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Spontaneous activity is correlated across brain regions in large scale networks (RSN)
closely resembling those recruited during several behavioral tasks and characterized
by functional specialization and dynamic integration. Specifically, MEG studies revealed
a set of central regions (dynamic core) possibly facilitating communication among
differently specialized brain systems. However, source projected MEG signals, due to
the fundamentally ill-posed inverse problem, are affected by spatial leakage, leading
to the estimation of spurious, blurred connections that may affect the topological
properties of brain networks and their integration. To reduce leakage effects, several
correction schemes have been proposed including the Geometric Correction Scheme
(GCS) whose theory, simulations and empirical results on topography of a few RSNs
were already presented. However, its impact on the estimation of fundamental graph
measures used to describe the architecture of interactions among brain regions
has not been investigated yet. Here, we estimated dense, MEG band-limited power
connectomes in theta, alpha, beta, and gamma bands from 13 healthy subjects (all
young adults). We compared the connectivity and topology of MEG uncorrected and
GCS-corrected connectomes. The use of GCS considerably reorganized the topology
of connectivity, reducing the local, within-hemisphere interactions mainly in the beta and
gamma bands and increasing across-hemisphere interactions mainly in the alpha and
beta bands. Moreover, the number of hubs decreased in the alpha and beta bands,
but the centrality of some fundamental regions such as the Posterior Cingulate Cortex
(PCC), Supplementary Motor Area (SMA) and Middle Prefrontal Cortex (MPFC) remained
strong in all bands, associated to an increase of the Global Efficiency and a decrease
of Modularity. As a comparison, we applied orthogonalization on connectomes and ran
the same topological analyses. The correlation values were considerably reduced, and
orthogonalization mainly decreased local within-hemisphere interactions in all bands,
similarly to GCS. Notably, the centrality of the PCC, SMA and MPFC was preserved in
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all bands, as for GCS, together with other hubs in the posterior parietal regions. Overall,
leakage correction removes spurious local connections, but confirms the role of dynamic
hub regions, specifically the anterior and posterior cingulate, in integrating information in
the brain at rest.

Keywords: functional connectivity, band-limited power correlation, MEG connectome, leakage correction,
functional hubs

INTRODUCTION

The spontaneous activity of the brain at rest is spatially and
temporally organized in large-scale networks of cortical and
subcortical regions, denoted Resting State Networks (RSNs). The
topography of RSNs is similar to that of brain networks recruited
by different cognitive tasks (Biswal et al., 1995; Attwell and
Laughlin, 2001; Fox et al., 2005), and for this reason RSNs have
been named according to their putative function and pattern
of task activation: dorsal and ventral attention, visual, somato-
motor, auditory, language, executive control, and default systems
(Doucet et al., 2011; Hacker et al., 2013; Glasser et al., 2016).

As behavior unfolds, these functionally specific systems
must integrate to ensure efficient processing and transfer of
information in the brain. This seems to be achieved through
a specialized architecture of brain regions, as shown by fMRI,
DTI, EEG and MEG studies (van den Heuvel and Sporns, 2013;
de Pasquale et al., 2018). A possible mechanism allowing for
the dynamic integration of activity in different brain regions
is the existence of structural and functional ‘hub’ regions
that, through the architecture of their interactions, structural,
as shown by DTI studies (van den Heuvel et al., 2012),
and functional, as shown by fMRI studies (Zuo et al., 2012;
Power et al., 2013), act as waystations of integration thus
facilitating the communication within/across RSNs. Studies at
higher temporal resolution, using for instance MEG, revealed
a more complex scenario where nodes of the Default Mode,
Dorsal Attention and Somato-Motor Networks act as dynamic
cortical cores of integration in the beta and alpha bands
(de Pasquale et al., 2010, 2012, 2018). Furthermore, these
areas are not independent but their centrality tend to co-
fluctuate, hence forming a so called “dynamic core network of
interaction” (de Pasquale et al., 2016). These findings nicely
link with other MEG studies, showing a temporally varying
organization of brain subnetworks – MEG states- (Baker et al.,
2014), and with the DTI-supported notion of a structural
Rich Club organization within the brain connectome. Many
of these functional and structural models strongly depend on
which measures of connectivity are adopted, e.g., correlation-
based measures of interaction, and on which measures are
used to analyze graph properties. In the case of MEG,
even though neuromagnetic signals have broader frequency
content and higher temporal resolution than fMRI, and are
not influenced by neurovascular coupling, a serious drawback
is the inherent “spatial leakage” which generates a spurious
codependence among the reconstructed activity of distinct
sources. In fact, in order to solve the ill-posed inverse problem,
linear source projection schemes such as MNE (Hamalainen

and Ilmoniemi, 1994) or Beamformers (Van Veen et al., 1997;
Hillebrand et al., 2005) will inevitably yield a spatially blurred
representation of the underlying source distribution, with signals
reconstructed at different locations affected by activity from
neighboring brain areas. These effects will largely affect the
connectivity estimation. To overcome this problem, several
measures insensitive to spatial leakage have been introduced:
the imaginary coherence (Nolte et al., 2004), the multivariate
interaction measure (Marzetti et al., 2013) or the phase lag
index (Stam and Reijneveld, 2007; Hillebrand et al., 2012) for
phase coupling on the fast signal (activity), the orthogonalized
correlation (Brookes et al., 2012; Hipp et al., 2012; O’Neill
et al., 2015) and the symmetrical multivariate leakage corrections
(Colclough et al., 2015) for amplitude coupling on the slow
signal (activity envelope). The common idea behind all these
correction schemes is that spatial leakage can only induce zero-
lag linear spurious coupling, which can be in turn eliminated
by an appropriate regression model (Wens, 2015), and that it
does not affect non-zero-lag connectivity (see Palva et al., 2018
for a critical overview on this assumption). However, a potential
issue with these approaches is that physiological interactions
involving zero-lag linear coupling may be suppressed as well.
This is particularly important since, with synaptic delays in the
range of 5–25 ms from neighboring to remote regions, zero-
lag interactions are expected to be physiologically dominant.
This has been widely documented in empirical data as well as
modeling studies (Gollo et al., 2014). In fact, these mechanisms
have been ascribed to a range of crucial neuronal functions, from
perceptual integration to the execution of coordinated motor
behaviors (Roelfsema et al., 1997; Singer, 1999; Varela et al., 2001;
Uhlhaas et al., 2009). A recent work also suggests the existence of
zero-lag correlations at rest, specifically within the Default Mode
Network (Sjogard et al., 2019).

A possible alternative method for preserving zero-phase lag
correlation is the Geometric Correction Scheme (GCS) proposed
by Wens et al. (2015), which models spatial leakage from
a seed location based on the forward and inverse models.
The fundamental theoretical aspects of the GCS as well as
simulation- and data-based proof-of-concept were developed in
Wens (2015) and Wens et al. (2015), but they were limited
to the study of RSN topographies. Here, we investigate the
effect of this leakage correction on a dense connectome (155
nodes, involving 9 separate RSNs) as a function of the oscillatory
band and the eventual impact on the estimated topological
features. Specifically, we estimated the dense connectome based
on band-limited power (BLP) computed in the theta, alpha,
beta and gamma bands without leakage correction and with
the GCS. We first compared the overall topology through
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Network Based Statistics (NBS). Furthermore, we considered
topological features such as the Betweenness Centrality and
Global Efficiency, to understand the impact of the GCS on the
identification of hub regions and the efficiency of integration. Our
hypothesis is that GCS will affect local connections, producing
a decrease of local links, and a partial reorganization of the
brain hubs. We expect that leakage reorganization will occur
mainly in the alpha and beta bands, which are the main
correlates of fMRI RSNs (Mantini et al., 2008). Finally, to assess
the impact on the topology of removing 0-lag correlations
as compared to maintaining them, we ran the same analyses
also on connectomes where leakage was corrected through
orthogonalization similarly to Brookes et al. (2012). Based on the
overall similarity of RSN topography shown in Wens et al. (2015),
we expect to find some agreement between results obtained from
the two approaches.

