theta range) of the
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EEG increase (Vyazovskiy et al., 2011b). At odds with NREM
sleep, though, is the fact that during SD these events typically
involve an isolated portion of the cortex possibly reflecting
the occurrence of more or less widespread local cortical isles
of sleep during prolonged wakefulness. In further support of
this hypothesis, an fMRI connectivity analysis indicated that
prolonged wakefulness is associated with a decrease in measures
representing the mean strength of coupling among brain areas,
resembling the breakdown in connectivity typical of slow waves
sleep (Bernardi et al., 2015; Kaufmann et al., 2016).

In humans (Cajochen et al., 1995; Aeschbach et al., 1997;
Finelli et al., 2000; Strijkstra et al., 2003; Fattinger et al., 2017),
as in rats (Franken et al., 1991; Vyazovskiy and Tobler, 2005),
EEG power in the lower frequency bands (especially theta)
progressively increase with the time spent in quiet waking.
This slowing can be captured by surface EEG and is paralleled
by subjective sleepiness—at least in humans (Aeschbach et al.,
1996; Bernardi et al., 2015)—and by a decrease in behavioral
performance (Gorgoni et al., 2014; Fattinger et al., 2017).
Transcranial magnetic stimulation (TMS) measures converge
with EEG measures in indicating that SD has severe effects on
cortical activity. SD is associated with an increased TMS resting
motor threshold and cortical facilitation, at least in females,
and these changes clearly predict changes in EEG theta activity
(De Gennaro et al., 2007).

The increase in low frequencies in the EEG is associated
with the subsequent homeostatic increase of sleep slow-wave
activity (SWA) during NREM sleep in both humans (Finelli
et al., 2000) and rats (Borbély et al., 1984; Tobler and Borbely,
1986), as well as with the increase of theta and delta power
during REM sleep (Tinguely et al., 2006). Notably, superimposed
to the homeostatic process, several studies reported a strong
circadian modulation of the waking EEG (Aeschbach et al.,
1996; Dumont et al., 1999; Cajochen et al., 2002) so that
the intrusion of low frequencies is restrained when sustained
wakefulness coincides with the biological day, while it is
completely free to manifest itself during the biological night
(Cajochen et al., 2002). Similarly, cortical excitability assessed
using TMS coupled with scalp EEG is robustly correlated with
circadian dynamics and with endocrine markers of circadian
amplitude (Ly et al., 2016).

Interestingly, these regulatory mechanisms may act locally.
The aforementioned increase in low frequencies has a fronto-
central predominance, mainly in the theta range during
wakefulness (Finelli et al., 2000; Strijkstra et al., 2003) and in
the SWA range during subsequent recovery sleep (Cajochen
et al., 1999; Finelli et al., 2000; Leemburg et al., 2010), and
it can be observed also after repeated partial sleep restriction
(Plante et al., 2016).

More recently, studies performed in humans showed that
the increase in waking theta EEG activity during SD displayed
regional, use-dependent changes (Hung et al., 2013; Gorgoni
et al., 2014; Bernardi et al., 2015; Nir et al., 2017). A first
study took advantage of high-density EEG technology to show
an increase in theta power over left frontal brain regions
after a language-based task and over posterior parietal regions
after a visuomotor task. The same regions displayed local

increases in SWA power during subsequent recovery sleep
(Hung et al., 2013). A subsequent study demonstrated that
the occurrence of theta waves in task-related regions coincided
with specific performance errors in humans (Bernardi et al.,
2015). Another study used intra-cranial electrodes in human
neurosurgical patients performing a psychomotor vigilance task
(PVT) at baseline and during SD. Cognitive lapses involved
local state-dependent changes in neuronal activity in the
medial temporal lobe (MTL). Specifically, immediately before
cognitive lapses the spiking responses of individual neurons
were attenuated, delayed, and lengthened while, during cognitive
lapses, LFPs showed a relative local increase in slow activity
(Nir et al., 2017).

In line with these findings, a study using a driving simulator
to evaluate the effect of sleepiness at the wheel, found that a
local increase in theta EEG activity over the motor regions (as
localized by EEG source modeling techniques) was associated
with an increased risk of line departures (Ahlstrom et al., 2017).

