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The Papez circuit, including the fornix white matter bundle, is a well-known neural
network that is involved in multiple limbic functions such as memory and emotional
expression. We previously reported a large-animal study of deep brain stimulation (DBS)
in the fornix that found stimulation-induced hemodynamic responses in both the medial
limbic and corticolimbic circuits on functional resonance imaging (fMRI) and evoked
dopamine responses in the nucleus accumbens (NAc), as measured by fast-scan cyclic
voltammetry (FSCV). The effects of DBS on the fornix are challenging to analyze, given
its structural complexity and connection to multiple neuronal networks. In this study,
we extend our earlier work to a rodent model wherein we characterize regional brain
activity changes resulting from fornix stimulation using fludeoxyglucose (18F-FDG) micro
positron emission tomography (PET) and monitor neurochemical changes using FSCV
with pharmacological confirmation. Both global functional changes and local changes
were measured in a rodent model of fornix DBS. Functional brain activity was measured
by micro-PET, and the neurochemical changes in local areas were monitored by FSCV.
Micro-PET images revealed increased glucose metabolism within the medial limbic and
corticolimbic circuits. Neurotransmitter efflux induced by fornix DBS was monitored
at NAc by FSCV and identified by specific neurotransmitter reuptake inhibitors. We
found a significant increase in the metabolic activity in several key regions of the medial
limbic circuits and dopamine efflux in the NAc following fornix stimulation. These results
suggest that electrical stimulation of the fornix modulates the activity of brain memory
circuits, including the hippocampus and NAc within the dopaminergic pathway.

Keywords: fornix, nucleus accumbens, deep brain stimulation, dopamine, positron emission tomography, fast-
scan cyclic voltammetry

INTRODUCTION

The Papez circuit is a well-known neural network that is involved in multiple limbic functions
such as memory and emotional expression (Rajmohan and Mohandas, 2007). The circuit consists
of the hippocampus, fornix, mammillary body, anterior nucleus of the thalamus, cingulate cortex,
parahippocampal gyrus, and entorhinal cortex (Mesulam, 2000). Studies show that the interactions
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between the Papez circuit (medial limbic) and mesocorticolimbic
circuits, including the amygdala (AM), nucleus accumbens
(NAc), and prefrontal cortex (PFC) are vital to consolidation
and retrieval of memory (Hamann et al., 1999; Lisman and
Grace, 2005; Carr et al., 2011; Badre et al., 2014; Schedlbauer
et al., 2014; Horner et al., 2015). Also, in dementia patients,
memory decline has been shown to correlate with the dysfunction
of intrinsic connectivity between the hippocampus, PFC, and
striatum (Greicius et al., 2004; Buckner et al., 2005; Zhou
and Seeley, 2014). These findings highlight the importance
of studying the interaction between the medial limbic and
mesocorticolimbic circuits (Ito et al., 2008; Mikell et al., 2009;
Kahn and Shohamy, 2013; Bagot et al., 2015).

The fornix serves as the major structure between the
hippocampus and the mammillary bodies with additional
projections to the hypothalamus. Animal studies have
demonstrated that lesions or transection of the fornix will
hinder memory function in experimental behavior tests (Charles
et al., 2004; Fletcher et al., 2006; Mala et al., 2012). A clinical trial
investigating deep brain stimulation (DBS) of limbic circuitry as
a treatment for morbid obesity resulted in unexpected effects on
specific memory functions, evoking detailed autobiographical
memories, and enhancing performance on associative memory
tasks (Hamani et al., 2008). Based on this finding, DBS was
applied to the fornix to address the memory dysfunction
associated with dementia in a small cohort of patients with
Alzheimer’s disease (AD) (Laxton et al., 2010; Fontaine et al.,
2013; Holroyd et al., 2015; Lozano et al., 2016; Ponce et al.,
2016). Although the results of the clinical trial were favorable,
we do not fully understand the mechanism by which electrically
stimulating the fornix bundle affects memory function, nor its
broader effects on other circuits with which the fornix bundle
interacts (Vann, 2013; Ross et al., 2016).

The major challenge in determining the effects of fornix DBS is
the complexity of the neuroanatomic and functional connections
of the fornix. It is involved in numerous cognitive processes
that have diverse axonal pathways, such as the medial limbic
and the mesocorticolimbic circuit components. Adding to the
complexity is a wide range of axonal fiber effects involving the
hippocampus, medial temporal lobe, and NAc (Saint Marie et al.,
2010; Kahn and Shohamy, 2013; Bagot et al., 2015). In a large-
animal functional magnetic resonance imaging (fMRI) study,
we previously demonstrated that fornix DBS elicits functional
interactions between the medial limbic and mesocorticolimbic
circuits and partially regulates major excitatory input into and
through the NAc (Ross et al., 2016).