MATERIALS AND METHODS

Subjects and Recordings
MEG signals were recorded from 13 healthy adult subjects (mean
age 29 ± 6 years, 5 females), already used in de Pasquale
et al. (2016). Subjects were asked to remain still in the MEG
system while fixating a cross on a screen. We recorded 2 or
3 scans lasting 5 min from each subject. MEG signals were
recorded using the 153-channel MEG system developed and
installed at the University of Chieti (Della Penna et al., 2000).
The system is placed within a four-layer magnetically shielded
room allowing magnetometric recordings. Two EOG and two
ECG channels were recorded simultaneously with the MEG
signals, to be used for physiological artifact rejection. Neuro-
magnetic and electrical signals were filtered in the band 0.16–
250 Hz and were sampled at 1 kHz. Before and after each
resting state run, the signal generated by five positioning coils
placed on the subject’s head were recorded and used to co-
register functional and anatomical data. Anatomical images were
acquired using a 1.5 T Siemens Vision scanner, through a sagittal
magnetization-prepared rapid acquisition gradient echo T1-
weighted sequence (MP-RAGE) with repetition time (TR) = 9.7 s;
echo time (TE) = 4 ms; α = 12◦; inversion time = 1,200 ms; voxel
size = 1× 1× 1.25 mm3.

MEG Data Preprocessing
An extensive description of the approach used to preprocess our
MEG data can be found in Mantini et al. (2011). In brief, we
applied a pipeline based on ICA (similar to the one described in
Larson-Prior et al., 2013) to separate and identify environmental
and physiological (e.g., cardiac, ocular) artifacts, which were
removed from sensor-space MEG data. Runs affected by excessive
noise (e.g., movement of the subject’s head in the helmet) were
discarded from further analysis. This reduced our final sample to
a total of 27 runs. The sensor maps of non-artifactual ICs (brain
ICs) were projected into the individual source space through a
weighted minimum norm estimator using Curry 6 (Neuroscan,
Hamburg, Germany). The source space was mapped into a 3D
grid of cubic voxels with a 4 mm side, coregistered to the MNI

atlas. The vector activity Ψ (t) =
∑
ic
Aicsic(t) at each voxel in the

brain was obtained as the linear combination of the brain IC
timecourses weighted by the related source-projected IC maps.

Connectivity Estimation and Geometric
Leakage Correction
We estimated a dense connectome based on BLP correlations
among a set of 155 nodes obtained in a previous meta-analysis
on fMRI data (Hacker et al., 2013; Baldassarre et al., 2014),
which yielded 9 RSNs (Dorsal Attention Network –DAN, Ventral
Attention Network – VAN, Somato-Motor Network – SMN,
Visual Network – VIS, Auditory Network – AUD, Language
Network – LAN, Default Mode Network – DMN, Fronto-Parietal
Network – FPN, Control Network – CON). Subcortical ROIs
were removed from the original set. Source activity Ψ (t) was
filtered into 4 frequency bands: theta (4–7 Hz), alpha (7–14 Hz),
beta (14–25 Hz), gamma (25-70 Hz) and their BLP time series
were obtained by integrating the square amplitude of the signal
over 150 ms windows sliding by 20 ms. Then, for each pair of
nodes, we computed the Pearson correlation coefficient between
their respective BLP time series over non-overlapping epochs
lasting 40 s and then averaged them across the whole run.
This procedure yielded the original, uncorrected connectivity
matrices. To obtain their leakage-corrected version, each node
was successively taken as a seed and spatial leakage emanating
from it was modeled using the GCS (Wens, 2015; Wens et al.,
2015), which we review in the following.

The GCS was applied on the source space maps of each brain
IC before estimating the leakage-corrected activity as follows.
Given a seed r0, and the linear inverse operator W =

∑
ic
Aicuic

associated with our source reconstruction pipeline (Mantini et al.,
2011; Betti et al., 2018), where Aic is the source-space map for a
generic component IC with dimensions (Nvoxels x 3), coregistered
to the MNI atlas, uic is the row of the unmixing matrix with
dimensions (1 x Nchannels), and the sum is over the brain ICs, the
corrected source map was computed as:

AGCS
ic = Aic − (

∑
ic

AicuicL(r0))(
∑
ic

Aic(r0)uicL(r0))
+Aic(r0),

where L(r0) is the leadfield associated to the seed, with
dimensions (Nchannels x 3) also coregistered to the MNI atlas,
and + denotes pseudoinversion. Given the seed, the leakage-
corrected vector activity of all the other nodes was then
rebuilt as:

Ψ GCS (t) =
∑

ic

AGCS
ic sic(t)

where sic(t) are the brain IC timecourses. The row of the
connectivity matrix corresponding to this seed was obtained by
correlation of the BLP obtained from the uncorrected activity
Ψ (t) =

∑
ic
Aicsic(t) at the seed and the BLP of all the corrected

activities Ψ GCS (t) at the other nodes.
GCS connectomes were then symmetrized by averaging the

upper and lower triangles to avoid the slight asymmetries induced
by leakage correction. Of note, spatial leakage is symmetrical in
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minimum norm estimates (Hauk and Stenroos, 2014), so this step
discarded only slight asymmetries.

Finally, as suggested in Wens et al. (2015), to remove the
contribution of possible local under-correction effects due to seed
mis-localization in the GCS connectomes, we masked out node
pairs closer than 35 mm. To avoid biasing comparisons between
connectomes, this distance mask was applied to both uncorrected
and the corrected connectomes. Thus, all the correlation values
between node pairs closer than 35 mm were not considered in
all the analyses applied to the two types of connectomes and
described in the following subsections. The number of node pairs
masked in our analysis was 1155, corresponding to less than 5%
of the total number of node pairs (equal to 23870).

Analysis of Topological Effects of
Leakage Correction
First, we analyzed possible decreases of correlation strength by
estimating the z-Fisher transformed correlation averaged over the
whole connectome, for each subject and band, and performing
paired t-tests assessing the effect of the GCS over each frequency
band. Then, topological changes induced by the GCS were
investigated through the NBS Toolbox (Zalesky et al., 2010) at
each frequency band. NBS directly operates on the connectivity
values and searches for graph components (subgraphs made
of connected nodes) comprising suprathreshold links obtained
from a t-statistics testing connectivity differences. We looked
for components representing decreases and increases separately,
using a large primary threshold for the t-statistic, namely 6. This
value represents a good compromise between the size of the
significant components produced by NBS, which was already
large for all bands at this threshold, and the sake of clarity in
showing and interpreting the obtained components. However, it
must be noted that the adoption of a smaller threshold for the
t-statistics, e.g., t = 3 as in Betti et al. (2018), produced very similar
results. We are aware that the choice of this threshold certainly
influences the size of the obtained components and thus to draw
any conclusions on its absolute value within a condition can be
misleading, also due to the contribution of false positive links in
a component (Zalesky et al., 2012). Nevertheless, in this work
we adopted the same threshold in all bands when comparing
GCS-corrected vs. non-corrected data. For this reason, since all
the data will be affected in the same way by the choice of the
threshold, we limited our observations on the relative increase or
decrease of the component size observed across frequency bands.

The significance level of each component was set to a < 0.01
assessed through permutation testing (number of permutations
n = 200). Then, we adopted the MATLAB toolbox BrainNet
Viewer for the graph visualization (Xia et al., 2013).