Microsleep
In this review, microsleeps are defined as short episodes
of sleep-like activity that satisfy criteria for stage 1 sleep
(theta replacing alpha rhythm) except for their short duration
of up to 15 s (Priest et al., 2001; Blaivas et al., 2007;
Hertig-Godeschalk et al., 2019). Usually, blinking artifacts
characteristic of full wakefulness disappear, often accompanied
by the appearance of slow eye movements. However, behavioral
changes, such as eye-closure and nodding-off, are not defining
features of microsleeps, as they may or may not be present
during microsleep episodes (Torsvall and Akerstedt, 1988;
Boyle et al., 2008). Regardless, microsleeps may be associated
with significant cognitive impairment—e.g., poorer performance
during a continuous task under driving-simulator conditions
(Boyle et al., 2008)—and are strictly associated with subjective
sleepiness. Indeed, some evidence suggests that microsleeps
analysis in MSLT might be a more sensitive and specific test for
excessive daytime sleepiness (EDS) as compared to MSLT alone
(Tirunahari et al., 2003).

Microsleep episodes are more frequent after a sleep-restricted
night compared to a normally rested night (Friedman et al., 1978;
Horne and Pettitt, 1985; Poudel et al., 2018) and can be followed
by a brief recovery in performance (Poudel et al., 2018).

Traditionally, microsleeps have been hypothesized to be
global brain phenomena that reflect the transient shutdown of
activating systems, with the parallel activation of sleep promoting
centers (Sechenova, 2011; Silkis, 2013). However, recent evidence
describes microsleep in terms of intermediate states between
sleep and wakefulness (Hertig-Godeschalk et al., 2019), possibly
reflecting their local nature. Supporting this notion, a recent
fMRI study during one night of SD described local decreased
activation over frontal, parietal, and occipital associative cortices
as well as increased activation in the default mode network
(DMN) associated with slow reaction times responses at the
PVT (typically reflecting the occurrence of microsleeps), showing
how these different patterns of activation and deactivation could
depend on circadian phases as well as homeostatic sleep pressure
and the interactions between the two (Zhu et al., 2018).
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NEUROBIOLOGY AND
NEUROPHYSIOLOGY OF SLEEPINESS

In simple terms, just as hunger is the physiological need for food,
sleepiness can be described as the physiological need for sleep.
Very few theoretical constructs about sleepiness are available in
the literature (Cluydts et al., 2002; De Valck and Cluydts, 2003).
Conceptually, sleepiness is the consequence of an imbalance
between the sleep drive (level of activation of sleep circuits) and
the wake drive (level of activation of arousal systems) (Cluydts
et al., 2002). When wake still prevails but sleep pressure is high
we experience sleepiness.

The concept of sleepiness, therefore, closely relates to the
concept of “sleep debt.” While Horne originally proposed that
sleep debt was uniquely the consequence of the loss of “core” or
“obligatory sleep” (referred as the first 4–5 h of sleep) but not of
“optional” or “facultative” sleep, which “fills the tedious hours
of darkness until sunrise” (Horne, 1985), empirical research
indicated that sleep debt accumulates linearly. Although clearly
influenced and modulated by circadian factors (Shekleton et al.,
2013), according to this line of research, sleep debt may be
defined as the cumulative hours of sleep loss with respect to a
subject-specific daily need for sleep (Van Dongen et al., 2003b).

Another closely related concept of sleepiness is “sleep
inertia,” a physiological condition of subjective drowsiness,
decreased alertness, and impaired cognitive and sensory-motor
performance that arises during the transition between sleep to
wakefulness. It has been shown that the subjective feeling of
sleep inertia lasts on average 15–30 min, although objective
measure of alertness and performance do not return to waking
baseline until 2–4 h after waketime (Jewett et al., 1999).
Electroencephalographic, evoked potential, and neuroimaging
studies suggested that sleep inertia involves the intrusion
of sleep patterns during wakefulness (Trotti, 2017), bringing
the concepts of sleepiness and sleep inertia even closer and
further corroborating the notion that vigilance states are not
necessarily discrete.

But how does this translate from a neurophysiological
standpoint? According to the data presented in the previous
section, sleepiness may be associated with the occurrence of local
sleep during wakefulness in the presence of a positive sleep debt.
We will now focus on possible regulatory mechanisms of local
sleep and their interaction with global processes.

Local Regulation of Sleep
Great progress has been made in characterizing the brain centers
responsible for the orchestration of sleep and wakefulness as
global behavioral states (Jones, 2005; Saper et al., 2005; Szymusiak
and McGinty, 2008; Siegel, 2009; Brown et al., 2012). Although
anatomically widespread, these centers act in a coordinated
fashion in modulating whole-brain activity, thus allowing for
a clear behavioral distinction between wake and sleep states
(for a review see Saper et al., 2001; Scammell et al., 2017;
Eban-Rothschild et al., 2018). According to Saper’s flip-flop
switch model, sleep regulation depends on a mutually inhibitory
interaction between sleep centers and the components of the

arousal systems (Saper et al., 2001), located both in cortical and
subcortical structures.