There have been few systematic studies of the functional
network effects of fornix stimulation or the neurochemical
changes that it can induce. The goal of the present study was
to characterize both the regional brain activity and the specific
neurochemical changes associated with fornix stimulation in
rodents. To do so, we used micro positron emission tomography
(PET) imaging to measure the uptake and accumulation
of fludeoxyglucose (18F-FDG) as a tracer for brain activity.
Molecular imaging systems with specific tracers have been
proposed as a biomarker-based approach to investigating the
neural mechanisms for neurodegenerative diseases such as

Parkinson’s disease (PD), AD, and epilepsy (Lenkov et al., 2013;
Joutsa et al., 2017; Matarazzo et al., 2018; Valotassiou et al.,
2018). This technique was developed to monitor specific regional
brain activity in small animals (Mirrione et al., 2007; Jang et al.,
2009a, 2012; Frankemolle et al., 2010). To monitor specific
neurotransmitter changes, we used fast-scan cyclic voltammetry
(FSCV), which is a real-time electrochemical monitoring system
(Agnesi et al., 2009; Bledsoe et al., 2009).

MATERIALS AND METHODS

Subjects
All procedures were performed in accordance with the National
Institutes of Health Guidelines for Animal Research (Guide for
the Care and Use of Laboratory Animals), and the Hanyang
University Institutional Animal Care and Use Committee
approved all experimental procedures. The subjects consisted of
adult male Sprague Dawley rats (300–350 g, Koatech, Korea)
(total n = 18; n = 15 for the PET study, and n = 3 for the FSCV
study). Subjects were housed in cages containing two or three
animals each, with 12-h light and dark cycles, 50–60% humidity,
and ad libitum access to food and water.

Stereotactic Surgery
All subjects were anesthetized with Zoletil (0.1 mL/100 g,
5 mg/mL, Virbac, France) 30 min before surgery and were
positioned into a stereotaxic frame (David Kopf Instruments,
United States). Body temperature was maintained at 37◦C with a
heating pad (TCAT-2, Harvard Apparatus, United States). A burr
hole was drilled into the skull according to coordinates based
on Paxinos and Watson’s Rat Brain Atlas (Paxinos and Watson,
1997). A twisted bipolar stainless steel electrical stimulation
electrode (diameter 125 µm, 500 µm exposure, Polyimide coated,
Plastics One, United States) was implanted into the fornix (AP:
−1.88 mm, ML: +1.3 mm, DV: −8.3 mm) (Figure 1B). Once
the stimulating electrode was positioned at the optimal location
for targeting the fornix, it was fixed firmly to the skull with
three to four screws that were fixed in place with light curing
dental cement (CharmmFil Flow, DenKist, Korea). Subjects were
monitored for a week of recovery post-surgery.

Micro-PET Acquisition
Two micro-PET (Focus 120 MicroPET, Concorde Microsystems,
Knoxville, TN, United States) scans were conducted for each of
15 subjects with either “stimulation on” or “stimulation off,” as
outlined in Figure 1A. The 15 subjects were randomly assigned
to one of two groups: “stimulation on” (n = 8) or “stimulation
off” (n = 7) in the first week. In week 2, the conditions were
reversed so that the eight subjects who had been scanned during
“stimulation on” in the first week were scanned with “stimulation
off,” and the seven subjects who had “stimulation off” in week 1
were scanned with “stimulation on” in week 2. Prior to micro-
PET scanning, subjects were kept in cages for 30 min in a room
maintained at 30◦C to maximize 18F-FDG uptake, as previously
described (Fueger et al., 2006). 18F-FDG (500 µCi/100 g) was
injected into the tail vein under light anesthesia with Zoletil
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FIGURE 1 | Micro-PET experiment protocol and electrodes placement verification by histology. (A) Mirco-PET experiment protocol diagram. (B) Left: Diagram of
electrode location in rat brain. Right: Location of stimulation electrodes implanted into the fornix (AP −1.88 mm, Paxinos and Watson). Each pair of colored circles
marks the tip of the stimulation electrode. Arrows in rectangular image indicate where electrode tips are located in brain histology slices.