Graph Analyses
In this work, the graph measures were computed on the BLP
connectomes averaged across subjects. Thus, from the z-score
connectivity matrices estimated for each run, obtained after
Fisher transformation of the original correlation values, we first
averaged across runs and then across subjects to obtain mean
connectivity matrices. This applies both for the GCS corrected

and the uncorrected data. Then, we thresholded the computed
matrices to obtain fully connected binarized connectomes
(Bordier et al., 2017). To this aim, the graph components were
estimated at several thresholds. Then, the maximum threshold
ensuring a single graph component, and thus full connectedness,
was selected. This procedure allowed us to compare graphs in
the same condition (a path between any pair of nodes exists),
across uncorrected and leakage corrected scenarios and across
bands. Now, to characterize the topology of the graph, measures
such as centrality, connection density, modularity and efficiency
were computed on these binarized connectomes. To quantify the
centrality of the graph nodes, we adopted the binary Betweenness
Centrality (BC) that is related to the number of times a node acts
as a bridge between the strongest connections of any two nodes.
Thus, nodes with high BC participate in many shortest paths. The
BC is computed according to the following formula:

BC(v) =
2

(N − 1) (N − 2)

∑
i6=j6=v

σij(v)
σij

where σij is the total number of shortest paths from node i to node
j, σij(v) is the fraction of those paths passing through the node
v and N is the graph order (Rubinov and Sporns, 2010; Sporns,
2011). To compare the pattern of BC values across different
conditions (GCS corrected and non-corrected graphs) and bands,
this was normalized to the sum of BC across nodes.

Notably, to assess the significance of the BC, we compared
the obtained values with those from a population of random
graphs. These were generated by the approach described in
Rubinov and Sporns (2011) where a randomization function
preserving the degree and strength distributions was employed
(each graph edge was randomly rewired five times and 1000
iterations were run). From the obtained population of random
graphs, we computed the 95th percentile of the obtained
distribution and we considered as significant only those BC
values exceeding such value.

To characterize the global integration properties of the graph
we adopted the Global Efficiency (GE), a measure related to
the information exchange across the whole graph (Rubinov and
Sporns, 2010; Sporns, 2011). GE is defined as the average inverse
shortest path length in the network, which is inversely related to
the characteristic path length:

GE =
1

N[N − 1]

∑
i,j∈N, i6=j

1
dij

where dij is the shortest path length between the nodes i and
j. In order to evaluate significant effects of the GCS on GE,
we performed a paired t-test comparing GE obtained with
leakage correction and without it, across resting state sessions,
within each frequency band. Probability values were Bonferroni
corrected for multiple comparisons.

We further investigated how eventual changes in GE related
to the graph Modularity and Density of connections. Modularity
is a measure that identifies the community structure of a network
as a subdivision of non-overlapping groups of nodes in a way that
maximizes the number of within-group edges and minimizes the
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number of between-group edges. Thus, this represents a statistic
related to the degree to which the network may be subdivided into
clearly delineated modules. Different approaches can be adopted
to this aim, here we used the Louvain algorithm which provides
a fast and accurate community detection (Blondel et al., 2008).
We also checked that any modulation of the GE was not a mere
effect of a different density of connections. The effect of the GCS
on these two measures was also assessed with paired t-tests, with
significance Bonferroni-corrected for multiple comparisons.

All the above quantities have been estimated by means of the
MATLAB toolbox, the Brain Connectivity Toolbox1 (Rubinov
and Sporns, 2010) and for graph visualization the BrainNet
Viewer2 (Xia et al., 2013) was adopted.

Control Analyses Using
Orthogonalization
In order to compare the GCS approach with another popular
leakage correction approach, we performed the same topological
analyses described in the previous subsections on orthogonalized
connectomes. Signal orthogonalization is another correction
scheme based on linear regression to remove all zero-
lag correlations (Brookes et al., 2012; Hipp et al., 2012).
A multivariate version designed for beamformer inverse solution,
ensuring symmetrical connectomes has also become widespread
(Colclough et al., 2015), but we did not apply it since spatial
leakage is symmetrical in minimum norm estimates. Here, we
used the basic pairwise linear regression of Brookes et al. (2012).
Specifically, given a seed r0, the orthogonalized vector activity was
obtained by regressing out the seed signal Ψ r0(t):

Ψ ORT (t) = Ψ (t)− β Ψ r0 (t) ,

where the 3Nvoxels × 3 matrix β = Ψ Ψ+r0 encodes the regression
coefficients. In this last equation, Ψ gathers all samples Ψ (t)
of the activity vector in a 3Nvoxels × Ntime matrix, and
correspondingly the seed activity Ψ r0(t) is a 3× Ntime matrix.

As in the GCS case, the row of the connectivity matrix
corresponding to each seed was obtained by correlation of
the BLP obtained from the uncorrected activity Ψ r0 (t) at the
seed and the BLP of all the corrected activities Ψ ORT (t) at
the other nodes.

Orthogonalized connectomes were then symmetrized, to
account for numerical errors. The distance mask over node
pairs closer than 35 mm was applied also in this case, given
that orthogonalization also leads to similar under-correction
effects (Palva et al., 2018), albeit less extensively than the GCS
(Wens et al., 2015).

As in the GCS vs. uncorrected case, we ran the following
analyses: (i) we compared the mean z-Fisher correlation values
between uncorrected and orthogonalized connectomes; (ii) we
applied NBS at each frequency band, using a threshold for the
t-statistics equal to 6, as for the GCS vs. uncorrected comparison;
(iii) given the disruptive effect of orthogonalization on the z-score
correlation values, we also used a higher t-threshold, namely 10,

1https://sites.google.com/site/bctnet/
2http://www.nitrc.org/projects/bnv/

to display and discuss the component size; (iv) we binarized
the band-specific, group-averaged, orthogonalized connectomes
imposing the full connectedness, as for the uncorrected and
GCS connectomes; (v) we estimated BC and its significance for
each node in the graph; (vi) we estimated GE, graph modularity
and density and we compared these values with the ones
obtained from the uncorrected connectomes through a t-test,
with significance Bonferroni-corrected for multiple comparisons.

RESULTS

Global Topology of GCS vs. Uncorrected
Connectomes
To investigate the effect of signal leakage correction on the
architecture of within and across RSN interactions, we computed
RSN-based connectomes, obtained by averaging the dense
connectomes first across the RSN nodes (see Table 1 for a
complete list of nodes, RSNs and abbreviations), discarding
the node pairs closer than 35 mm, and then across subjects.
The results for the uncorrected and GCS-corrected data are
shown in Figure 1 (left column: UNCORRECTED, right column:
GCS) at the different frequency bands. Although a spatial
modulation of the RSN-based connectome is apparent across all
bands, local reductions and increases of connectivity seem to
be balanced. In fact, the connectivity averaged over the whole
connectome does not differ significantly with and without GCS
(t-tests over subjects, all ps > 0.35 for all bands). This suggests
that GCS might preserve the global strength of connectivity.
In addition, these RSN-based connectomes reveal a common
modulation of connectivity patterns: within-VIS correlation
seems to decrease for all bands after GCS, while within-AUD
correlation seems to increase.