Although the described mechanisms may orchestrate sleep
globally, sleep is fundamentally an intrinsic property of the
cerebral neurons and can be regulated locally at the level of
cortical areas as small as cortical columns (Krueger et al.,
2008). This columnar state segregation is favored by the
fact that the functional intracolumnar connections are denser
than intercolumnar connections allowing greater activity and
state synchrony between cells pertaining to the same column
(Panzeri et al., 2003).

The very first model-based postulation of local sleep was
published in 1993 and 1995 by Krueger and Obal (1993) and
Krueger et al. (2008), who postulated that sleep begins as a local
neuronal group event involving oscillations of inhibition and
excitation and is thus “quantal” in nature. From this perspective,
these authors considered sleepiness as a statistical phenomenon,
the perception of which arises when a sufficient number of
neuronal groups become “bistable.”

Coordination of neuronal group sleep results from both
neuronal and humoral systems. As proposed by the Synaptic
Homeostasis Hypothesis (SHY; Tononi and Cirelli, 2003, 2006),
when neuronal plasticity during wakefulness is increased or
decreased in specific brain areas, sleep intensity, as reflected
by the amount of SWA, selectively increases or decreases
in those areas (Kattler et al., 1994; Huber et al., 2004;
Vyazovskiy and Tobler, 2008; Hanlon et al., 2009; Lesku
et al., 2011). Indeed, increased synaptic connectivity means
more synchronous oscillations and increased slow wave activity.
Alternatively (or additionally), local slow wave generation could
be due to a change in the excitability or amount of adaptation
of individual neurons. Along these lines, a build-up in the need
for cellular maintenance could cause individual neurons to show
lower excitability and stronger adaptation (Vyazovskiy et al.,
2013). OFF-periods would therefore occur locally were most
needed, thus providing a potential explanation for local sleep
patterns. Similarly, as soon as individual neurons fall below
a certain cellular stress threshold, their excitability is restored,
leading to a more wake-like pattern of activity.

Considerable evidence also suggests a role for local paracrine
signaling pathways in the regulation of both global and local
sleep. In this vein, it is known that sleep pressure correlates
with the concentration of—among others—nitric oxide (NO)
(Gautier-Sauvigné et al., 2005; Kalinchuk et al., 2011), adenosine,
and various cytokines (Imeri and Opp, 2009) such as interleukin-
1 (IL-1) and tumor necrosis factor (TNF). These substances
are synthesized by metabolically or synaptically active cells
and are released in a local fashion (Latini and Pedata, 2001;
Porkka-Heiskanen and Kalinchuk, 2011). Again, Krueger et al.
(1995b) played a pivotal role in delineating this humoral
component (Krueger, 2008). They hypothesized that sleep at the
neuronal group level is regulated by paracrine substances whose
production and catabolism rates are synaptic use-dependent
(Krueger et al., 1995a).

According to their model, Adenosine 5′-γ-ThiotriPhosphate
(ATP) released during neurotransmission and acting on purine
P2 receptors induces the release of IL1 and TNF. These cytokines
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in turn act on neurons to change their intrinsic properties
(Krueger, 2008), directly or indirectly, altering the production of
neuroendocrine substances and neurotransmitters, for example
the growth hormone releasing hormone and NO, which are
known to be involved in sleep-wake regulation (Krueger et al.,
1995b). More recent evidences in support of this model have been
shown by Nguyen et al. (2019).

Finally, there is another mechanism able to explain regional
sleep differences, especially the aforementioned frontal
predominance of the low frequency effect. Different regions
might be more susceptible to sleep due to intrinsic differences in
some of their activating inputs. In other words, even widespread
projections from centers regulating sleep globally may present
with topographical differences that may affect sleep-wake
regulation at the level of cortical macro-areas. For example,
recent evidence suggested a region-specific dissociation between
cortical noradrenaline levels during the sleep/wake cycle (Bellesi
et al., 2016). Compared to the motor cortex, in the medial
Prefrontal Cortex (mPFC) noradrenaline levels are higher
and changes in its concentration during sleep and wake are
slower. Furthermore, SD leads to a decrease in noradrenaline
only at the level of mPFC, suggesting that noradrenergic
neurons targeting the prefrontal cortex may undergo fatigue
earlier or more markedly than other projecting cells from
locus coeruleus. An increased susceptibility of noradrenergic
projections to the frontal cortex might explain frontal cognitive
executive function impairments associated with sleepiness
(Jones and Harrison, 2001) and why the frontal lobes display
more evident electrophysiological signs of deep sleep after
prolonged wakefulness (Plante et al., 2016). These mechanisms
may, alone or in combination, explain the occurrence of
local sleep during wakefulness, leading to the subjective
feeling of sleepiness.