(0.03 mL/100 g, 5 mg/mL, Virbac, France). Subjects then stayed in
an awake state in the cage for another 30 min for 18F-FDG uptake
with or without electrical stimulation (100 µA amplitude pulses
at 120 Hz and a pulse width of 2 ms, biphasic). After 30 min of
uptake, subjects were put into the PET scanner. The transition
time took <1 min. During the PET scan, subjects were under 2%
isoflurane anesthesia.

PET Post-processing and Statistical
Analysis
Fludeoxyglucose micro-PET images were reconstructed using
the ordered subset expectation maximization (OSEM) algorithm
with 10 iterations. Using MRIcro (MRIcro Software, Georgia
Institute of Technology, Atlanta, GA, United States), an
individual mask was applied to extract the whole brain only.
These images were normalized to an 18F-FDG rat brain template
(Ref, Jang) using a statistical parametric mapping (SPM) program
applying six-affine rigid-body transformation smoothed with
an isotropic Gaussian kernel (1 mm FWHM). Proportional
signal scaling was applied for global normalization. A general
linear model was applied, conducting paired t-tests comparing

stimulation on–off effects across subjects (n = 15) in SPM.
The statistical threshold was set at P < 0.05 (false discovery
rate, FDR). The 18F-FDG rat brain template has a matching
T1-weighted magnetic resonance imaging (MRI) template that
matches to Paxinos-atlas space (Schweinhardt et al., 2003; Jang
et al., 2009b). The t-value map was overlaid onto the T1 MRI
for display in Figure 2. The maximum t-value coordinate for
each brain region was extracted based on the MRI template
and Paxinos atlas. From these maximum t-value coordinates,
individual raw FDG PET data were further extracted and
normalized to the individual cerebellum value creating standard
uptake values ratio (SUVR) used for Figure 3.

Fast-Scan Cyclic Voltammetry
Three subjects that were not part of the micro-PET study
underwent FSCV recording in NAc during fornix stimulation.
Electrochemical changes were recorded using conventional
electrochemical sensing carbon fiber microelectrodes (CFMs)
fabricated as described previously (7 µm diameter; 50–100 µm
length exposed) (Chang et al., 2012). All procedures were
conducted under anesthesia with Zoletil (0.1 mL/100 g, 5 mg/mL,
Virbac, France). Surgical procedures similar to those for inserting
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FIGURE 2 | Micro-PET imaging of fornix stimulation-induced brain regional activity averaged across 15 subjects. Brain areas with significant changes in glucose
metabolism induced by fornix electrical stimulation (FDR < 0.05, n = 15). Top: Mirco-PET image of sagittal section. Bottom: Micro-PET images of coronal sections
through the rat brain from AP 1.2 mm to AP –7.0 mm. PMC, primary motor cortex; PSC, primary somatosensory cortex; PVC, primary visual cortex; NAc, nucleus
accumbens; and HP, hippocampus.

the stimulating electrode were followed when two additional
burr holes were made for (1) CFM implantation into the NAc
(AP: +1.2 mm, ML: +1.4 mm, DV: −6.5 mm to −7.8 mm)
and (2) a reference electrode (Ag/AgCl) implanted into the
contralateral hemisphere. Neurotransmitter changes in the NAc
during fornix stimulation were measured using the Wireless
Instantaneous Neurotransmitter Concentration Sensor (WINCS)
system (Agnesi et al., 2009; Bledsoe et al., 2009). Conventional
triangular waveforms (−0.4 to 1.5 V versus Ag/AgCl at 400 V/s)
were applied at 10 Hz. Background subtraction was performed
by subtracting the average of 10 voltammograms acquired prior
to electrical stimulation from each voltammogram acquired
after stimulation. FSCV recording began after the stabilization
of the electrode. Once the stimulation electrode was fixed at
the fornix, the dopamine release by electrical stimulation was
measured by lowering the CFM 100 µm into the NAc each
time, with 10 min interval for recovery. Electrical stimulation
was applied by an isolated pulse stimulator system utilizing
the parameters: 300 µA amplitude pulses at 120 Hz and a
pulse width of 2 ms, biphasic, for 2 s, additional details
are available in the Supplementary Figure S1 (A–M system
Model 2100, United States). A pharmacological confirmation of
NAc neurochemical changes due to fornix electrical stimulation
was conducted in all three FSCV subjects (Lee et al., 2006).
A dopamine selective reuptake inhibitor was administered
after neurotransmitter detection. Nomifensine was obtained
from Sigma–Aldrich (20 mg/kg, St. Louis, MO, United States)
and dissolved in 0.9% NaCl saline and injected into the
intraperitoneal space.