In order to assess the statistical significance of the topological
changes underlying these modulations, we applied NBS to the
dense connectomes to identify graph components containing
significantly different connections. As it can be seen in Figure 2A,
when comparing uncorrected with GCS-corrected connectomes,
we obtained components representing significant GCS-induced
decrements of BLP correlation in all the physiological bands.
These results are overlaid onto an MNI reference brain
(BrainNetViewer, Xia et al., 2013) and nodes are color-coded
based on the membership to fMRI RSNs (see reported colormap
in Figure 2). Notably, at the same t-statistics threshold for all
bands, the number of links in the decreased component assumed
a different size as a function of the frequency band. Specifically,
the decreased components in the beta, gamma and alpha bands
involved a larger number of nodes than in the theta band. The
pie chart reported in Figure 2B shows the percentage of links
significantly decreased after GCS in each frequency band with
respect to the total number of links decreased across all bands,
which was 1022 at the t-threshold = 6. It can be noted a similar
proportion of links removed in the beta/gamma bands (around
30%) followed by the theta (21%) and alpha band (only 16%).
Interestingly, Figure 2C shows that the majority of links removed
by GCS were intra-hemispheric (WITHIN HEM. – red bars), as
compared to the inter-hemispheric ones (ACROSS HEM. – black
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TABLE 1 | List of abbreviations of the node and network labels adopted in this work.

MNI Coordinates Label RSN MNI Coordinates Label RSN

x y z x y z

1 30.3 −12.8 52.6 rFEF DAN 52 24 −34 60 RdPoCe SMN

2 −26.3 −11.8 52.7 lFEF DAN 53 −24 −32 63 LdPoCe SMN

3 23.2 −69.4 48.6 rpips DAN 54 −54 −23 37 LvPoCe SMN

4 46 −32 50 RaIPs DAN 55 54 −18 37 RvPoCe SMN

5 18 −59 53 RdSPL DAN 56 −24 −20 70 LdPrCe1 SMN

6 28 −49 52 RSPL DAN 57 −44 −9 15 LmI SMN

7 26 −69 30 RvIPS2 DAN 58 22 −18 58 RdPrCe SMN

8 −25.3 −67.3 47.6 lpips DAN 59 11 −46 59 RSPL−preCun SMN

9 −32 −42 45 LaIPS DAN 60 −18 −36 55 LdCS SMN

10 −22 −53 52 LSPL DAN 61 −7 −44 56 LdmSPL SMN

11 −31 −80 18 LvIPS1 DAN 62 9 −43 53 RmdSPL SMN

12 −43.4 −71.9 −7.7 lmt DAN 63 10.68 −91.88 6.1 rV1 VIS

13 42.4 −69.7 −11.2 rmt DAN 64 −2.82 −100.76 −0.49 lV1 VIS

14 53 −28 36 RSMG DAN 65 −8 −88 −7 LV1v VIS

15 45 −3 34 RvPrCe DAN 66 14.29 −95.7 13.63 rV2 VIS

16 46 −51 −14 RvITG1 DAN 67 −7.26 −98.79 6.79 lV2 VIS

17 39 30 12 RIFG DAN 68 27.5 −88.5 14.5 rV3 VIS

18 −49 −5 32 LvPrCe DAN 69 −16.11 −92.7 17.83 lV3 VIS

19 −40 −42 −19 LvITG1 DAN 70 26.67 −71.44 −13.94 rV4 VIS

20 −45 −34 45 LPoCe DAN 71 −30.98 −76.54 −17.13 lV4 VIS

21 −53 −29 37 LvPoCe DAN 72 32.23 −78.38 25.12 rV7 VIS

22 41 17 31 RMFG VAN 73 −23.1 −78.13 26.12 lv7 VIS

23 12 5 61 RMFG2 VAN 74 −7 −86 36 LV7−POSd VIS

24 41 2 50 RMFG3 VAN 75 −22 −71 6 LV7 VIS

25 52 −48 28 RSMG VAN 76 34 −88 −4 RLO VIS

26 58 −48 10 rSTG VAN 77 −40 −78 −9 LMT VIS

27 40 21 −4 RIFG VAN 78 −33 −86 10 LLO VIS

28 46 11 9 RvIFG VAN 79 37 −62 −11 RVOIT VIS

29 27 50 23 RaPFC VAN 80 43 −75 −11 RLOMT VIS

30 −57 −48 32 LSMG VAN 81 −25 −93 −2 LFovea VIS

31 5 −22 40 RAC2 VAN 82 42 −80 4 RLOMT VIS

32 30 8 −5 RAI VAN 83 35 −79 0 RLO VIS

33 −44 10 8 LvIFG VAN 84 −11 −74 −6 LVP VIS

34 42 28 1 RIFG−AI VAN 85 17 −64 −5 RVP VIS

35 −33 17 −5 LAI VAN 86 18 −76 26 RPOSd VIS

36 −10 −32 43 LPC VAN 87 60 −22 6 rMSTG AUD

37 39 11 21 RvPrCe VAN 88 −41 −28 6 lMSTG AUD

38 −60 −28 24 lSII SMN 89 −51 −22 5 LmSTG AUD

39 35 −26 55 rCS SMN 90 −56 −33 16 LSTG1 AUD

40 56 −2 23 RPrCe SMN 91 −43 −34 11 LSTG2 AUD

41 −37 −19 53 lCS SMN 92 54 −43 12 rIST AUD

42 −57 −8 21 LPoCe SMN 93 −54 −40 10 lIST AUD

43 57 −28 23 rSII SMN 94 38 −19 12 RpI AUD

44 −1 −17 55 lSMA SMN 95 −35 −20 14 LpI AUD

45 −10 −12 60 lSMA2 SMN 96 34 −24 17 RpI AUD

46 −12 −20 40 lSMA3 SMN 97 36 0 12 RmI AUD

47 4 −15 53 rSMA SMN 98 −38 −4 11 LmI AUD

48 10 −33 52 RParaCe SMN 99 50 −12 17 RmI AUD

49 −30 −18 10 lPUT SMN 100 38 −6 4 RmI AUD

50 30 −17 9 rPUT SMN 101 −37 −8 3 LmI AUD

51 −42 −17 46 LcPrCe SMN 102 −30 0 15 LmI3 AUD

(Continued)
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TABLE 1 | Continued