As a last note, it is worth mentioning here that, despite the fact
that we mainly focused on the cortex when we tried to explain
the origins of local sleep, NREM sleep patterns in vivo emerge
from the interplay between the cortex and the thalamus, more
specifically the thalamic reticular nucleus (TRN). It has been
reviewed recently how cellular and functional TRN heterogeneity
may account for some features of local NREM sleep (Vantomme
et al., 2019). By experimentally modulating the activation and
firing of the TRN neurons, it was indeed possible to rapidly
induce slow wave activity (Lewis et al., 2015) as well as sleep
spindles (Fernandez et al., 2018) in spatially restricted regions of
the cortex. However, at the current state of the art, it remains
unclear how the TRN contributes in terms of physiological
conditions and what the signals that activate TRN neurons
locally are. Further research will need to clarify these aspects and
disentangle the causative role—if there is one —of TRN and the
cortex in this loop-network.

Interplay Between Local and Global
Regulation
Having highlighted local sleep regulatory mechanisms, it remains
to be discussed how they interact with the different processes
orchestrating sleep in a global fashion.

According to Saper’s model (Saper et al., 2005), sleep
regulation relies on three main streams: the “homeostatic”
(Porkka-Heiskanen et al., 1997, 2000; Huang et al., 2007, 2011,
2014), the “circadian” (Chou et al., 2003; Fuller et al., 2006),
and the “cognitive/emotional” (Chou et al., 2002; Sakurai et al.,
2005; Yoshida et al., 2006). Each drive can potentially act
globally as well as locally. Aside from the well-known homeostatic
local sleep modulation discussed above, there is evidence of
regional modulation of brain circadian rhythmicity. This has
been demonstrated by a recent fMRI study quantifying changes in
brain responses to a sustained-attention task across the circadian
cycle, during baseline wakefulness, SD, and after recovery sleep
(Muto et al., 2016). Subcortical areas exhibited a dominant
circadian modulation that closely followed the melatonin profile
but had no significant influence on sleep debt. Cortical responses
also showed significant circadian rhythmicity, the phase of which
varied across brain regions, as well as a widespread negative
influence exerted by sleep pressure. The mechanisms of this local
modulation are unknown, although the authors suggested the
potential role of clock gene expression. Intriguingly, an EEG
study showed that circadian rhythms modulate the incidence
amplitude, frequency, and slope of slow waves (the latter being
the most accurate marker of synaptic strength), with a dominant
effect on central and occipital areas (Lazar et al., 2015).

Moreover, global regulatory mechanisms, particularly
regarding the homeostatic and the circadian components, may
influence local sleep regulation. In this respect, the extent of brain
areas displaying sleep features (and thus the associated behavioral
impairments and subjective feeling of sleepiness) may rest on the
level of synchronization between global regulatory mechanisms.
As such, asynchrony and shift of phase between the homeostatic
and the circadian drive may result in local sleep without a
global state transition (see Figure 1, conceived for schematizing
these concepts without fitting any biological data for the sleep
drives or for the number of neurons in OFF-periods). Likewise,
the cognitive/emotional system may modulate the interaction
between the homeostatic and the circadian drives and keep
the subject awake despite strong circadian and homeostatic
sleep-promoting inputs, accentuating their desynchronization
(Horne, 1985).

In summary, local sleep may arise as an intrinsic property
of each regulatory drive of the slow-wave cycle or by the
desynchronization between these drives acting globally.

In turn, local sleep may affect brain centers responsible
for sleep and wake as global behavioral states. As such, the
occurrence of isolated local OFF-periods during wakefulness
could subsequently lead to global sleep through the involvement
of neuro-modulatory systems responsible for the generation of
NREM sleep (Saper et al., 2010; Brown et al., 2012). Similar to
focal onset seizures with impaired awareness, local changes in
cortical activity may lead to profound global alteration of the
vigilance state associated with loss of consciousness through the
progressive involvement of other brain regions such as midline
subcortical structures including the thalamus, the hypothalamus,
and the brainstem (Englot and Blumenfeld, 2009). Recordings in
the ventrolateral preoptic nucleus (VLPO) neurons showed that
their firing rates increase during sleep, almost doubling during
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FIGURE 1 | Interplay between global sleep drivers and cortical neuronal firing. The figure is intended to schematize the concepts described in this work without
fitting any biological data for sleep drives or the number of neurons in OFF-periods. Top panels represent the time-course of the circadian and homeostatic drive over
24 h. Bottom panels represent the percentage of neurons in OFF-periods across 24 h. (A) circadian and homeostatic drives under physiological conditions.
(B) circadian and homeostatic drives out of phase due to sustained wakefulness. (C) percentage of cortical neurons in OFF-periods under physiological conditions.
(D) percentage of cortical neurons in OFF-periods during sustained wakefulness. Red bars: percentage of cortical neurons in OFF-periods. Blue lines: homeostatic
drive. Green lines: circadian drive. Gray areas: night period. Yellow areas: sleep. Light-blue areas: sleepiness. The figure has been realized by fitting the mathematical
function published in Daan et al. (1984).