Histology and Staining
At the end of the experiment after euthanization, target site
confirmation was conducted by histology in five subjects
randomly selected from the micro-PET experimental group to
confirm the fornix site and in the three FSCV subjects to
confirm the NAc site. Each subject was exposed to a high
current (1 mA for 10 s) to mark electrolytic lesions with the
electrodes. The brains were removed and stored for 24 h in
4% paraformaldehyde solution [40 g/L in phosphate-buffered
saline (PBS)] at 4◦C. The brains were then immersed in a
30% sucrose in PBS solution for 48 h until they sank to
the bottom of the container. The brains were then sliced
into 50-µm-thick sections and mounted on glass slides. Brain
slices were placed directly into chloroform for 30 min and
then rehydrated by applying decreasing concentrations (100,
95, and 70%) of ethyl alcohol in distilled water. Brain slices
were stained with 0.1% cresyl violet solution and examined
microscopically to determine the location of each electrode
tip in the brain.

RESULTS

Histological Verification of Electrode
Positions
After the completion of the measurements, the positions of the
electrodes for the micro-PET study were histologically verified
(n = 5, Figure 1B). The histological analysis showed that the
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FIGURE 3 | Effects of fornix deep brain stimulation on glucose metabolism. Comparisons of 18F-FDG uptake in the brain regions shown as increase/decrease
relative to fornix stimulation “on” and fornix stimulation “off.” Data presented are mean ± SEM values. ∗Values that differ significantly between fornix DBS off and on
according to paired t-test (∗p < 0.05, ∗∗p < 0.001). NAc, nucleus accumbens; HP, hippocampus; PMC, primary motor cortex; PSC, primary somatosensory cortex;
PVC, primary visual cortex; VTA, ventral segmental area; and SN, substantia nigra.

twisted bipolar stainless steel electrical stimulation electrodes had
been implanted in the fornix area accurately. In targeting the
fornix, we avoided the medial forebrain bundle (mfb), which
contains direct dopaminergic fibers from the ventral tegmental
area (VTA), and histology confirmed that the stimulation
electrode was not in close proximity to the mfb. Histological
analysis (Figure 4B) for the FSCV experiment showed that the
CFM had been implanted accurately close to the NAc in all
three FSCV subjects.

Fornix Electrical Stimulation Results in
Micro-PET Images Show Increased
Glucose Metabolism Within the Medial
Limbic and Corticolimbic Circuits
Figure 3 summarizes glucose metabolism changes during fornix
electrical stimulation and their relative statistical significance,
as determined by paired t-tests comparing “stimulation on”
with “stimulation off.” Micro-PET imaging revealed that fornix
stimulation induced a significant glucose metabolism increase
in the medial limbic and corticolimbic circuits, including the
hippocampus, mammillary body, and anteromedial thalamus
(FDR < 0.05, n = 15) (Figure 2). Fornix stimulation
also generated a robust glucose metabolism increase in the

ipsilateral NAc as well as increases in numerous other regions,
including the lateral habenular, periaqueductal gray, AM,
and septal area. We also observed significant decreases in
glucose metabolism in several regions, including the primary
motor cortex (PMC), primary somatosensory cortex (PSC),
primary visual cortex (PVC), and cerebellum. The global
mean of FDG uptake revealed no significant differences
between the fornix electrical stimulation on and stimulation
off conditions. However, specific brain regions, including the
fornix, NAc (ipsilateral), hippocampus, septal area, anteromedial
thalamus, hypothalamus, AM, lateral habenula, mammillary
body, periaqueductal gray, PMC, PSC, PVC, VTA, and substantia
nigra (SN) did reveal significant differences in FDG uptake
between the stimulation on and stimulation off conditions
(∗p < 0.05, ∗∗p < 0.001). There were no significant differences
in the contralateral NAc relative to the stimulation on and
stimulation off conditions.