MNI Coordinates Label RSN MNI Coordinates Label RSN

x y z x y z

103 −48 31 −1 IFG LAN 130 −19 22 52 LSFG DMN

104 −50 19 9 lifg2 AUD 131 17 24 51 RSFG DMN

105 −45 13 24 MFG LAN 132 13 40 40 RSFG2 DMN

106 −7 9 60 lmfc4 AUD 133 59 −25 −12 RSTS DMN

107 −50 −54 22 STS LAN 134 −5 31 −4 LAC3 DMN

108 −56 −12 −3 aSTG LAN 135 −9 36 8 LAC2 DMN

109 −55 −48 15 pSTG LAN 136 −3 28 55 LmSFG2 DMN

110 −48 −44 3 lstg3 AUD 137 52 −1 −25 RMTG1 DMN

111 −56 −33 3 lstg2 AUD 138 −6 16 63 LmSFG1 DMN

112 −52 −54 12 lstg4 AUD 139 42 10 −29 RMTG2 DMN

113 −54 −23 −3 lstg1 AUD 140 −41 7 −31 LITG DMN

114 47 25 −4 rifg1 AUD 141 −31 −59 42 LIPS FPN

115 44 −36 6 rstg2 AUD 142 30 −61 39 RIPS FPN

116 53 23 7 rifg2 AUD 143 51 −47 42 RIPL FPN

117 61 −43 8 rstg1 AUD 144 10 −69 39 RprCu FPN

118 2 52.6 23.5 rMPFC DMN 145 −43 22 34 LdlPFC FPN

119 −2 50.5 1.7 lMPFC DMN 146 −9 −72 37 LprCu FPN

120 −13.1 51.5 23.4 lMPFC2 DMN 147 43 22 34 RdlPFC FPN

121 −2 40 27 LmPFC2 DMN 148 −41 3 36 LFC FPN

122 −3 −54 31 lPCC DMN 149 −51 −51 36 LIPL FPN

123 51 −64 32 rAG DMN 150 −28 51 15 LaPFC FPN

124 −43 −76 35 lAG DMN 151 39 1 42 RdPrCe FPN

125 −56.6 −25.1 −16.9 lITG DMN 152 −33 13 9 LaI_CO CON

126 8 −51 29 RPCPreCun DMN 153 36 16 4 RaIfO CON

127 0 −65 31 RPreCun DMN 154 −1 10 46 dACCmsFC CON

128 −1 44 −2 LAC1 DMN 155 8 3 51 RpreSMA CON

129 −4 42 45 LmSFG3 DMN

bars). We acknowledge that care should be taken in interpreting
the number of components’ nodes and edges for each band,
since NBS controls the family wise error rate in the weak sense.
Thus, the significance is associated to the whole component
and not to single links, some of which might represent false
positives (Zalesky et al., 2012). However, since we used the same
t-test threshold across bands, we expect approximately the same
number of false positives in all bands and thus the comparison
of the number of edges in the decreased components in the
beta and gamma bands versus the other bands is reasonable. In
addition to components representing significant decreases, we
also obtained components representing significant increases in all
bands (see Figure 3A). In this case, the majority of increments
in the number of links occurred in the alpha and beta bands
and to a lesser extent in the theta band, while the gamma band
involved fewer links. The percentage of links (with respect to the
total number of increased connections across all bands, which
was 1022) increasing after leakage correction was approximately
40% for alpha and beta bands and it decreased to about 20 and 6%
in theta and gamma bands, respectively (see Figure 3B). Again,
because of false positives, the absolute number of supra-threshold
links should be interpreted cautiously. However, the main result
is that the size of the increased component in the alpha and beta
bands is considerably larger than for the theta and gamma bands.

Furthermore, as it can be seen in Figure 3C, most involved links
were between hemispheres (black – ACROSS HEM.) and only a
few links were within hemispheres (red – WITHIN HEM.). To
summarize, the GCS considerably changed the topology of the
interactions, producing local, within-hemisphere decreases, and
long-range, between-hemisphere increases. These effects were
stronger in the beta and gamma bands for the decreases, and in
the alpha and beta band for the increases.

Integration/Segregation in GCS vs.
Uncorrected Connectomes
In order to investigate how the modulation of topology affected
the integration and segregation in the whole brain network, we
computed the Betweenness Centrality of the considered nodes,
over the binary graphs obtained from uncorrected and GCS-
corrected connectomes, in each frequency band (see Figure 4).
First, we note that leakage correction led to a difference in
the number of significant hubs: we obtained a slightly larger
number of hubs in the theta band (+9%) as compared to the
uncorrected data, while in the gamma band the number of
hubs almost doubled (+93%). On the contrary, in the alpha
(−20%) and beta (−42%) bands the GCS reduced the number
of central regions. This presumably indicates that in these
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FIGURE 1 | Effects of GCS on correlation strength. Network-based functional connectomes obtained as the average correlation over RSN nodes (see Table 1), are
shown without (UNCORRECTED, left column) and after GCS (right column) leakage correction for each frequency band.
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FIGURE 2 | Analysis of global topology: decreased components after GCS. Results of the NBS on uncorrected and corrected connectomes are shown for each
frequency band. (A) Decreased components (blue) displayed over an MNI brain. (B) Relative sizes of the decreased components (normalized to the total number of
decreased links across bands). (C) Number of links, in the decreased components, changing within (red bars – WITHIN HEM.) and across hemispheres (black
bars – ACROSS HEM.).

bands the centrality of uncorrected graphs was inflated by local
spurious connections due to spatial leakage. Interestingly, apart
from the observed changes, it must also be noted that some
hub regions remained central both with and without GCS (see
dashed contours in Figure 4). In all bands, medial prefrontal and
posterior cingulate/precuneus nodes (except for the theta band)
of the DMN remained central after leakage correction. Similarly,
we found consistent hubs near/at the Supplementary Motor Area
part of the SMN. In contrast, the IPS region, part of the DAN, did
not result central after GCS. In summary, the topology of central
nodes is partially maintained after the GCS.

Eventually, to understand the effect of the GCS on the global
integration, we estimated the GE of communication, which
measures the overall efficiency of integration of the considered
graph. As it can be seen in Figure 5A, we obtained a statistically
significant (p < 0.01, Bonferroni corrected) increase of GE in
GCS (white bars) vs. uncorrected (black bars) connectomes
across all frequency bands. This suggests that the GCS might

lead, in general, to a more efficiently integrated connectome as
compared to the uncorrected data. Then, since we observed a
loss of local links and an increase of long-range ones, to interpret
the GE modulation we addressed some further graph measures
that might influence the GE. First, we computed the Modularity
(Figure 5B) and the number of modules (Figure 5C) that can
be identified in the average connectome. As it can be seen in
Figure 5B, a general decrease of modularity due to GCS was
obtained in all bands (p < 0.01, Bonferrroni corrected), while
the number of modules did not significantly change in all bands
(Figure 5C). These results, taken together, are fundamental since
they show that while the number of functional communities
remain the same (same number of modules), they are less
segregated once leakage corrected (smaller modularity). As a
fundamental control on the GE modulation, we considered
the density of connections in every band (Figure 5D). This is
necessary because GE and density are known to be dependent,
i.e., higher density leads to higher GE, and at least in a certain
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FIGURE 3 | Analysis of global topology: increased components after GCS. Results of the NBS on uncorrected and corrected connectomes at each frequency band.
(A) Increased components (red) displayed over an MNI brain. (B) Relative sizes of the increased components (normalized to the total number of increased links
across bands). (C) Number of links, in the increased components, changing within (red bars – WITHIN HEM.) and across hemispheres (black bars – ACROSS HEM.).

regime such dependence is linear (Fornito et al., 2016; Strang
et al., 2018). Thus, one may suspect that the higher values of
GE obtained with GCS are simply driven by higher density.
To address this issue, we first statistically tested the densities
obtained at the different frequency bands, see Figure 5D. As it
can be noted, although on average the density values in GCS
are larger than in uncorrected connectomes, a paired t-test
showed that these are not significantly different (apart from the
theta band, p < 0.01, Bonferroni corrected). This provides a
first indication that the GE differences might not be ascribed
to the density variations. However, since the obtained density
values lie in the range where a linear relationship is expected
between GE and density (see Strang et al., 2018), we performed a
regression analysis to check whether the density may predict the
GE differences. We obtained no significant effects in the alpha
and beta bands (p < 0.01, Bonferroni corrected). These results
suggest that in these bands, the influence of density changes
have a minor impact on the observed increase of integration
for the GCS.