recovery sleep after SD, but did not increase during prolonged
wakefulness. Thus, as homeostatic sleep drive accumulates, it
may influence other neurons in the brain, such as the median
preoptic neurons, which provide input to the VLPO (Saper et al.,
2010). Alternatively, there could be a threshold in the number
of areas showing sleep signs during wakefulness, which may
imply behavioral impairments and sleepiness at first, and only
when passing the threshold of the transition to global sleep.
Specifically, it is hypothesized that whole organism sleep is an
emergent property of the collective neuronal assemblies (Rector
et al., 2009), as when networks of neuronal assemblies are coupled
they will tend to synchronize (Roy et al., 2008). As such, when
the number of neuronal groups entering the sleep state exceeds

a significant threshold, other groups will follow (Rector et al.,
2009) thus enabling the full-fledged transition from wakefulness
to sleep (see Figure 1, conceived for schematizing these concepts
without fitting any biological data for the sleep drives or number
of neurons in OFF-periods).

Sleepiness typically arises in conditions of SD and/or
prolonged wakefulness. The prevalence of the so called
“insufficient sleep syndrome” is estimated to be between 1 and
4% of the population (Ohayon, 2008) and two to four times
higher in individuals sleeping less than 6 h per night compared to
individuals sleeping between 7 and 8 h per night (Ohayon, 2012).

The great majority of sleep disorders determine sleepiness
through the curtailment of total sleep time and/or sleep
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fragmentation without primarily affecting the function of sleep-
promoting centers. Examples are sleep breathing disorders like
obstructive sleep apnoea, circadian rhythm sleep-wake disorders
like shift-work disorder, sleep related movement disorders like
restless leg syndrome, and objective insomnia. Central disorders
of hypersomnolence like narcolepsy type 1 and 2 or idiopathic
hypersomnia involve instead a pathologic imbalance between
sleep promoting and wake promoting pathways in favor of
the former, determining an increased sleep need and/or the
abrupt intrusion of sleep into wakefulness due to an instability
of the switching mechanisms between sleep and wakefulness.
Also, parasomnias like sleepwalking and sleep terrors have been
associated with subjective daytime sleepiness, via as of yet
unknown mechanisms (Carrillo-Solano et al., 2016).

Sleepiness is also related to mental and organic diseases that
may directly or indirectly affect sleep (Ohayon, 2012). These
disorders may cause a disruption of the sleep-wake schedule due
to changes in behavior, dysregulate sleep centers orchestrating
sleep due to neurological lesions or more subtle abnormalities,
or nociceptive, immunomodulatory, or other modulatory inputs.

CONCLUSION AND FUTURE
DIRECTIONS

While familiar to all on a subjective level, sleepiness is a complex
matter that science is just beginning to understand. We have
herein summarized how, during prolonged wakefulness, the
occurrence of local neuronal OFF-periods may relate to the well-
known negative consequences on performance observed in this
state. As suggested by the reviewed literature, this phenomenon
of local sleep during wake may account for at least some of
the cognitive and behavioral manifestations of sleepiness. Under

this perspective, sleepiness may reflect the transition between
different vigilance states, being an epiphenomenon of these “fluid
boundaries” (Sarasso et al., 2014a).

This interpretation is probably the key that will help develop
new measures to quantify sleepiness in the near future. From
a clinical perspective, high-density EEG, which allows an
optimal spatial and temporal resolution to capture local isles of
EEG slowing, may represent a valuable technological support.
Moreover, a better characterization of the role of the circadian
rhythm and of its interaction with other drives that modulate
the sleep-wake cycle is warranted. Finally, a promising future
line of research will be on the linking of the neurophysiological
concepts of local sleep and sleepiness to interindividual variability
in susceptibility to sleepiness (Van Dongen et al., 2004; Kuna
et al., 2012; Rupp et al., 2012; Goel et al., 2013; Spaeth
et al., 2015). This will open the way to a more personalized
sleep medicine that will have a considerable impact on human
health and promote occupational well-being, benefiting the
society as a whole.
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