Neurotransmitter Efflux Induced by
Fornix Electrical Stimulation
We used FSCV to measure neurochemical changes in the
NAc during fornix stimulation (n = 3). During phasic fornix
stimulation (2 s), dopamine release was detected in vivo
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FIGURE 4 | Dopamine release as measured by FSCV in the nucleus accumbens during fornix stimulation. (A) Left: Confirmation of dopamine release by using
dopamine selective reuptake inhibitor; control (solid), and 60 min after dopamine reuptake inhibitor administered (dash). Background subtracted voltammogram from
60 min after dopamine reuptake inhibitor administered showed significant increase compared to control. Right: Representative color plots of dopamine in vivo. Black
vertical line (dash) denotes time of fornix stimulation. Current versus time plot at +0.6 V comparing DA release before and after dopamine reuptake inhibitor
administered. Red square indicates 2 s when fornix stimulation was applied. (B) Location of FSCV CFM electrodes implanted into the NAc (AP 1.2 mm, Paxinos and
Watson). Each colored circle marks the tip of the FSCV CFM electrodes. Arrow in rectangular image indicates where CFM tip is located in the brain histology slices.
FSCV, fast-scan cyclic voltammetry; CFM, carbon fiber microelectrode; and NAc, nucleus accumbens.

in the NAc (Figure 4). The current–voltage curve confirms
the oxidation peak at 0.6 V and the reduction peak at
−0.2 V, showing characteristic FSCV dopamine markers. For
further confirmation, we administered nomifensine, an inhibitor
specific to dopamine reuptake. As shown in Figure 4A, the

dopamine reuptake inhibitor showed a significant increase of
neurotransmitter efflux 60 min after administration compared to
the control condition by fornix stimulation alone. As shown in
Figure 4B, histologic analysis confirmed that the CFM had been
accurately implanted close to the NAc in all three FSCV subjects.
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DISCUSSION

In the present study, we confirmed that fornix stimulation within
the Papez circuit could induce NAc activity and further efflux
of dopamine. These findings are consistent with our large-
animal fMRI and FSCV study of fornix stimulation (Ross et al.,
2016) and a relevant recent rat study that showed that chronic
forniceal DBS significantly reduces amyloid deposition in the
hippocampus and cortex, decreases astrogliosis and microglia
activation, and lowers neuronal loss (Leplus et al., 2019). The
micro-PET results revealed that fornix stimulation increases
glucose metabolism in medial limbic circuits, including the
hippocampus, mammillary bodies, and anteromedial thalamus.
Other regions, such as the septal area, lateral habenula, AM, and
periaqueductal gray, also showed increased glucose metabolism.
In contrast, glucose metabolism was decreased in the PMC,
PSC, and PVC. These increases and decreases in brain activity
suggest that the fornix is part of a major limbic system
pathway, the Papez circuit, which is primarily involved in
certain aspects of cortical control of emotional processing
and memory storage.

Additionally, fornix stimulation significantly increased
activation in the NAc. In particular, encoding and consolidation
of memories require the stimulation of dopamine receptors
as part of a hippocampal–striatal–prefrontal loop that
orchestrates the formation of new memories (Lisman and
Grace, 2005; Axmacher et al., 2010). This finding may reflect
the strategic position of the fornix in the brain, in that
ventral hippocampal glutamatergic afferent bundles pass
through the fornix to NAc medium spiny neurons (French and
Totterdell, 2002, 2003; Sesack and Grace, 2010; Britt et al., 2012;
MacAskill et al., 2012).

The NAc works as an interface between the limbic cortex
and the midbrain structures involved in motor performance.
The fornix carries limbic inputs to the ventral striatum, which
then projects them to the NAc. It also carries fibers arising
in the septal area that project to the hippocampal formation
and to other areas of the rostral forebrain (Boeijinga et al.,
1993). Another study suggests that there may be indirect
connections between the fornix and the NAc from the dorsal
CA3 (Cornu Ammonis areas) via the VTA (Luo et al., 2011).
A non-human primate study found that the fornix contains
500,000 fibers projecting to and from various regions, including
projections from the CA3 that target the mammillary bodies
and the NAc (Talakoub et al., 2016). An fMRI study previously
reported that fornix DBS could serve as a functional connection
between the medial limbic and mesocorticolimbic circuits and
may modulate presynaptic dopamine efflux in the NAc (Ross
et al., 2016). The combination of these anatomic and functional
studies suggests that fornix stimulation drives NAc input
and output, which triggers the activity of the hippocampus
and/or the thalamus.