Global Topology and
Integration/Segregation in
Orthogonalized vs. Uncorrected
Connectomes
To compare the impact of the GCS approach with current
and popular leakage correction schemes, we performed the
same analyses on data corrected through the orthogonalization
approach described in the Methods section. The orthogonalized
RSN-based connectomes are shown in Figure 6, left column.
Please note that a scale different from Figure 1 was adopted to
appreciate the connectome patterns (connectomes with the same
scale of the uncorrected ones are reported in Supplementary
Figure S1, left column). Further, to be consistent with the
previous comparisons, correlations of node pairs closer than
35 mm were not considered in these analyses. It can be noted
that, differently from the GCS, in this case, the correlation
averaged over the whole connectomes considerably decreased in
all bands (p < 0.0002, Bonferroni corrected). However, when
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FIGURE 4 | Functional hubs before and after GCS. Functional hubs identified
through the BC are reported at the considered frequency bands without
(UNCORRECTED) and with (GCS) leakage correction. A set of hubs belonging
to the DMN (orange) and SMN (light blue) are consistently observed (dotted
circle) after the leakage correction. For each frequency band, the percentage
increase of the number of hubs due to the GCS is reported.

inspecting Figure 6, some patterns in the uncorrected and
orthogonalized RSN-based connectomes seem to be preserved:
within-VIS correlation seems to be stronger than VIS-other RSNs
in all bands, and the relative difference between within-AUD
correlation and the averaged correlation seems to be positive,
as with the GCS. Accordingly, when comparing orthogonalized
and uncorrected dense connectomes, NBS produced only

components representing significant decreases (see Figure 6,
middle column and Supplementary Figure S1, right column).
If the same t-statistics threshold as for the uncorrected vs.
GCS comparison is applied (Supplementary Figure S1), the
components sizes are large for all bands and involve all the
nodes of the connectomes. Specifically, the percentage of edges
(with respect to the total number of decreased edges across all
bands) in the decreased components is similarly shared across
bands (about 25% in theta, 28% in alpha, 26% in beta, and 21%
in gamma). For display and interpretation purposes, we show
the results of NBS statistics using a higher threshold (t = 10,
middle column in Figure 6) to appreciate possible differences
across bands. In this case, the decreased components in alpha
and beta bands involved a larger number of nodes (about 130)
than in theta and gamma bands (about 100). The percentage of
links with respect to the total number of decreased links across
all bands reduced by orthogonalization is larger in alpha/beta
bands (28%) followed by the theta (22%) and gamma band
(only 16%). Analogously to the GCS, the majority of links
removed by orthogonalization were intra-hemispheric (209 in
theta, 243 in alpha, 265 in beta, 101 in gamma), as compared
to the inter-hemispheric ones (21 in theta, 33 in alpha, 22 in
beta, 58 in gamma).

Moreover, the BC analysis on orthogonalized connectomes
(see Figure 6, right column) revealed an increase in the
number of hubs with respect to the uncorrected connectomes
in the theta and gamma bands, and a decrease in the alpha
band, as occurred for GCS-based connectomes (+32%, +67%,
and −33% respectively). However, differently from GCS, the
number of hubs slightly increased in the beta band (+12%).
Hubs in the medial prefrontal (in all bands) and posterior
cingulate/precuneus nodes (in the beta and gamma bands) of
the DMN, together with hubs near/at the Supplementary Motor
Area part of the SMN (in the beta band) remained central,
as with the GCS (Figure 6, contoured nodes, left column and
Figure 4, left column). In addition, hubs in the IPS regions
of the DAN and FPN (in all bands), and in the AG (DMN,
alpha and beta bands), were found in both the uncorrected
and orthogonalized connectomes. These results suggest that
for orthogonalized matrices, a partial overlap with uncorrected
data on the hub topography can be revealed. Interestingly,
some of these hubs overlap also with those obtained after
applying the GCS.

As far as it regards the integration analyses, the effects of
orthogonalization were slightly different from the ones obtained
for GCS (see Figure 5). Interestingly, in the orthogonalized
data (ORT) no statistically significant increases in the
GE were observed (Figure 5A, gray bars). Nevertheless,
a significant decrease of modularity was observed across
all bands (p < 0.01 Bonferroni corrected, Figure 5B),
while the number of modules did not change, as with
GCS (Figure 5C). The density of connections, although
on average larger than in the uncorrected connectomes,
reached statistical significance only in the theta and gamma
bands (p < 0.01, Bonferroni corrected). In summary, the
orthogonalization seems not to affect the global integration as
measured via GE.
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FIGURE 5 | Effect of GCS and ORT on the global integration. (A) Mean Global Efficiency (GE) values computed before (black bars – UNCORRECTED) and after
leakage correction (GCS- white bars, ORT – gray bars). A statistically significant difference was found in each frequency band (∗∗p < 0.01, Bonferroni corrected) for
the GCS corrected data. The GCS seems to increase the efficiency of communication in the brain. This does not apply to the ORT correction where no statistically
significant difference was found. (B) Mean modularity as a function of the frequency band. All the differences were statistically significant both for GCS and ORT
(∗∗p < 0.01). The decrease of modularity shows that, after GCS and ORT, the segregation of the functional communities is lower. (C) The average number of
modules is constant in all frequency bands except for gamma, despite the t-statistics is not significant. (D) No significant increase of the average density of
connections is observed in general, apart from the theta band for GCS and theta and gamma for ORT (∗∗p < 0.01).

DISCUSSION

In this work, we analyzed the impact of the GCS in minimizing
the effect of MEG spatial leakage on the topology of connectivity
at rest. We compared the effect of GCS with a popular
orthogonalization approach (Brookes et al., 2012). We focused on
integration/segregation measures observing several interesting
spatially- and frequency-specific aspects. First, we observed
that the GCS significantly modified the overall topology: the
connectivity decreased within each hemisphere, mainly in the
gamma and beta bands, and increased across hemispheres,
especially in the alpha and beta bands. On the other hand,
orthogonalization only produced a decreased connectivity in
every band, mainly involving intra-hemispheric links, as for GCS.

Second, in terms of BC, a set of hubs in the medial
frontal and parietal areas, especially in the DMN and SMN,
survived both leakage corrections, while more lateral regions
(IPS) were preserved by orthogonalization but not by the GCS.

Third, after GCS, we observed an increase of GE across all
bands. This change occurred with a significant decrease in the
Modularity corresponding to a constant number of modules,
hence supporting a stronger integration among functional
communities. The modulations of GE and Modularity, after GCS,
could not be explained by a significant decrease in connection
density (apart from the theta band).

Impact of the Geometric Correction
Scheme on the Overall Connectivity
The analysis performed by means of NBS on the overall
connectivity structure showed that, despite the mean strength
of GCS-corrected correlation was not significantly modified
by leakage correction, a profound alteration of the topology
was observed in all bands (Figures 2, 3), suggesting that
uncorrected connectomes should be interpreted with care. In
general, the first topological change consisted of a massive
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FIGURE 6 | Effects of ORT on Correlation strength, global topology and centrality. Left column: Network-based functional connectomes obtained as the average
correlation over RSN nodes (see Table 1) and runs, are shown after the ORT leakage correction for each frequency band. Middle column: NBS decreased
components (blue), displayed over an MNI brain, after the ORT correction. Left column: Functional hubs identified through the BC after ORT. The percentage
increases of the number of hubs after ORT is reported and the dotted circles represent hubs in common with the uncorrected data.
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decrease of within-hemisphere connections among neighboring
nodes (see Figure 2). This local effect is not surprising, since
the leakage effect mainly consists of the influence of one
source on its neighbors, due to the spatial spread of the
reconstructed sources (Hauk et al., 2011; Wens, 2015; Wens
et al., 2015) and their mis-localization. The edges involved in
the decreased component were spatially located mainly in the
parieto-occipital regions. Although leakage effects have different
spatial distribution according to the location of the seed in the
brain, the larger involvement of the parieto-occipital regions
might simply reflect the higher density of the parcellation scheme
in those areas. We also found that the size of the decreased
components was spectrally specific, with larger components in
the beta and gamma bands (Figure 2). It must be noted that
although the spatial leakage itself is not frequency-dependent
(Brookes et al., 2014; Wens et al., 2015) —a property that is
built in the GCS— the induced effect on connectivity does
depend on the frequency-specific signal-to-noise ratio (SNR)
(O’Neill et al., 2015). Lower SNRs such as those expected
in the theta and gamma bands tend to induce sharper local
spurious connections. This may explain the larger component
sizes found in beta, gamma, and theta as compared to alpha
(which exhibits the largest SNR in MEG). Another possible
explanation for the stronger post-GCS decreases in the beta
and gamma bands could be a mitigation of the seed mis-
location which affects the GCS (Wens et al., 2015). Specifically,
seed mis-location, i.e., the position of the actual seed does
not overlap with a true seed, generates spurious connectivity
corresponding to a smaller loss of edges after GCS. Given that
local synchronization at high frequencies is stronger, as reported
in the influential work of Buzsaki and Draguhn (2004), the effect
of mis-location is mitigated as there are many interacting seeds
very close to each other.

Correspondingly, orthogonalization also led to massive
connectivity decreases mainly involving intra-hemispheric links
(Figure 6). However, this correction affected more links in the
alpha/beta band, which exhibit high SNR, then in the theta and
gamma bands, where SNR is lower. This might reflect an effect
of SNR in the estimation of the regression coefficients, which
could be biased by physiological bands with the larger power
(i.e., alpha and beta). As such, orthogonalization tends to produce
milder effects when the SNR is low. Alternatively, this difference
could be ascribed to the existence of 0-lag interactions, which
are preserved by the GCS but cancelled by orthogonalization.
This is in line with the dominance of alpha/beta bands regarding
connectivity increases post-GCS, that we discuss in the following.

The GCS yielded an increased component involving mainly
edges connecting parietal nodes between hemispheres and edges
connecting occipital and frontal nodes (Figure 3). An increase
of connectivity was rather unexpected as leakage correction
generically leads to lower connectivity due to the elimination of
spurious couplings. However, some increased interhemispheric
connectivity after leakage correction has already been reported
when using orthogonalization or closely-related regressions
(Brookes et al., 2012, 2014; Hipp et al., 2012; Maldjian et al., 2014;
Wens et al., 2015), but they are milder and may be explained
by an over-correction effect (Wens, 2015). Accordingly, in our

data no such increases were detected with orthogonalization.
Here, we report a global, not network-specific, increase of
interhemispheric connectivity after GCS, suggesting that spatial
leakage might screen some genuine, sufficiently long-range
connectivity. Since a major distinction between the GCS and
orthogonalization is the preservation of 0-lag interactions,
this seems to suggest that this rather counter-intuitive effect
relates to inter-hemispheric, short-lag correlations. In fact,
we demonstrate mathematically in the Appendix that such
screening emerges in the presence of linear correlation, which
enables a non-linear contribution of spatial leakage to BLP
correlations (despite its linearity in source activity). When the
spatial leakage is strong, i.e., for local connections, it induces
a spurious increase of short-range connectivity. This is in
line with the results showing that both leakage corrections
clean local connections mainly (Figures 2, 6). When spatial
leakage is weaker, i.e., for longer-range connectivity, it may
lead, through non-linear effects induced by 0-lag correlation,
to a spurious reduction of connectivity. This fits with our
results in Figure 3. As a matter of fact, in the uncorrected
connectomes, the local connections composing the decreased
components shown in Figure 2 were always significantly stronger
than the long-range connections comprised in the increased
components in Figure 3 (separate t-tests for each band, p < 10−5

for all bands).
Spectrally, as mentioned above, we noted a larger size of the

increased component mainly in the alpha and beta bands which
have been reported as the most consistent spectral signatures
of fMRI RSNs (however, see Liu et al. (2017) showing that
only whole band EEG RSNs match the spatial patterns of fMRI
RSNs). These systems in fact cover mainly occipital, parietal and
temporal regions and involve long-range interhemispheric or
antero-posterior connections (Mantini et al., 2007; de Pasquale
et al., 2010, 2012; Brookes et al., 2011; Hipp et al., 2012).
Specifically, the alpha band was associated to the VIS, DAN,
DMN, SMN, AUD in an EEG-fMRI study (Mantini et al.,
2007); to SMN and DAN in an ECoG study (Hacker et al.,
2017); and to VIS, VAN, LAN, SMN, DMN in MEG studies
(Brookes et al., 2011, 2014; de Pasquale et al., 2012). Analogously,
the beta characterized the CON in Mantini et al. (2007); the
SMN, DMN, DAN, VIS, VAN, LAN, FPN in MEG studies
(Brookes et al., 2011, 2014; de Pasquale et al., 2012). Eventually,
a spatial concordance of these RSNs over a whole larger band
was found also in Hipp and Siegel (2015). Interestingly, an
increase of interhemispheric interactions in the alpha band in
the VIS and in the beta band in the SMN was also observed
after symmetrical orthogonalization in Colclough et al. (2015).
In this work, we used a quite different pipeline (different
inverse solver, keeping all components of source activity, denser
connectome but based on pointwise source estimates, and the
GCS for leakage correction) and extended Colclough’s findings
identifying more extensive increases. This is possibly also in line
with our mathematical description of the connectivity screening
effect: symmetrical orthogonalization does not enforce strict
pairwise orthogonalization but is rather based on a multivariate
optimization, so some zero-lag correlations may survive and lead
to connectivity increases post-correction as per our Appendix.
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Functional Hubs
In this work, the comparison between hubs identified with and
without the leakage correction was based on the BC measure
and the constraint of full connectedness of the investigated
connectomes. We obtained that a set of regions survived the
correction while others were ‘canceled,’ suggesting that they
probably were spurious byproducts of spatial leakage. On the
other hand, other regions resulted central after the correction
(see Figures 4, 6). In fact, if the number of hubs slightly
increased in the theta band and almost doubled in the gamma
band, they decreased in the alpha. In the beta band, the
number of hubs decreased with GCS and slightly increased
with orthogonalization. Hubs that did not replicate with GCS
were those in the IPS region, part of the DAN; while new
hub regions were identified in right prefrontal cortex part of
the Auditory and Ventral Attention Networks in the theta and
alpha bands. As it can be seen in Figure 4, a set of interesting
nodes survived the GCS and these areas comprised nodes from
the DMN (orange) and SMN (blue). Apart from the specific
nodes involved, the frontal areas of the DMN were consistent
across frequency bands while the parietal nodes were mainly
observed in the alpha and beta bands with some involvement
of the gamma band. The preservation of hubs in the DMN and
SMN in all bands was confirmed also after orthogonalization
(Figure 6), which also maintained AG in the DMN and parietal
nodes in the DAN and FPN, and introduced new hubs in the
SPL-PreCun region.

The consistency of hubs observed across GCS and
orthogonalization approaches nicely fit with previous MEG
findings observed in de Pasquale et al. (2010, 2016, 2017,
2018) as well as fMRI findings (de Pasquale et al., 2013, 2017).
Notably, at least for the parietal nodes of the DMN and SMN,
our results extend the findings of Marino et al. (2019), in
that the DMN hubs are mainly found from theta to beta
bands, but at a lesser extent in the gamma bands, while the
SMN hubs are also found in the gamma band, reflecting a
balance between low- and high-frequency oscillations in the
Cognitive (as the DMN) and the Perceptual (as the SMN)
networks. The parietal regions of the DMN and, specifically,
the Posterior Cingulate cortex/Precuneus have been shown
to play a fundamental role of integration across several RSNs
in the alpha and beta bands. Notably, these observations are
in line with the work of Maldjian et al. (2014) where, in the
leakage corrected MEG data, the DMN topography closely
resembled the fMRI one and functional hubs were consistently
observed in the posterior cingulate and bilateral parietal areas
of this network. These results are interesting since they suggest
that the centrality of these regions was not dominated by the
leakage effects.