Several research papers have verified the neuronal framework
for dopamine efflux in the NAc induced by fornix stimulation.
One rodent study suggested that stimulation of the ventral
subiculum of the hippocampus evoked dopamine release
in the NAc by synaptic activation of both ionotropic and

metabotropic glutamate receptors (Blaha et al., 1997). The
majority of cells in the NAc are GABAergic neurons with
predominantly extrinsic innervation via excitatory glutamatergic
projections from the hippocampus, PFC, and AM (Kelley and
Domesick, 1982; Friedman et al., 2002; Sesack and Grace,
2010). NAc dopamine is known to play an important role
in motor activity and in behaviors governed by drugs and
natural reinforcers, as well as in non-associative forms of
learning (Mele et al., 2004). Because the fornix is part of
the Papez circuit, fornix stimulation-driven efflux of dopamine
in the NAc may carry information related to memory and
emotion (Halbig et al., 2011). Previously, it was shown that
synchronized electrical stimulation of the dopamine pathway
and the hippocampal pathway generates an additive fMRI
response in the NAc, suggesting a modulatory role for dopamine
in the hippocampal pathway (Krautwald et al., 2013). By
modulating hippocampal activity, dopamine is thought to
play a role in the motivational relevance of memory content
(Shohamy and Adcock, 2010).

We do not have a good explanation for the decreased
metabolism in the PMC, PSC, and PVC. All of the positive
metabolism brain areas correspond well with the Papez circuit,
but these decreased-metabolism brain areas are not in the Papez
circuit. First, looking for a possible circuitry connection and
not discussing the decreased signal, one possible explanation
of the effect in the PMC, PSC, and PVC is the role of the
AM. The amygdaloid complex contains many nuclei involved
in both sensory and motor functions (Vann and Nelson, 2015).
The NAc and septal area also have sensory-motor connections,
so there could be a possible secondary connection. This could
be further supported by the NAc having a bilateral connection
to both hemispheres. The NAc also has connections from the
AM, supporting our finding of metabolic changes in the AM and
neurochemical changes in the NAc after fornix stimulation. Our
previous study (Ross et al., 2016) showed both ipsilateral and
contralateral somatosensory BOLD responses, which indicated
circuit involvement between the hippocampus and PSC. In
terms of the functional distribution of the forniceal fibers,
part of the fornix carries fibers from the caudal hippocampus
that process exteroceptive signals (Raslau et al., 2015), and
lesion or damage to the fornix lead to visual discrimination
deficits (Lech et al., 2016). Another possible explanation of
the decreases is that electrical stimulation affected not only
the fornix but also brain regions near the fornix such as the
hypothalamic area. Hypothalamic DBS studies reported that
functional imaging revealed stimulation-induced deactivations
in the PSC (May et al., 2006; May, 2008). The final possibility
is that the observed changes are artifacts of the PET analysis
method, for example, the proportional scaling for global
normalization. This method would work well for focal changes
induced by experimental treatments but could bias the statistical
analysis when relatively wide brain areas are involved. Because
local changes can be smeared in wide brain areas due to
the low spatial resolution of [F-18]FDG micro-PET in rat
neuroimaging, the proportional scaling may cause type I or type
II errors in the analysis due to over- or under-estimation of
global activity.
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Among the limitations of the present study is the fact that
the evoked dopamine findings represent the effects of short-
term stimulation (2 s) due to the inherent long-term drifting
of FSCV for longer periods (Heien et al., 2005), while FDG-
PET can measure 30 min of continuous stimulation effects.
Further study is needed to understand if these phasic dopamine
findings would impact behavioral memory test scores. Secondly,
experiments, such as this one, conducted under anesthesia
may not represent the activation effects found when subjects
are conscious. The micro-PET FDG protocol can be used to
measure conscious-state brain activity (Mizuma et al., 2010),
and thus this study likely confirms a platform from which to
conduct conscious-state behavioral tests during FDG uptake
and PET imaging. Lastly, an inherent limitation of electrical
stimulation is that it can activate unwanted and non-specific
brain areas near the targeted region. For this reason, we took
a cautious approach to avoided possible direct stimulation
of the mfb, which contains dopaminergic fibers, given that
the electrical current spread for rodent-use micro-electrodes is
reported to be <1 mm (Lozano et al., 2002). Although there are
inherent limitations to translating findings from healthy small
animals to human pathologic conditions, the global and local
patterns of molecular imaging in this study reveal potential
neuronal mechanisms underlying fornix DBS (Ross et al., 2016;
Fu et al., 2018).

CONCLUSION

In conclusion, the results of this rodent study provide
a platform to investigate the interactions between the
Papez and mesolimbic circuits related to certain aspects
of memory function. Our findings support the concept
that electrical stimulation of the fornix increases brain
activity and controls dopamine efflux in the NAc and
suggests that further exploration of the neuromodulatory
effects of fornix DBS is warranted relative to its potential
therapeutic impact on certain aspects of memory and
emotional processing.
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