Analogously, SMN nodes like RAC2 (all bands for GCS,
theta and beta for orthogonalization) and SMA (mainly
in beta band for GCS and theta, alpha and beta for
orthogonalization) were consistently observed both with
and without leakage correction. These nodes have been
previously reported as functional hubs of the Somato-
Motor Network but more importantly these nodes together

with DMN nodes seem to form a fundamental axis of
integration related to the interplay between the internal vs
external cognition (see for example de Pasquale et al., 2013)
and lately part of a dynamic core network of integration
(de Pasquale et al., 2016).

Finally, it is not unexpected that some differences between
hub topographies was found when comparing the two leakage
correction approaches. These differences could be partially
ascribed to the contribution of the interhemispheric edges that
increase with GCS but are not modified by orthogonalization.
However, since the ground truth is unknown, fully proving
this claim would require turning to simulated data and
inspect the impact of the leakage correction methods on the
estimated connectomes. This would require developing large-
scale simulations of the brain connectome wherein topological
features such as BC (and GE, as discussed below) are
controlled, to compare estimated connectomes with known
ground truth regarding network topology. Instead, we used here
orthogonalization as a control to contrast with the GCS. In
fact, Wens et al. (2015) presented small-scale but controlled
network simulations that revealed two major differences: (i)
orthogonalization suppresses linear, 0-lag correlations while
GCS preserves it, and (ii) orthogonalization is more resilient
than the GCS to local correction errors due to seed mis-
location. Further, the simulations in Wens et al. (2015) showed
that these local correction errors are confined to node pairs
closer than 3 cm. Our use of a 35 mm mask thus mitigated
this difference. In this setup, it is thus reasonable to expect
that the preservation/cancelation of 0-lag correlations represent
the only distinction between the two correction methods. As
suggested by our mathematical model of the leakage “screening”
effect (see Appendix), we expect our detection of post-GCS
connectivity increases to be a consequence of that distinction.
That said, full proof of this statement would require the above-
mentioned large scale simulations of connectome topology,
which thus represents an interesting avenue for future work.
Until then, we suggest that both leakage corrections should
be used to provide a more comprehensive overview on MEG
functional architecture.

Global Efficiency
The strong interaction realized by the functional axis DMN-
SMN through the involvement of the hubs in the cingulate
cortex has been shown to relate to a global optimization criterion
(de Pasquale et al., 2016). Such topology seems to optimize the
efficiency of information transfer as measured via the global
efficiency. Now, since we confirmed the presence of these hub
regions with leakage correction, it would be interesting to see
their impact on these global measures. In fact, the effect of
reducing connections (Figures 2, 6) might induce a decrease of
the global integration. As it can be seen in Figure 5A this does not
seem to be case: we observed a significant increase of GE in the
alpha and beta bands after GCS (but not after orthogonalization).
These results suggest that the spurious connections removed
by GCS and orthogonalization from the connectomes were
not serving the mentioned optimal criterion. On the other

Frontiers in Neuroscience | www.frontiersin.org 15 October 2019 | Volume 13 | Article 1114

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01114 October 24, 2019 Time: 17:55 # 16

Della Penna et al. Effects of GCS on MEG Functional Architecture

hand, the increase of interhemispheric links following
GCS seems to promote the integration across the brain
components. This result must be interpreted also considering
the decrease of Modularity (Figure 5B) and the fact
that the number of modules remained constant (see
Figure 5C). Thus, in the leakage-corrected connectomes,
it is more difficult to identify segregated communities
(higher modularity) but not because the number of modules
increased leading to more fragmented communities. In
fact, the number of modules is constant, thus the same
communities are, without the spurious contributions of
spatial leakage, less segregated and more integrated, in
the case of GCS. More generally, the topological effect of
spatial leakage to spuriously increase of local connectivity
explains its negative impact on optimal integration and
modularity of the brain. Interestingly, we show in the
Appendix that using orthogonalization, instead of the GCS,
might tend to mitigate the detection of higher integration.
This is confirmed by our results reported in Figure 5A
where no significant changes in the GE were observed
after orthogonalization.

CONCLUSION

We showed that a proper leakage correction is necessary to study
MEG functional topology and reinforces the findings that the
brain functioning at rest relies on a topologically optimal local
and global integration principle.
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APPENDIX

Analytical Demonstration of Connectivity Increases After GCS
To better understand the a priori counter-intuitive detection of higher connectivity values after GCS, we analyze here mathematically
the effect of spatial leakage and characterize the changes brought by its correction. We demonstrate that: (i) the GCS decreases
connectivity when leakage is strong enough (as expected for nearby sources), (ii) the GCS may increase connectivity for sufficiently
weak leakage (as expected for well separated sources), and (iii) this increase occurs only in the presence of linear correlations. The last
claim explains why no such connectivity increase was obtained after orthogonalization.

We consider source activity Ψ 0 at a seed location and Ψ 1 at a target location, which for simplicity will be assumed one-dimensional
time courses. The linear mixing expected from linear, zero-lag spatial leakage can be written as

Ψ 1 = Ψ GCS
1 + kΨ 0,

where Ψ GCS
1 is the corrected target source activity and k denotes the coupling constant encoding the spatial leakage effect (Wens,

2015). As described in the Methods, the corresponding BLP time series are obtained by averaging the squared signal over windows
w, so BLP0,1 (w) =

〈(
Ψ 0,1

)2
〉
w

and BLPGCS1 (w) =
〈(

Ψ GCS
1

)2
〉
w

. The uncorrected BLP time course at the target source now depends
quadratically on the leakage constant k:

BLP1 (w) = BLPGCS1 (w)+ k2 BLP0 (w)+ 2k LC (w),

where LC (w) =
〈
Ψ GCS

1 Ψ 0
〉
w is a time-dependent measure of linear coupling between the seed and corrected target sources. Finally,

connectivity is computed using BLP correlation over the windows w. However, the root of the argument can be explained more easily
by considering the BLP covariance:

cov (BLP1, BLP0) = cov
(
BLPGCS1 , BLP0

)
+ k2 var (BLP0)+ 2k cov (LC, BLP0).

Here the left-hand side represents uncorrected connectivity, and the first term in the right-hand side the corrected estimate. The
second term is the coupling between the seed’s BLP0 and its linear contribution k2 BLP0 to the target’s BLP1. Due to its positivity,
it inflates the uncorrected connectivity, as may be intuitively expected. The third and key term in our argument depends on the
covariation of the seed’s BLP0 and the time-dependent seed-target linear coupling LC. It can either increase or decrease the uncorrected
connectivity, depending on the relative sign of k and cov (LC, BLP0). When this term is negative, it may or may not overcome the
second, positive term depending on the leakage coupling strength |k|. The critical value kc determined by the equality of these two
contributions is

kc = −2
cov (LC, BLP0)

var (BLP0)
.

We conclude that: (i) When the leakage coupling is strong enough, i.e., |k| > |kc|, the second, positive term dominates, so
cov (BLP1, BLP0) > cov

(
BLPGCS1 , BLP0

)
and the GCS thus decreases connectivity. (ii) When the leakage coupling is weak, i.e.,∣∣k∣∣ < |kc|, the third term dominates, and if its sign is appropriate we have cov (BLP1, BLP0) < cov

(
BLPGCS1 , BLP0

)
so the GCS

may increase connectivity. (iii) Finally, this increase in connectivity requires the existence of a linear coupling LC, since otherwise
kc = 0 and the possibility (ii) cannot occur. Interestingly, orthogonalization strives to eliminate any linear, zero-lag correlation (in the
most drastic case, non-stationary versions of orthogonalization set LC (w) ≈ 0 within each window, see O’Neill et al., 2015). So, using
signal orthogonalization instead of the GCS would by design tend to mitigate this effect and thus may miss the increased optimization
in brain integration reported in the main text.
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